2013-2014(1)数学建模公选
- 格式:rtf
- 大小:329.62 KB
- 文档页数:2
2014高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题创意平板折叠桌某公司生产一种可折叠的桌子,桌面呈圆形,桌腿随着铰链的活动可以平摊成一张平板(如图1-2所示)。
桌腿由若干根木条组成,分成两组,每组各用一根钢筋将木条连接,钢筋两端分别固定在桌腿各组最外侧的两根木条上,并且沿木条有空槽以保证滑动的自由度(见图3)。
桌子外形由直纹曲面构成,造型美观。
附件视频展示了折叠桌的动态变化过程。
试建立数学模型讨论下列问题:1. 给定长方形平板尺寸为120 cm × 50 cm × 3 cm,每根木条宽2.5 cm,连接桌腿木条的钢筋固定在桌腿最外侧木条的中心位置,折叠后桌子的高度为53 cm。
试建立模型描述此折叠桌的动态变化过程,在此基础上给出此折叠桌的设计加工参数(例如,桌腿木条开槽的长度等)和桌脚边缘线(图4中红色曲线)的数学描述。
2. 折叠桌的设计应做到产品稳固性好、加工方便、用材最少。
对于任意给定的折叠桌高度和圆形桌面直径的设计要求,讨论长方形平板材料和折叠桌的最优设计加工参数,例如,平板尺寸、钢筋位置、开槽长度等。
对于桌高70 cm,桌面直径80 cm的情形,确定最优设计加工参数。
3. 公司计划开发一种折叠桌设计软件,根据客户任意设定的折叠桌高度、桌面边缘线的形状大小和桌脚边缘线的大致形状,给出所需平板材料的形状尺寸和切实可行的最优设计加工参数,使得生产的折叠桌尽可能接近客户所期望的形状。
你们团队的任务是帮助给出这一软件设计的数学模型,并根据所建立的模型给出几个你们自己设计的创意平板折叠桌。
要求给出相应的设计加工参数,画出至少8张动态变化过程的示意图。
图1图2图3图4附件:视频2014高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)C题生猪养殖场的经营管理某养猪场最多能养10000头猪,该养猪场利用自己的种猪进行繁育。
《数学建模(公选)》课程教学大纲一、课程基本信息课程代码:12130541课程英文名称: Mathematical Modelling课程面向专业:理工类专业课程类型:选修课先修课程:高等数学、线性代数、概率论与数理统计学分:2.5总学时:48 (其中理论学时:48 ;实验学时:0)二、课程性质与目的本课程主要介绍用数学知识解决实际问题的手段——建立数学模型。
通过教学,使学生掌握数学模型的基本知识;培养学生认识问题,用数学模型和计算机分析解决实际问题的初步能力;增强学生学习数学的兴趣和自学的能力,了解数学的一些应用分支的理论,会建立相应的简单模型,并能对模型进行分析。
三、课程教学内容与要求第一章建立数学模型1、教学内容与要求主要内容:学习数学建模课程的意义;数学模型的定义及分类;建立数学模型的方法及步骤;数学建模示例。
基本要求:了解数学模型的意义及分类,理解建立数学模型的方法及步骤。
2、教学重点:数学建模的基本方法和步骤。
3、教学难点:数学建模初步能力的培养。
第二章初等模型1、教学内容与要求主要内容:比例方法建模;类比方法建模;定性分析方法建模;量纲分析方法建模;初等模型举例。
基本要求:掌握比例方法,类比方法,定性分析方法及量纲分析方法建模的基本特点。
能运用所学知识建立数学模型,并对模型进行综合分析。
2、教学重点:比例方法建模,类比方法建模。
3、教学难点:量纲分析法建模第三章简单的优化模型1、教学内容与要求主要内容:存贮模型;生猪的出售时机;森林救火;冰山运输;量纲分析法基本要求:理解优化模型的一般意义,能运用高等数学的知识解决简单的优化模型。
掌握较简单的优化模型的建立和解法。
2、教学重点:比例方法建模,类比方法建模3、教学难点:量纲分析法建模第四章数学规划模型1、教学内容与要求主要内容:奶制品的生产与销售;自来水输送与货机装运;汽车生产与原油采购;接力队的选拔与选课策略;饮料厂的生产与检修;钢管和易拉罐下料基本要求:理解线性规划、整数规划模型和非线性规划模型的基本特点,能熟练利用数学软件进行数学规划模型的求解与灵敏度分析。
2013高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题车道被占用对城市道路通行能力的影响车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。
由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。
如处理不当,甚至出现区域性拥堵。
车道被占用的情况种类繁多、复杂,正确估算车道被占用对城市道路通行能力的影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。
视频1(附件1)和视频2(附件2)中的两个交通事故处于同一路段的同一横断面,且完全占用两条车道。
请研究以下问题:1.根据视频1(附件1),描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。
2.根据问题1所得结论,结合视频2(附件2),分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异。
3.构建数学模型,分析视频1(附件1)中交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系。
4.假如视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,路段下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离。
请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路口。
附件1:视频1附件2:视频2附件3:视频1中交通事故位置示意图附件4:上游路口交通组织方案图附件5:上游路口信号配时方案图注:只考虑四轮及以上机动车、电瓶车的交通流量,且换算成标准车当量数。
附件3视频1中交通事故位置示意图附件4附件5上游路口信号配时方案本题附件1、2的数据量较大,请竞赛开始后从竞赛合作网站“中国大学生在线”网站下载:试题专题页面:/service/jianmo/index.shtml试题下载地址:/service/jianmo/sxjmtmhb/2013/0525/969401.shtml2013高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题碎纸片的拼接复原破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。
2013-2014年全国数模竞赛a题讲解2013-2014年全国数模竞赛A题是一道涉及建模和优化等数学概念的综合性问题。
本文将对该题进行详细的解析和讲解,帮助读者理解题目的要求,并提供一些解题思路和方法。
第一部分:理解题目该题目的题面由多个部分组成,涉及到原问题、目标、约束条件等内容。
在进行解题之前,我们首先需要完全理解题目的要求。
原问题是一个货车经过N个城市,每个城市都有相应的货物量,目标是使得货车的路径长度最短。
同时,题目要求我们设计一个数据模型,来描述这个问题。
第二部分:建立数学模型为了更好地解决问题,我们需要建立一个数学模型来描述货车的路径以及货物量的分配。
在本部分,我们将详细讲解如何建立这个模型。
假设有N个城市,每个城市的货物量分别为w1, w2, ..., wN。
我们可以将货车的路径表示为一个N*N的矩阵D,其中D[i][j]表示从第i个城市到第j个城市的距离。
同时,我们引入一个N维的向量x,其中x[i]表示从第i个城市运送的货物量。
我们的目标是最小化路径长度,即最小化下式:Minimize ∑∑D[i][j]*x[i]*x[j] (i从1到N, j从1到N)同时,我们有一些约束条件需要满足:1. 每个城市必须运送货物:∑x[i] = W,其中W是总的货物量。
2. 每个城市的货物量不能超过其容量:x[i] <= C,其中C是城市i的容量。
第三部分:优化求解在第二部分中,我们已经建立了数学模型,现在我们需要找到一种优化方法来求解这个模型。
在现实生活中,这类问题通常是NP难问题,因此我们需要采用一些启发式搜索算法。
在本部分,我们将介绍一种常用的优化方法,即遗传算法。
遗传算法模拟了自然界中的进化过程,通过不断筛选和演化来得到最优解。
遗传算法的优化步骤如下:1. 初始化种群:随机生成一组初始解,也就是一组路径和货物分配方案。
2. 评估适应度:根据路径长度和货物量是否满足约束条件,计算每个解的适应度。
2013全国数学建模
摘要:
一、2013 全国数学建模竞赛概况
1.竞赛时间与地点
2.参赛队伍与规模
3.竞赛奖项设置
二、2013 全国数学建模竞赛获奖情况
1.我校获奖情况
2.获奖学生名单与指导教师
3.全国大学生数学建模竞赛的历史与影响力
正文:
一、2013 全国数学建模竞赛概况
2013 年全国数学建模竞赛于某年某月某日举行,地点分布在全国各地。
该竞赛是面向全国高校的大学生数学建模比赛,旨在培养学生的数学建模能力和解决实际问题的能力。
参赛队伍来自全国各地高校,规模宏大。
竞赛奖项设置包括全国一、二、三等奖。
二、2013 全国数学建模竞赛获奖情况
在2013 年全国数学建模竞赛中,我校共有9 名学生(分3 组)获得3 项全国二等奖,取得了近8 年来最好的成绩。
至此,我校在这项赛事中共获得全国一、二等奖累计达16 项。
获奖学生名单如下:廖然,蔡晨,屠春飞;李约纳,吴晓萍,沈智;刘佳屹,边梦娜,杨文瀚。
指导教师为王福来、罗季、孙洁、郑学东。
全国大学生数学建模竞赛创办于1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。
《数学建模(一)》课程教学大纲【课程基本情况】一、课程代码:000373二、课程类别及性质:公共选修课三、课程学时学分:54学时(教学:24 实践:30)2学分四、教学对象:12、13级学生五、课程教材:《数学模型》、姜启源谢金星叶俊等、高等教育出版社六、开设系(部):信科系七、先修课:高等数学、线性代数【教学目的】通过本课程的学习,使学生能够较好地理解数学模型、数学建模的含义,了解数学建模的重要性。
通过示例的学习使同学们基本掌握建立数学模型的方法和步骤,并能通过数学方法、数学软件求解模型,而且能够对模型的精准性进行分析。
通过学习,培养了同学们的把实际问题表述成数学问题的能力,从而提高了他们的抽象思维能力。
并且通过MATLAB、LINGO 数学软件的应用,提高了他们的计算机应用水平。
【教学内容、基本要求及学时分配】第一章建立数学模型教学时数:2学时第一节从现实对象到数学模型基本要求:掌握数学模型、数学建模的含义。
第二节数学建模的重要意义基本要求:了解数学建模的重要性。
第三节数学建模的示例(不讲授)基本要求:掌握三个示例的建模过程;重点:模型的建立、模型的求解。
第四节数学建模的基本方法和步骤基本要求:掌握数学建模的基本方法和步骤;重点:建模的基本方法和步骤。
第五节数学模型的特点和分类基本要求:了解数学模型的特点和分类。
第六节数学建模能力的培养(不讲授)基本要求:了解建立数学模型所需要的能力。
第二章初等模型教学时数:4学时第一节公平的席位分配基本要求:掌握公平席位的建模方法;重点:建立数量指标。
第二节录像机计数器的用途基本要求:掌握录像机计数器的建模方法;重点:模型的假设及模型的构成。
难点:建立模型的过程。
第三节双层玻璃的功效基本要求:掌握双层玻璃的功效的建模方法及模型应用;重点:模型的构成。
第四节汽车刹车距离基本要求:掌握t秒准则的建立方法;重点:模型建立的过程。
第五节划艇比赛的成绩(不讲授)第六节动物的身长和体重(不讲授)第七节实物交换(不讲授)第八节核军备竞赛(不讲授)第九节扬帆远航(不讲授)第十节量纲分析与无量纲化(不讲授)第三章简单的优化模型教学时数:4学时第一节存贮模型基本要求:掌握存贮模型在两种情况下的建模方法;重点:模型假设。
2013-2014年全国数模竞赛a题讲解摘要:一、全国数模竞赛简介1.竞赛背景与历史2.竞赛级别与影响力3.对参赛者的意义与价值二、2013-2014年数模竞赛A题解析1.题目概述与背景2.题目难点与关键点3.解题思路与步骤4.答案与解析三、数模竞赛对数学教育的启示1.培养数学建模思维2.提高实际问题解决能力3.团队协作与沟通能力4.对未来数学研究的影响正文:一、全国数模竞赛简介全国数模竞赛,全名为全国大学生数学建模竞赛,是由中国数学会主办的一项面向全国大学生的数学竞赛活动。
自1992年首次举办以来,已经发展成为具有广泛影响力的国家级竞赛。
竞赛旨在激发大学生学习数学的兴趣,培养学生的创新意识和团队协作精神,提高学生解决实际问题的能力。
数模竞赛对于参赛者来说,既是一次锻炼自己的机会,也是与其他优秀学生交流学习的平台。
二、2013-2014年数模竞赛A题解析2013-2014年全国数模竞赛A题是一道具有较高难度的数学建模题目。
题目背景涉及到生物学、物理学等多个领域,要求参赛者具有较强的知识储备和综合分析能力。
在解题过程中,关键点在于如何将复杂问题抽象为数学模型,并运用合适的数学方法求解。
通过分析题目,我们可以将问题划分为以下几个部分:1.题目概述与背景:题目描述了一种生物学现象,要求参赛者基于这一现象建立数学模型,并分析其动力学性质。
2.题目难点与关键点:难点主要在于如何将生物学现象抽象为数学模型,以及如何运用数学方法分析模型的动力学性质。
解决这一问题的关键在于对题目背景知识的掌握和对数学建模方法的理解。
3.解题思路与步骤:首先,需要深入理解题目背景,提取关键信息;其次,根据题目要求建立数学模型;最后,运用数学方法分析模型的性质。
4.答案与解析:根据解题思路,参赛者可以得到最终答案,并对答案进行解析,阐述答案的合理性和正确性。
三、数模竞赛对数学教育的启示全国数模竞赛对于数学教育具有重要的启示作用。
首先,竞赛培养了学生的数学建模思维,使他们能够将现实问题抽象为数学问题,运用数学方法解决实际问题。
2012-2013第一学期《数学建模》选修课试题卷班级:姓名:学号:成绩:一、解释下列词语,并举例说明(每小题满分5分,共15分)1.模型模型是所研究的系统、过程、事物或概念的一种表达形式,也可指根据实验、图样放大或缩小而制作的样品,一般用于展览或实验或铸造机器零件等用的模子。
2.数学模型用数学语言描述的一类模型。
数学模型可以是一个或一组代数方程、微分方程、差分方程、积分方程或统计学方程,也可以是它们的某种适当的组合,通过这些方程定量地或定性地描述系统各变量之间的相互关系或因果关系。
除了用方程描述的数学模型外,还有用其他数学工具,如代数、几何、拓扑、数理逻辑等描述的模型。
需要指出的是,数学模型描述的是系统的行为和特征而不是系统的实际结构。
3.抽象模型二、简答题(每小题满分8分,共24分)1.模型的分类2.数学建模的基本步骤3.数学模型的作用三、解答题(满分20分)A 题 (9n, 9n+8)小童父亲要到美国访问,授人之托希望多带点东西。
中国民航的《国际旅游须知》中有关“计件免费行李额”中规定“适应于中美、中加国际航线上的行李运输……。
经济和旅游折扣票价,免费交运的行李件数为两件,每件箱体三边之和不得超过62英寸,但两件之和不得超过107英寸,每件的最大重量不得超过32公斤。
”试问这两件箱子的长、宽、高各为多少可达最大体积?请你到市场上看一看,商店出售的行李箱的尺寸与你的计算结果是否接近?为什么?B 题 (9n+1, 9n+6)国庆庆典活动的中心广场有数万名学生手持花环组成大型图案方阵,方阵前排距观礼台120米,方阵纵列95人,每列长度192米,试问第一、二两排间距多大能够达到满意的观礼效果?C 题 (9n+2, 9n+4)某人从南郊前往北郊火车站乘火车,有两条路可走. 第一条路穿过市中心,路程较短,但交通拥挤,所需时间(以分钟计) 服从正态分布(35,80)N;第二条路沿环城公路走,路程较长,但意外阻塞较少,所需时间服从正态分布(40,20)N. 试问(1)假如有50分钟时间可用,应走哪条路?(2)若只有40分钟时间可用,又应该走哪条路线?D 题 (9n+3, 9n+2)1997年11月8日电视正在播放长江三峡工程大江截流的实况,截流从8:55开始,当时龙口的水面宽40米,水深60米。
说明:写出下列各题目中所用到的模型、程序代码以及计算结果,课件中已有的Matlab 函数可以直接使用。
一、编写lingo 程序或者Matlab 程序求解下列问题。
(每题5分,共20分) 1、321322min x x x z +-=
⎪⎩⎪
⎨⎧≥≤≤-+-=++-.
,0,0,62,4..321
321321无约束x x x x x x x x x t s 2、213x x z max -=
⎪⎪⎩⎪⎪⎨⎧≥≤+≥+≤-.x ,x ,x x ,x x ,x x .t .s 为整数052104532321212121 3、32152-3x x x z max +=
⎪⎪⎪⎩⎪
⎪⎪⎨⎧=≤+≤+≤++≤-+.
x ,x ,x ,
x x ,x x ,x x x ,x x x .t .s 1064344223213
221321321或 22
1222
122
1212
4min ()8
0,
..20,
,0.f x x x x x s t x x x x =++⎧-≥⎪--+=⎨⎪≥⎩、 二、利用Matlab 的常微分方程数值解函数ode45求解微分方程
12)2()1(2=+'+-''+y y t y t ,1)0(=y ,2)0(-='y ,
并作出解的图像。
(15分)
三、某市有三个面粉厂,它们供给三个面食加工厂所需的面粉.各面粉厂的产量、各面食加工厂加工面粉的能力、各面食加工厂和各面粉厂之间的单位运价如下表所
示.假定在第1,2和3面食加工厂制作单位面粉食品的利润分别为12元、16元和
四、某钢材厂从1990年到2010年的产量如下表所示,请利用三次样条插值的方法五、某公司在六个城市621,,,c c c 中有分公司,从i c 到j c 的直接航程票价记在下述矩阵的),(j i 位置上(∞表示无直接航路)。
请帮助该公司设计一张城市1c 到其它城市间的票价最便宜的路线图。
(15分)
⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∞∞∞∞∞∞055252510550102025251001020402010015252015050102540500
六、2004年的美国大学生数学建模竞赛A 题如下:
PROBLEM A: Are Fingerprints Unique?
It is a commonplace belief that the thumbprint of every human who has ever lived is different. Develop and analyze a model that will allow you to assess the probability that this is true.
Compare the odds (that you found in this problem) of misidentification by fingerprint evidence against the odds of misidentification by DNA evidence.
该题目的主要任务是什么?你认为,应该查找你所需要的哪些资料?你打算如何通过数学建模处理该问题?(15分)。