20.完全平方公式
- 格式:doc
- 大小:136.50 KB
- 文档页数:6
平方差公式与完全平方公式 (a+b )2 = a 2+2ab+b 2(a -b )2=a 2-2ab+b 2(a+b )(a -b )=a 2-b 2应用1、平方差公式的应用:例1、利用平方差公式进行计算: (1)(5+6x )(5-6x ) (2)(x +2y )(x -2y ) (3)(-m +n )(-m -n ) 解:%,例2、计算:(1)(y x 41--)(y x 41+-) (2)(-m -n )(m -n )(3)(m +n )(n -m )+3m 2(4)(x+y )(x -y )(x 2-y 2)解:-例3、计算:(1)103×97 (2)118×122 (3)32203119⨯ ~解:~应用2、完全平方公式的应用: 例4、计算:(1)(2x -3)2(2)(4x+5y )2(3)(y x 21-)2 (4)(-x -2y )2(5)(-x+y 21)2解:》例5、利用完全平方公式计算:(1)1022 (2)1972 (3)199992-19998×20002解:—试一试:计算:9×7-82=_______________、应用3、乘法公式的综合应用: 例6、计算:(1)(x+5)2-(x+2)(x -2) (2)(a+b+3)(a+b -3) (3)(a -b+1)(b -a+1)(4)(a+b -c )2解:'例7、(1)若4ax x 412++是完全平方式,则:a=________________(2)若4x 2+1加上一个单项式M 使它成为一个完全平方式,则M=_______________?例8、(1)已知:3a1a =+,则:__________a 1a 22=+(2)已知:5a 1a =-,则:__________a 1a 22=+(3)已知:a+b=5,ab=6,则:a 2+b 2=_______(4)已知:(a+b )2=7,(a -b )2=3,则:a 2+b 2= ,ab=例9、计算:@(1))1011()411)(311)(211(2222---- (2))12()12)(12)(12)(12(32842+++++解:#例10、证明:x 2+y 2+2x -2y+3的值总是正的。
第2讲:两个公式1.平方差公式:=-+))((b a b a .两个数的和与这两个数的差的积,等于 . 拓展:()()c b a c b a -+++= .2.完全平方公式:=+2)(b a . =-2)(b a , 两数和(或差)的平方,等于它们的 ,加上(或者减去)它们的 . 拓展:()2c b a ++= .=---++ac bc ab c b a 222 .【补充】1.完全平方公式的变形公式:(1)-+=+222)(b a b a ;(2)+-=+222)(b a b a .(1)和的完全平方与差的完全平方间的关系:(1)()+-=+22)(b a b a ;(2)()++=-22)(b a b a .3.完全平方公式的逆用:=+±222b ab a .4.立方和公式:()3322)(b a b ab a b a +=+-+5.立方差公式:()3322)(b a b ab a b a -=++-6.欧拉公式:abc c b a ac bc ab c b a c b a 3))((333222-++=---++++ 7.和的立方公式:3223333)(b ab b a a b a +++=+8.差的立方公式:3223333)(b ab b a a b a -+-=-注:平方差公式和完全平方公式中的a ,b 可以代表数,字母,单项式,多项式。
平方差公式---【例题精讲】 【例1】用简便方法计算(1) 1001999⨯ ; (2)1101991002+⨯ ;(3)98.002.1⨯ ; (4)2010200620092⨯- .【随堂练习】 用简便方法计算 (1)1200920072008+⨯ ; (2))3299()31100(-⨯-; (3)(20-19)×(19-89).【例2】计算(1)))()((22b a b a b a +-+ ; (2)1)12)(12)(12)(12)(12(16842-+++++.【随堂练习】计算(1))21)(41)(21(2++-x x x ; (2)))()((22y x y x y x +-+ .【例3】计算(1))2)(2(c b a c b a -+++ (2))3)(3(+--+b a b a(3)))((z y x z y x -++- (4)))((p n m p n m --+-【随堂练习】计算(1)))((c b a c b a --++ (2) ))((y z x z y x +-++(3))3)(3(+--+b a b a (4)))((d c b a d c b a +-+--- 【例4】计算(1))1)(1)(1)(1)(1(842+++-+a a a a a . (2)22222110099989721-+-++- .(3)2222211111(1)(1)(1)(1)(1)23499100----- . (4)2481511111(1)(1)(1)(1)22222+++++.7.2200920092009200720092008222-+.【例5】(1)试确定1)12)(12)(12)(12)(12)(12(3643216842+++++++的末位数字.(2)证明:奇数的平方被8除余1;请你进一步证明:2006不能表示为10个奇数的平方之和.【例6】老师在黑板上写出三个算式:283522⨯=-,487922⨯=-,27831522⨯=-,王华接着又写了两个具有同样规律的算式:12851122⨯=-,22871522⨯=-…… A.请你再写出两个具有上述规律的算式; B.用文字叙述上述算式反映的规律; C.证明这个规律的准确性.【例7】一个自然数减去45后是一个完全平方数,这个自然数加上44后仍是一个完全平方数,试求这个平方数.【强化练习】1.=-+2199919991999199719991998222.2.乘积)200011)(199911()311)(211(2222---- 等于( ) A.20001999 B.20002001 C.40001999 D.400020013.计算:22222221999199819971952195119501949+-++-+-4.在2004,2005,2006,2007这四个数中,不能表示为两个整数平方差的数是( ) A.2004 B.2005 C.2006 D.2007完全平方公式--【例题精讲】 【例1】利用完全平方公式计算:(1)1022 (2)1972(3)982 (4)2032【例3】(1)如果81362++x kx 是一个完全平方公式,则k 的值是多少?(2)当=x 时,1442+--x x 有最 值,这个值是 .(3)已知c b a 、、表示△ABC 的三边长,且0222=---++ac bc ab c b a ,判断△ABC 的形状是 .【随堂练习】(1)如果3642++kx x 是一个完全平方公式,则k 的值是多少?(2)已知()222116x m xy y -++是一个完全平方式,求m 的值.(3)已知0106222=++-+b a b a ,则ba 12006-的值是 .(4)已知ab b a b a 412222=+++,则=-ba 12.5.已知c b a 、、满足722=+b a ,122-=-c b ,1762-=-a c ,则c b a ++的值等于( )A.2B.3C.4D.5【例4】(1)已知8=+y x ,12=xy ,求22y x +的值.(2)已知1=+b a ,222=+b a ,求77b a +的值.(3)已知1=-y x ,233=-y x ,求44y x +和55y x -的值.(4)已知1=+y x ,3133=+y x ,求55y x +的值.(1)已知-7=+b a 12=ab ,求ab b a -22+和 2)(b a -的值(2)已知3=+y x ,2=-y x ,求xy 与22y x +的值.(3)3=-b a ,2=ab ,求:①22b a +的值;②22b ab a +-的值;(4)已知9=ab ,3-=-b a ,求223b ab a ++的值.(5)若n 满足1)2005()2004(22=-+-n n ,则)2004)(2005(--n n 等于( ) A.-1 B.0 C.21D.1【例5】已知13a a +=,(1)求221a a +的值;(2)求441a a+的值(1)已知110a a +=,求21a a ⎛⎫- ⎪⎝⎭的值和221a a +的值.(2)若12x x -=,求①221x x +;②441x x+的值.【例6】若2310a a -+=,求1a a+的值.【随堂练习】已知2410a a -+=,求841a a+的值.【例7】已知222214a b a b ab +++=,求a 、b 的值.【随堂练习】已知0641322=+-++y x y x .求22)2()2)(2(2)2(y x y x y x y x +++---的值.【探究拓展】 (1)已知20201+=x a ,19201+=x b ,21201+=x c ,求代数式ac bc ab c b a ---++222的值.(2)已知0=++c b a ,32222=++c b a ,求bc ac ab ++的值.(3)观察:2514321=+⋅⋅⋅21115432=+⋅⋅⋅21916543=+⋅⋅⋅……(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1),计算12003200220012000+⋅⋅⋅的结果(用一个最简式子表示).【强化练习】 一、选择题1.下列等式不成立的是( )A 、()222396a b a ab b -=-+B 、()()22a b c c a b +-=--C 、2221124x y x xy y ⎛⎫-=-+ ⎪⎝⎭ D 、()()()2244x y x y x y x y +--=-2.下列各式中计算结果是222ab a b --的是( )A 、()2a b -B 、()2a b --C 、()2a b -+D 、()2a b +3.计算:5225a b b a -⋅-的结果等于( )A 、()252a b -B 、()252a b --C 、()225b a --D 、()()2252a b -4.若()242749b a N a b -⋅=-,则因式N =( )A 、27b a -B 、27b a -+C 、27b a --D 、27b a +5.要使等式()()22a b M a b -+=+成立,代数式M 应是( )A 、2abB 、4abC 、4ab -D 、2ab -二、填空题1.已知53=-=-c b b a ,1222=++c b a ,则=++ca bc ab .2.已知2522=+y x ,7=+y x ,且y x >的值等于 . 3.()222a b a b +=-+ =2()a b +- . 4.()2a b c -+= .5.若7,12,a b ab +==则22a ab b -+= .三、解答题1.计算:①()221m -- ②()()()22a b a b a b -+-③7655.0469.27655.02345.122⨯++ ④()2220.43m n -2.已知a 、b 满足()21a b +=,()225a b -=.求22a b ab ++的值.3.设2226100x x y y -+++=,求x 、y 的值.4.已知b a 、满足等式2022++=b a x ,)2(4a b y -=,则y x 、的大小关系是( )A.y x ≤B.y x ≥C.y x <D.y x >5.若2011)2010)(2012(=--x x ,求22)2010()2012(x x -+-的值.6.求多项式13125422+-+-y y xy x 的最小值及此时y x 、的值.。
完全平方公式30道题一、完全平方公式基础计算(10道题)1. 计算(a + 3)^2解析:根据完全平方公式(a + b)^2=a^2 + 2ab+b^2,这里a=a,b = 3。
所以(a+3)^2=a^2+2× a×3 + 3^2=a^2 + 6a+9。
2. 计算(x 5)^2解析:根据完全平方公式(a b)^2=a^2-2ab + b^2,这里a=x,b = 5。
所以(x 5)^2=x^2-2× x×5+5^2=x^2-10x + 25。
3. 计算(2m+1)^2解析:根据完全平方公式(a + b)^2=a^2 + 2ab+b^2,这里a = 2m,b=1。
所以(2m + 1)^2=(2m)^2+2×2m×1+1^2=4m^2 + 4m+1。
4. 计算(3n 2)^2解析:根据完全平方公式(a b)^2=a^2-2ab + b^2,这里a = 3n,b = 2。
所以(3n-2)^2=(3n)^2-2×3n×2+2^2 = 9n^2-12n + 4。
5. 计算(a + b)^2,其中a = 2x,b=3y解析:先将a = 2x,b = 3y代入完全平方公式(a + b)^2=a^2+2ab + b^2,得到(2x+3y)^2=(2x)^2+2×2x×3y+(3y)^2=4x^2 + 12xy+9y^2。
6. 计算(m n)^2,其中m = 5a,n=2b解析:把m = 5a,n = 2b代入完全平方公式(a b)^2=a^2-2ab + b^2,这里a = 5a,b = 2b,所以(5a-2b)^2=(5a)^2-2×5a×2b+(2b)^2=25a^2-20ab + 4b^2。
7. 计算(4x+3)^2解析:根据完全平方公式(a + b)^2=a^2 + 2ab+b^2,这里a = 4x,b = 3。
完全平方公式知识点例题变式完全平方公式知识点、例题、变式。
一、完全平方公式知识点。
1. 公式内容。
- (a + b)^2=a^2 + 2ab+b^2- (a - b)^2=a^2-2ab + b^22. 公式结构特点。
- 左边是一个二项式的完全平方,右边是一个三项式。
- 右边第一项是左边第一项的平方,右边第三项是左边第二项的平方,右边第二项是左边两项乘积的2倍(对于(a + b)^2是正的2ab,对于(a - b)^2是负的2ab)。
二、例题。
1. 计算(3x + 2y)^2。
- 解析:根据完全平方公式(a + b)^2=a^2 + 2ab+b^2,这里a = 3x,b=2y。
- 计算过程:- (3x+2y)^2=(3x)^2+2×(3x)×(2y)+(2y)^2- = 9x^2+12xy + 4y^2。
2. 计算(2m - 5n)^2。
- 解析:根据完全平方公式(a - b)^2=a^2-2ab + b^2,这里a = 2m,b = 5n。
- 计算过程:- (2m - 5n)^2=(2m)^2-2×(2m)×(5n)+(5n)^2- =4m^2-20mn + 25n^2。
三、变式。
1. 已知(x + 3)^2=x^2+ax + 9,求a的值。
- 解析:根据完全平方公式(x + 3)^2=x^2+2× x×3+9=x^2 + 6x+9,因为(x + 3)^2=x^2+ax + 9,所以a = 6。
2. 若(m - n)^2=16,m^2 + n^2=20,求mn的值。
- 解析:- 由完全平方公式(m - n)^2=m^2-2mn + n^2,已知(m - n)^2 = 16,即m^2-2mn + n^2=16。
- 又已知m^2 + n^2=20,将其代入m^2-2mn + n^2=16中,得到20-2mn = 16。
- 移项可得-2mn=16 - 20=-4,解得mn = 2。
完全平方公式20题完全平方公式又称二次方程式,是一类非常重要的数学公式,在各大学生的考试中也占有很大的比重。
以下是完全平方公式20题,我们可以用它来提高我们的数学水平。
1.算:x - 2x - 15 = 0解:首先,我们将方程式化为完全平方公式:x - 2x + 1 - 16 = 0令一元二次方程式的左边a、b、c的值如下:a = 1b = -2c = -16根据完全平方公式,我们可以带入结果:x = (frac{2 sqrt{4 + 64}}{2})= (frac{2 8}{2})= 1 4因此,x = 1 x = -5。
2.算:2x - 25 = 0解:根据完全平方公式,我们可以带入结果:x = (frac{5 sqrt{25 - 0}}{2})= (frac{5 5}{2})= 2.5 2.5因此,x = 2.5 x = -2.5。
3.算:3x + 4x - 9 = 0解:根据完全平方公式,我们可以带入结果: x = (frac{-4 sqrt{16 + 108}}{6})= (frac{-4 10}{6})= -2 5因此,x = -7 x = 3。
4.算:x - 2x - 6 = 0解:根据完全平方公式,我们可以带入结果: x = (frac{2 sqrt{4 + 24}}{2})= (frac{2 8}{2})= 1 4因此,x = 1 x = -5。
5.算:2x + 4x - 9 = 0解:根据完全平方公式,我们可以带入结果: x = (frac{-4 sqrt{16 - 36}}{4})= (frac{-4 4}{4})= -2 2因此,x = -1 x = 3。
6.算:5x + 7x + 3 = 0解:根据完全平方公式,我们可以带入结果: x = (frac{-7 sqrt{49 - 60}}{10})= (frac{-7 sqrt{-11}}{10})因为有负数在平方根内,因此没有实数根。
常用数学公式汇总1. 平方差公式:(a +b )·(a -b )=a 2-b 22. 完全平方公式:(a±b )2=a 2±2ab +b2 3. 完全立方公式:(a ±b)3=(a±b)(a 2ab+b 2)4. 立方和差公式:a 3+b 3=(a ±b)(a 2+ ab+b 2)5. a m ·a n =am +na m ÷a n =a m -n (a m )n =a mn (ab)n =a n ·b n(1)s n =2)(1n a a n +⨯=na 1+21n(n-1)d ;(2)a n =a 1+(n -1)d ; (3)项数n =da a n 1-+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ;(6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2(其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和)(1)a n =a 1qn -1;(2)s n =qq a n -11 ·1)-((q ≠1)(3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)nma a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)(1)一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2)其中:x 1=a ac b b 242-+-;x 2=aac b b 242---(b 2-4ac ≥0)根与系数的关系:x 1+x 2=-a b ,x 1·x 2=a c(2)ab b a 2≥+ ab b a ≥+2)2( ab b a 222≥+ abc c b a ≥++3)3((3)abc c b a 3222≥++ abc c b a 33≥++推广:n n n x x x n x x x x ......21321≥++++(4)一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。
完全平方公式与平方差公式一.知识要点1.乘法公式就是把一些特殊的多项式相乘的结果加以总结,直接应用。
公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。
公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。
2.基本公式完全平方公式:(a±b)2=a2±2ab+b2平方差公式:(a+b)(a-b)=a2-b2立方和(差)公式:(a±b)(a2 ab+b2)=a3±b33.公式的推广(1)多项式平方公式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc即:多项式平方等于各项平方和加上每两项积的2倍。
(2)二项式定理:(a±b)3=a3±3a2b+3ab2±b3(a±b)4=a4±4a3b+6a2b2±4ab3+b4(a±b)5=a5±5a4b+10a3b2 ±10a2b3+5ab4±b5…………注意观察右边展开式的项数、指数、系数、符号的规律4.公式的变形及其逆运算由(a+b)2=a2+2ab+b2得 a2+b2=(a+b)2-2ab由 (a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得 a3+b3=(a+b)3-3ab(a+b)5.由平方差、立方和(差)公式引伸的公式(a+b )(a 3-a 2b+ab 2-b 3)=a 4-b 4 (a+b)(a 4-a 3b+a 2b 2-ab 3+b 4)=a 5+b5(a+b)(a 5-a 4b+a 3b 2-a 2b 3+ab 4-b 5)=a 6-b 6…………注意观察左边第二个因式的项数、指数、系数、符号的规律 在正整数指数的条件下,可归纳如下:设n 为正整数 (a+b)(a2n -1-a2n -2b+a2n -3b 2-…+ab2n -2-b2n -1)=a 2n -b2n(a+b)(a 2n -a 2n -1b+a 2n -2b 2-…-ab 2n -1+b 2n )=a 2n+1+b 2n+1 类似地:(a -b )(a n -1+a n -2b+a n -3b 2+…+ab n -2+b n -1)=a n -b n 由公式的推广③可知:当n 为正整数时 a n -b n 能被a -b 整除, a 2n+1+b 2n+1能被a+b 整除, a 2n -b 2n 能被a+b 及a -b 整除。
完全平方公式数学教案完全平方公式数学教案作为一名无私奉献的老师,有必要进行细致的教案准备工作,借助教案可以更好地组织教学活动。
教案要怎么写呢?下面是小编为大家收集的完全平方公式数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。
完全平方公式数学教案11.能根据多项式的乘法推导出完全平方公式;(重点)2.理解并掌握完全平方公式,并能进行计算.(重点、难点)一、情境导入计算:(1)(x+1)2; (2)(x-1)2;(3)(a+b)2; (4)(a-b)2.由上述计算,你发现了什么结论?二、合作探究探究点:完全平方公式【类型一】直接运用完全平方公式进行计算利用完全平方公式计算:(1)(5-a)2;(2)(-3-4n)2;(3)(-3a+b)2.解析:直接运用完全平方公式进行计算即可.解:(1)(5-a)2=25-10a+a2;(2)(-3-4n)2=92+24n+16n2;(3)(-3a+b)2=9a2-6ab+b2.方法总结:完全平方公式:(a±b)2=a2±2ab+b2.可巧记为“首平方,末平方,首末两倍中间放”.变式训练:见《学练优》本课时练习“课堂达标训练”第12题【类型二】构造完全平方式如果36x2+(+1)x+252是一个完全平方式,求的值.解析:先根据两平方项确定出这两个数,再根据完全平方公式确定的值.解:∵36x2+(+1)x+252=(6x)2+(+1)x+(5)2,∴(+1)x=±26x5,∴+1=±60,∴=59或-61.方法总结:两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型三】运用完全平方公式进行简便计算利用完全平方公式计算:(1)992; (2)1022.解析:(1)把99写成(100-1)的形式,然后利用完全平方公式展开计算.(2)可把102分成100+2,然后根据完全平方公式计算.解:(1)992=(100-1)2=1002-2×100+12=10000-200+1=9801;(2)1022=(100+2)2=1002+2×100×2+4=10404.方法总结:利用完全平方公式计算一个数的平方时,先把这个数写成整十或整百的数与另一个数的和或差,然后根据完全平方公式展开计算.变式训练:见《学练优》本课时练习“课堂达标训练”第13题【类型四】灵活运用完全平方公式求代数式的值若(x+)2=9,且(x-)2=1.(1)求1x2+12的值;(2)求(x2+1)(2+1)的值.解析:(1)先去括号,再整体代入即可求出答案;(2)先变形,再整体代入,即可求出答案.解:(1)∵(x+)2=9,(x-)2=1,∴x2+2x+2=9,x2-2x+2=1,4x=9-1=8,∴x=2,∴1x2+12=x2+2x22=(x+)2-2xx22=9-2×222=54;(2)∵(x+)2=9,x=2,∴(x2+1)(2+1)=x22+2+x2+1=x22+(x+)2-2x+1=22+9-2×2+1=10.方法总结:所求的展开式中都含有x或x+时,我们可以把它们看作一个整体代入到需要求值的代数式中,整体求解.变式训练:见《学练优》本课时练习“课后巩固提升”第9题【类型五】完全平方公式的几何背景我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2-(a -b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是( )A.a2-b2=(a+b)(a-b)B.(a-b)(a+2b)=a2+ab-2b2C.(a-b)2=a2-2ab+b2D.(a+b)2=a2+2ab+b2解析:空白部分的面积为(a-b)2,还可以表示为a2-2ab+b2,所以,此等式是(a-b)2=a2-2ab+b2.故选C.方法总结:通过几何图形面积之间的数量关系对完全平方公式做出几何解释.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型六】与完全平方公式有关的探究问题下表为杨辉三角系数表,它的作用是指导读者按规律写出形如(a +b)n(n为正整数)展开式的系数,请你仔细观察下表中的规律,填出(a+b)6展开式中所缺的系数.(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,则(a+b)6=a6+6a5b+15a4b2+________a3b3+15a2b4+6ab5+b6.解析:由(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n-1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1;(a+b)5的各项系数依次为1、5、10、10、5、1;因此(a+b)6的系数分别为1、6、15、20、15、6、1,故填20.方法总结:对于规律探究题,读懂题意并根据所给的式子寻找规律,是快速解题的关键.变式训练:见《学练优》本课时练习“课后巩固提升”第10题三、板书设计1.完全平方公式两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.2.完全平方公式的运用本节课通过多项式乘法推导出完全平方公式,让学生自己总结出完全平方公式的特征,注意不要出现如下错误:(a+b)2=a2+b2,(a -b)2=a2-b2.为帮助学生记忆完全平方公式,可采用如下口诀:首平方,尾平方,乘积两倍在中央.教学中,教师可通过判断正误等习题强化学生对完全平方公式的理解记忆。
运用完全平方公式分解因式下面我将从教材分析、教法、学法、教学过程四方面来说明。
一、教材分析:(一)地位与作用:分解因式与数系中分解质因数类似,是代数中一种重要的恒等变形,它是在学生学习了整式运算的基础上提出来的,是整式乘法的逆向变形。
在后面的学习过程中应用广泛,如:将分式通分和约分,二次根式的计算与化简,以及解方程都将以它为基础。
因此分解因式这一章在整个教材中起到了承上启下的作用。
同时,在因式分解中体现了数学的众多思想,如:“化归”思想、“类比”思想、“整体”思想等。
因此,因式分解的学习是数学学习的重要内容。
根据《课标》的要求,本章介绍了最基本的两种分解因式的方法:提公因式法和运用公式法(平方差、完全平方公式)。
运用完全平方公式分解因式不仅是现阶段的学习重点,而且为学生以后分解二次三项式奠定了一定的基础。
(二)教学目标课时教学目标对课堂教学起着导向作用、激励作用和标准作用,研究教材的一个重要内容是为了制定明确、具体、可行的教学目标。
根据大纲和教材的要求,结合目标分类理论和学生实际,制定目标如下:1、知识目标⑴能记住完全平方公式;⑵能辨认完全平方式;⑶能灵活运用完全平方公式进行因式分解。
2、能力目标⑴提高学生的运算能力;⑵培养学生的观察分析能力;⑶渗透换元与整体的思想。
3、情感目标培养科学的质疑精神与积极地将新旧知识进行关联的倾向,以及学习数学的兴趣。
(三)教学的重点和难点本节课的重点是灵活运用完全平方公式分解因式,特别是对完全平方式的判断,对学生的观察分析能力有较高的要求,本节课的难点是整体、换元思想的掌握。
换元与整体的思想是数学中的一个重要思想方法,要启发学生注意不断总结规律和积累解体经验。
二、说教法(一)本节课采用的教学方法主要是启发诱导法和练习法,并辅以讲解法、分析法,采用这一教法是基于以下的考虑:认知心理学家奥苏伯尔的研究表明,有意义的学习的发生必须满足下列条件:第一,学习者认知结构中同化新材料的适当知识基础,也就是具有必要的起点能力;第二,学习者还应具有积极地将新旧知识关联的倾向。
{题型:1-选择题}一、选择题1.{难度:3-中等难度}下列各式中,能够成立的等式是().A.B.C. D.2.{难度:3-中等难度}下列式子:①②③④中正确的是()A.① B.①② C.①②③ D.④3.{难度:3-中等难度}()A. B. C. D.4.{难度:4-较高难度}若,则M为().A. B. C. D.5.{难度:4-较高难度}一个正方形的边长为,若边长增加,则新正方形的面积人增加了().A. B. C. D.以上都不对6.{难度:3-中等难度}如果是一个完全平方公式,那么a的值是().A.2 B.-2 C. D.7.{难度:4-较高难度}若一个多项式的平方的结果为,则()A. B. C. D.8.{难度:3-中等难度}下列多项式不是完全平方式的是().A. B. C. D.9.{难度:4-较高难度}已知,则下列等式成立的是()①②③④A.① B.①② C.①②③ D.①②③④10.{难度:3-中等难度}若(2a+3b)2=(2a-3b)2+( )成立, 则括号内的式子是 [ ]A.6abB.24abC.12abD.18ab11.{难度:3-中等难度}若(x-y)2=0, 下面成立的等式是 [ ]A.x2+y2=2xyB.x2+y2=-2xyC.x2+y2=0D.2x2-y2=012.{难度:3-中等难度}下列等式成立的是 [ ]A.(a-b)2=a2-ab+b2B.(a+3b)2=a2+9b2C.(a+b)(a-b)=(b+a)(-b+a)D.(x-9)(x+9)=x2-913.{难度:4-较高难度}a2+3ab+b2加上下列哪个式子可得(a-b)2 [ ]A.-abB.-3abC.-5abD.-7ab14.{难度:3-中等难度}下列等式,能够成立的是 [ ]A.(x-y)2=(-x-y)2B.(x-y)2=(y-x)2C.(m-n)2=m2-n2D.(x-y)(x+y)=(-x-y)(x-y)15.{难度:3-中等难度}(x-y)2=(x+y)2+ [ ]A.-2xyB.-3xyC.-4xyD.-5xy16.{难度:3-中等难度}下列等式,不能够成立的是 [ ]17.{难度:4-较高难度}-(x-1)2(1+x)2(1+x2)2的计算结果是 [ ]A.x8-1B.-x8-2x4-1C.1-x8D.-x8+2x4-118.{难度:3-中等难度}若x2-kxy+16y2是一个完全平方式,则k的值是()A.8B.16C.±8D.±1619.{难度:4-较高难度}(x+y)2-M=(x-y)2,则M为()A.2xyB.±2xyC.4xyD.±4xy20.{难度:4-较高难度}已知a+a 1=3,则a 2+21a 的值是( )A.9B.7C.11D.521.{难度:4-较高难度}在多项式x 2+xy+y 2,x 2-4x+2,x 2-2x+1,4x 2+1,a 2-b 2,a 2+a+41中是完全平方式的有( ) A.1个B.2个C.3个D.4个22.{难度:4-较高难度}①x 2+(-5)2=(x+5)(x -5) ②(x -y)2=x 2-y 2③(-a -b)2=(a+b)2④(3a -b)(b -3a)=-9a 2+6ab -b 2,上面的式子中错误的有( ) A.4个B.3个C.2个D.1个23.{难度:3-中等难度}下列多项式乘法,能用完全平方公式计算的是( ) A.(-3x -2)(-3x+2)B.(-a -b)2C.(-3x -2)(-2+3x)D.(3x+2)(3x -2)24.{难度:3-中等难度}下列各式正确的是( )A.(a+b)2=a 2+b 2B.(x+6)(x -6)=x 2-6 C.(x -y)2=(y -x)2D.(x+2)2=x 2+2x+425.{难度:3-中等难度}下列等式错误的是( )A.(2x+5y)2=4x 2+20xy+25y 2B.(21x -y)2=41x 2-xy+y 2C.(a+b -c)2=(c -a -b)2D.(x+1)(x -1)(x 2-1)=x 4-1 26.{难度:4-较高难度}运算结果是1-2ab 2+a 2b 4的是( ) A.(-1+ab 2)2B.(1+ab 2)2C.(-1+a2b 2)2D.(-1-ab 2)227.{难度:3-中等难度}已知x+y=5,xy=7,则x 2+y 2的值是( ) A.18B.11C.39D.4428.{难度:3-中等难度}若(a -b)2=0,下面等式成立的是( ) A.a 2-b 2=2abB.a 2+b 2=-2abC.a 2+b 2=0D.a 2-b 2=029.{难度:3-中等难度}下列计算正确的是( )A.(m -1)2=m 2-1B.(x+1)(x+1)=x 2+x+1C.(21x -y)2=41x 2-xy -y 2D.(x+y)(x -y)(x 2-y 2)=x 4-y 430.{难度:3-中等难度}如果x 2+mx+4是一个完全平方式,那么m 的值是( ) A.4B.-4C.±4D.±831.{难度:3-中等难度}将正方形的边长由a cm 增加6 cm,则正方形的面积增加了( ) A.36 cm2B.12a cm2C.(36+12a)cm2D.以上都不对32.{难度:3-中等难度}下列计算正确的是( )A.(m -1)2=m 2-1 B.(x+1)(x+1)=x 2+x+1C.(21x -y)2=41x 2-xy -y 2 D.(x+y)(x -y)(x 2-y 2)=x 4-y+33.{难度:3-中等难度}如果x2+mx+4是一个完全平方式,那么m 的值是( ) A.4B.-4C.±4D.±8{题型:2-填空题}二、填空题 1.{难度:3-中等难度} 2.{难度:3-中等难度}3.{难度:3-中等难度}4.{难度:3-中等难度}5.{难度:3-中等难度}6.{难度:3-中等难度}7.{难度:3-中等难度} 8.{难度:3-中等难度}9.{难度:3-中等难度}(2x -3y )2=_____,(41a +52b )2=_____. 10.{难度:3-中等难度}9x 2+_____+25y 2=(_____)2;_____+10xy +1=(_____+1)2. 11.{难度:4-较高难度}用完全平方公式计算1972=( )2=_____=_____. 12.{难度:4-较高难度}x 2-2x +_____=(_____)2;m 2+4mn +_____=( )2. 13.{难度:3-中等难度}(a +b )2=(a -b )2+_____,(x +21)2=x 2+_____. 14.{难度:3-中等难度}若4x 2+mx +49是一个完全平方式,则m =_____. 15.{难度:3-中等难度}若(x -m )2=x 2+x +a ,则m =_____,a =_____.16.{难度:3-中等难度}(x +x 1)2=x 2+21x+_____. 17.{难度:3-中等难度}若(3x +4)2=9x 2-kx +16,则k =_____. 18.{难度:3-中等难度}(-a 2-b )2=_________. 19.{难度:3-中等难度}(a -b )2+_________=(a +b )220.{难度:3-中等难度}完全平方公式(a +b )2=_________,(a -b )2=_________. 22.{难度:3-中等难度}992=_________=_________=_________. 23.{难度:3-中等难度}9x 2+(_________)+y 2=(3x -y )224.{难度:3-中等难度}(-3x +4y )2= . 25.{难度:3-中等难度}(-2a -b )2= .26.{难度:3-中等难度}x 2-4xy + =(x -2y )2. 27.{难度:3-中等难度}a 2+b 2=(a +b )2+ .28.{难度:4-较高难度}41a 2+ +9b 2=(21a +3b )2. 29.{难度:4-较高难度}(a -2b )2+(a +2b )2= . 30.{难度:4-较高难度}(-3x +4y )2= . 31.{难度:3-中等难度} (-2a -b )2= .32.{难度:3-中等难度}x 2-4xy + =(x -2y )2. 33.{难度:3-中等难度}a 2+b 2=(a +b )2+ .34.{难度:3-中等难度}41a 2+ +9b 2=(21a +3b )2. 35.{难度:3-中等难度}(a -2b )2+(a +2b )2= . {题型:4-解答题}三、解答题1.{难度:3-中等难度}运用完全平方公式计算:(1); (2) ; (3) ; (4).2.{难度:4-较高难度}运用乘法公式计算: (1) ; (2) ;(3); (4).3.{难度:4-较高难度}计算:(1) ; (2)(3) ; (4)(5) ; (6)(7); (8)4.{难度:4-较高难度}已知a +b =7,ab =12,求(a -b )2的值. 5.{难度:3-中等难度}49826.{难度:3-中等难度}(a m +1-b n +1)27.{难度:3-中等难度}(a +21b )2-(a -21b )2 8.{难度:4-较高难度}(x +y )2-2(x +y )(x -y )+(x -y )29.{难度:3-中等难度}(m +3)2(m -3)210.{难度:4-较高难度}(x -y )(x +y )-(x +y )2+2y (y -x ),其中x =1,y =3. 11.{难度:4-较高难度}已知(x +y )2=8,(x -y )2=4,求x 2+y 2及xy 的值. 12.{难度:4-较高难度}用乘法公式计算 (1)(21x -31y )2(2)(x 2-2y 2)2-(x 2+2y 2)2 (3)29×31×(302+1) (4)999213.{难度:3-中等难度}用乘法公式计算(1)(21x -31y )2 (2)(x 2-2y 2)2-(x 2+2y 2)2 (3)29×31×(302+1) (4)999214.{难度:3-中等难度}(2x -3y )2=_____,(41a +52b )2=_____. 15.{难度:3-中等难度}9x 2+_____+25y 2=(_____)2;_____+10xy +1=(_____+1)2. 16.{难度:3-中等难度}用完全平方公式计算1972=( )2=_____=_____. 17.{难度:3-中等难度}x 2-2x +_____=(_____)2;m 2+4mn +_____=( )2. 18.{难度:3-中等难度}(a +b )2=(a -b )2+_____,(x +21)2=x 2+_____. 19.{难度:3-中等难度}若4x 2+mx +49是一个完全平方式,则m =_____. 20.{难度:4-较高难度}若(x -m )2=x 2+x +a ,则m =_____,a =_____. 21.{难度:3-中等难度}(x +x 1)2=x 2+21x+_____. 22.{难度:3-中等难度}若(3x +4)2=9x 2-kx +16,则k =_____.。