第1讲数学建模简介.
- 格式:pdf
- 大小:3.91 MB
- 文档页数:16
EDCBA第1讲:数形结合法与数学建模思想★1 数形结合法:是数学中的重要思想方法之一,特点是通过几何图形、函数图像更直观的展示位置关系与数量关系;求解这类问题的关键是把“形”、“数”相结合与相互转化。
在初中学习范围内十分重要,它为高中、大学等后续学习奠定基础,也是中考每年必考的一种思想方法,涉及的题型、题量的分值配备高达30多分。
★2 数学建模:是初中数学中解决一些同类变式题型的基本方法,广泛应用于三角函数、列方程解应用题、相似三角形、图形变换等知识,加强对常见数学模型的识记,有助于学生对所学知识进行系统归类,增强识图与应用数学的能力。
★★3 数形结合法在初中范围内的运用 ★1、代数问题通过构造几何图形给予解决【例1】当代数式12x x ++-取最小值时,相应的x 的取值范围是 ;【例2】已知0>x ,0>y ,1=+y x ,且x +y a ≤恒成立,则a 的最小值等于【例3】请计算:(1)、tan 015= (2)、sin 018= 【例4】如图,C 为线段BD 上一动点,分别过点B 、D 作AB BD ⊥,ED BD ⊥,连接AC 、EC ,已知5AB =,1DE =,8BD =,设CD x =。
(1)用含x 的代数式表示AC CE +的长;(2)请问点C 满足什么条件时, AC CE +的值最小?(3)根据(2)中的规律和结论,请构图求出代数式9)12(422+-++x x 的最小值.◎ 变式议练一:1、若0a >,0b <,且0a b +<,则有理数a ,b ,a -,b 的大小关系是 ;2、在平面直角坐标系中,已知A(-1,-2), B(4,2), C(1,m),当m= 时,CA+CB 有最小值。
3、_______,0,0的取值范围是成立的要使若x b a b x a x b a -=-+-<>4、函数1342222+-+++=x x x x y 的最小值是★★2、几何问题的代数解法【例5】将边长分别为2、3、5的三个正方形按如图 方式排列,则图中阴影部分的面积为 .【例6】⊙O 是ABC ∆的内切圆,与边AB 、BC 、CA 的切点分别为D 、E 、F ,5AB =,6BC =,7CA =,则AD = ,BE = ,CF = 。
第一章数学建模简介§1.1什么是数学模型与数学建模简单地说:数学模型就是对实际问题的一种数学表述。
具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。
更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。
数学结构可以是数学公式,算法、表格、图示等。
数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。
§1.2美国大学生数学建模竞赛的由来1985年在美国出现了一种叫做MCM的一年一度的大学生数学模型竞赛(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其缩写均为MCM)。
这并不是偶然的。
在1985年以前美国只有一种大学生数学竞赛(The William Lowell Putnam Mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。
在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。
该竞赛每年2月或3月进行。
我国自1989年首次参加这一竞赛,历届均取得优异成绩。
经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。
为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。
1数学建模概述⏹ 数学模型 ⏹ 数学建模过程 ⏹ 数学建模示例⏹ 建立数学模型的方法和步骤 ⏹数学模型的分类1数学模型模型:是我们对所研究的客观事物有关属性的模拟,它应当具有事物中使我们感兴趣的主要性质,模拟不一定是对实体的一种仿造,也可以是对某些基本属性的抽象。
直观模型: 实物模型,主要追求外观上的逼真。
物理模型:为一定目的根据相似原理构造的模型,不仅可以显示原型的外形或某些特征,而且可以进行模拟试验,间接地研究原型的某些规律。
思维模型,符号模型,数学模型 数学模型:1)近藤次郎(日)的定义:数学模型是将现象的特征或本质给以数学表述的数学关系式。
它是模型的一种。
2)本德(美)的定义:数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的简化的数学结构。
3)姜启源(中)的定义:是指对于现实世界的某一特定对象,为了某个特定的目的,做出一些必要的简化和假设,运用 适当的数学工具得到一个数学结构。
数学结构:是指数学符号、数学关系式、数学命题、图形图表等,这些基于数学思想与方法的数学问题。
总之,数学模型是对实际问题的一种抽象,基于数学理论和方法,用数学符号、数学关系式、数学命题、图形图表等来刻画客观事物的本质属性与其内在联系。
古希腊时期:“数理是宇宙的基本原理”。
文艺复兴时期:应用数学来阐明现象“进行尝试”。
微积分法的产生,使得数学与世界密切联系起来,用公式、图表、符号反映客观世界越来越广泛,越来越精确。
费马(P.Fermal 1601-1665)用变分法表示“光沿着所需时间最短的路径前进”。
牛顿(Newton 1642-1727)将力学法则用单纯的数学式表达,如,牛顿第二定律:结合开普勒三定律得出万有引力定律航行问题:甲乙两地相距750千米,船从甲到乙顺水航行需30小时,从乙到甲逆水航行需50小时,问船速、水速各多少?用y x ,分别代表船速、水速,可以列出方程解方程组,得221r m m G F =ma F =⎩⎨⎧=⋅-=⋅+75050)(75030)(y x y x 小时)(千米小时)(千米/5/20==y x答:船速、水速分别为20千米/小时、5千米小时。
数学建模专业的概述数学建模是一门涉及数学、计算机科学和实际问题解决的交叉学科。
在现代社会,数学建模扮演着不可或缺的角色,它帮助人们理解和解决各种实际问题,推动科学的发展。
本文将对数学建模专业进行概述,介绍其基本概念、研究内容和应用领域。
数学建模的基本概念是将实际问题转化为数学模型,并利用数学方法进行求解和分析。
数学建模专业的学生将学习各种数学工具和技术,如微积分、线性代数、概率论、统计学和数值分析等,以培养他们解决实际问题的能力。
同时,他们还需要具备计算机编程和数据分析等技能,以应对现代科技发展的要求。
数学建模专业的研究内容广泛而深入,涵盖了自然科学、工程技术、经济管理、医学卫生、社会科学等各个领域。
在自然科学中,数学建模可以用于解释物理、化学和生物等现象,为科学家提供理论依据和实验设计;在工程技术领域,数学建模可以优化工业生产过程、设计工程结构和计划资源分配;在经济管理中,数学建模可以帮助企业进行风险评估、市场预测和决策支持;在医学卫生方面,数学建模可以用于疾病传播模拟、医疗资源调度和药物研发等;在社会科学中,数学建模可以解答有关人口统计、社会网络和行为模式等问题。
数学建模专业毕业生可以在各个领域找到就业机会。
他们可以成为研究机构的科学家、大学的教师或企业的顾问。
他们可以参与创新研究、项目管理、策略规划和数据分析等工作。
同时,数学建模专业的研究成果也为社会发展和人类福祉做出了重要贡献。
数学建模专业的学习需要具备扎实的数学基础和良好的逻辑思维能力。
学生们需要学习并掌握各种数学方法和技术,运用这些知识解决实际问题。
此外,他们还需要具备团队合作和沟通交流的能力,因为数学建模常常需要跨学科合作,解决复杂的问题需要多个专业领域的知识和经验。
综上所述,数学建模专业是一门重要而有挑战性的学科。
它与现实问题紧密相连,为解决各种实际问题提供了理论和方法。
数学建模专业的学生将学习数学知识和技能,并将其应用于实际问题的解决中。