地物波谱测量
- 格式:ppt
- 大小:1.04 MB
- 文档页数:16
典型地物反射波谱测量与特征分析引言典型地物反射波谱测量与特征分析是遥感领域的重要研究内容之一、通过获取地物的反射光谱特性,可以深入了解地物的组成和性质,从而实现地物分类和变化监测等应用。
本文将介绍地物反射光谱测量的方法以及常见的特征分析方法。
一、地物反射光谱测量方法1.无人机航拍法无人机航拍法是一种比较常用的地物反射光谱测量方法。
通过搭载光谱仪等设备的无人机进行航拍,可以获取高分辨率的光谱数据。
这种方法适用于小范围的地物反射光谱测量,可以获取非常详细的地物光谱信息。
2.便携式光谱仪法便携式光谱仪法是一种简便易行的地物反射光谱测量方法。
通过使用便携式光谱仪,可以在不同地点采集地物的光谱数据。
这种方法适用于快速测量大面积范围的地物光谱信息,常用于农业、植被监测等领域。
3.卫星遥感法卫星遥感法是一种广泛应用于大区域地物光谱测量的方法。
通过卫星传感器获取的遥感数据,可以得到地物的反射光谱特性。
这种方法适用于大范围的地物光谱监测和研究。
二、地物反射光谱特征分析方法1.基于统计学的分析方法基于统计学的分析方法通过对光谱数据进行统计学分析,提取地物的光谱特征。
常见的方法有频率统计和概率分布分析。
这些方法能够揭示地物光谱的整体分布规律,帮助区分不同地物类型。
2.基于特征波长的分析方法基于特征波长的分析方法通过找到光谱数据中特定波长的峰值或谷值,来提取地物的光谱特征。
常见的方法有光谱指数法和比值法。
这些方法能够有效提取地物的光谱特征,突出地物的不同性质。
3.基于光谱反射率的分类方法基于光谱反射率的分类方法通过将地物反射光谱与已知地物光谱进行对比,实现地物的分类。
常见的方法有最大似然分类和支持向量机分类。
这些方法通过对光谱数据进行分析,可以将地物进行有效地分类。
三、应用实例1.植被监测通过地物反射光谱测量和特征分析,可以实现对不同植被的监测。
通过提取植被的光谱特征,可以了解植被的生长状况、叶绿素含量等指标,进而对植被进行分类和变化监测。
地物光谱仪测量流程测定注意事项光谱仪如何操作地物光谱仪可以实时测量反射、透射辐射和辐照度波谱曲线。
其测定流程包括:1、先打开光谱仪电源,然后打开计算机电源2、启动RS3软件。
野外使用时一般用黑白界面的FR程序,室内一般使用彩色FR界面。
在软件上选择相应的镜头并调整光谱平均、暗电流平均和白板采集平均次数。
3、点击图标OPT,探头垂直对准白板(注意:白板必需充分镜头视场,工作过程中特别是开始工作的前半个小时内每隔确定时间做一次优化并且注意每隔三五分钟采集一次暗电流),这时看计算机界面的右下角优化的进行情况,当优化完成后,若中心曲线占界面一半时,证明优化成功,否则则重新优化,或当左边显现红色的“saturature”, 则重新优化,直至优化成功。
(4、优化完成后,点击图标WR采集参比光谱,探头垂直对准白板,这时看计算机中心界面,若这时显现一条水平线,且反射率为1.0,完成操作,否则,重新进行操作。
5、ALT+S在软件中选择或填写需要存储数据的路径、名称和其他内容(注意:存储时,不要与程序软件存在一个路径下,避开混淆)。
6、探头垂直对准目标物,探头稳定后,点击空格键,开始采集目标信息。
采集完成后,收起探头,准备下一目标测定。
地物光谱仪测量注意事项1、地物光谱仪测试的基本要求是在晴天中午前后进行,风力不超过5级,假如测试土壤光谱,必需在雨过3天以后进行。
2、仪器向下正对着被测物体,保持确定的距离,探头为25视场角,依据地面视场范围计算探头距离地面高度,以便取得平均光谱。
3、每次地物光谱测量前,对准标准参考板进行定标校准,得到接近100%的基线,然后对着目标地物测量;为使所测数据能与卫星传感器所获得的数据进行比较,测量仪器均垂直向下进行测量。
4、探头定位时必需避开阴影,人应当面对阳光,避开自身阴影落在目标物上,这样可以得到一致的测量结果。
野外大范围测试光谱数据时,需要沿着阴影的反方向布置测点。
天气较好时每隔几分钟就要用白板校正1次,防止传感器响应系统的漂移和太阳入射角的变化影响,假如天气较差,校正应更频繁。
实习一地物光谱反射率的测定
实习目的:
1.学习地物光谱的测定方法;
2.认识地物光谱反射率的规律。
实习仪器:
1.便携式地物波谱仪
2.标准参考板
实习步骤:
1.光谱仪、计算机充电。
2.连接电池、网线、探头电源、光纤,准备好白板。
3.打开光谱仪电源,然后打开计算机电源,并启动RS3软件。
4.在软件上调整光谱平均、暗电流平均和白板采集平均次数。
5.在软件中选择或填写需要存储数据的路径、名称和其他内容。
6.开始测量:
(1)打开探头电源,探头放在白板上面,点击OPT优化;
(2)探头仍然对准白板,点击WR采集参比光谱。
此时,软件自动进入反射率测量状态。
(3)探头移向被测目标的测量位置,按空格键存储采集到的目标反射光谱。
7.先关闭计算机再关闭仪器。
8.分析实测结果:
(1)准确绘出地物光谱反射率曲线;
(2)根据地物光谱反射率曲线,比较地物光谱曲线特征;(3)分析实习过程中可能引起误差的因素。
典型地物反射波谱测量与特征分析一、实验目的与要求1.实验意义:(1)对光谱测量仪器的认识:ASD野外光谱分析仪FieldSpecPro是一种测量可见光到近红外波段地物波谱的有效工具,它能够快速扫描地物, 光线探头在毫秒内得到地物的单一光谱。
FieldSpec分光仪主要由附属手提电脑,观测仪器,手枪式把手,光线光学探头以及连接数据线组成。
通过连接电脑,可实时持续显示测量光谱,使得测量者可以即时获取需要的测量数据。
(2)对课堂内容的认识:地物反射光谱是指某种物体的反射率或反射辐射能随波长变化的规律,以波长为横坐标, 反射率为纵坐标所得到的曲线即为反射波谱特性曲线。
影响地物波谱变化的因素:太阳位置(太阳高度角和方位角)。
不同的地理位置,海拔高度不同。
时间、季节的变化。
地物本身差异、土壤含水量、植被病虫害。
2.实验目的:(1)地物波谱数据获取需要使用地面光谱仪,通过该实验学会地面光谱仪的原理与使用方法。
(2)通过对地物光谱曲线分析,比较相异与相似地物反射光谱特征。
认识并掌握典型地物反射光谱特征。
二、实验内容与方法1.实验内容(1)典型地物反射波谱测量选择典型地物类型,使用地物光谱仪,开展地物光谱测量,获得典型地物可见光近红外波段(0.4-2.5微米)的反射光谱曲线。
地物类型:植被(草地、灌丛),水体(不同水深,有无植被),土壤(裸土、有少量植被覆盖土壤),不透水地面(水泥地面、沥青路面、大理石地面)。
(2)地物波谱特征分析a)标准波谱库浏览b)波谱库创建c)高光谱地物识别●从标准波谱库选择端元进行地物识别●自定义端元进行地物识别2.实验方法(1)ASD光谱仪简介FieldSpec Pro型光谱仪是美国分析光谱设备(ASD)公司主要的野外用高光谱测量设备。
整台仪器重量7.2公斤,可以获取350~2500nm 波长范围内地物的光谱曲线,探测器包括一个用于350-1000nm的512像元NMOS硅光电二极管阵列, 以及两个用于1000-2500nm的单独的热电制冷的铟-镓-砷光电探测器。
读书报告——地物光谱及其测量一、电磁辐射的微观机制自然界中任何地物都具有其自身的电磁辐射规律,如具有反射,吸收外来的紫外线、可见光、红外线和微波的某些波段的特性,它们又都具有发射某些红外线、微波的特性;少数地物还具有透射电磁波的特性,这种特性称为地物的光谱特性。
物体及射和发射电磁波的,本领随波长的改变而改变的特性,称地物的波谱特征。
而地物产生电磁辐射的微观机制为如下:1、光的吸收与发射电子、原子核、分子的振动和转动都有能级,当入射光子能量与这些能及的某两级的能量差相当时,就会被吸收,且发出相应的能及跃迁;而由高能级向低能级跃迁时,就会发射击电磁辐射。
其频率由两级的能量差决定。
所以不同的能级跃迁的就会产生不同谱段的电磁辐射。
2、反射10 秒,物体内部粒子吸收光子后,由基态跃迁为激发态,通常粒的种激发态极短,约8之后随发射与吸收光子频率相同的光子后,粒子又复原来的能量状态,温度并无变化,这个过程就是反射,即反射:吸收光子+高能级跃迁——快速低能级跃迁+放出光子3、吸收1) 有些激发态能级的寿命特别长称亚稳定态,粒子吸收光子进入这些激发态后并非立即放出光子而向下跃迁,而会滞留一段时间,这时间物体内部的能量会增加,温度上升。
这过程就是一般所说的吸收。
2)粒子吸收光子后将其能量转化为化学能4、热辐射热辐射:电子云相互碰撞,造成低能级的轨道跃迁,放出光子,物体温度下降。
5、透射如入射光子的能量与物体内部所有粒子的能级差都不同,那么入射光将不会被子吸收而发生透射。
6、荧光效应某些物质中的粒子(电子)吸收光子进入激发态后,可以级联方式跃迁回基态,因而可以吸收某一波长的能量,再了出另一不同波的光子。
这就是荧光效应。
电磁辐射射到物体上有三个分量:反射、吸收和透射。
分别用反射率,吸收率和透射率来表示。
反射率=反射能量/入射能量;吸收率=吸收能量/入射能量;透射率=透射能量/入射能量。
由于自然界大部分物体不透明,所以可以认为吸收率=1-反射率,因此,高反向率的物体是弱发射体,同时也说明对绝大部分地物,只要测定其反射率就可以推算其发射率。
地物光谱仪功能和原理
地物光谱仪是一种用于测量地物(如植被、水体、土壤等)反射和辐射特性的仪器。
它能够测量不同波长下地物对光的响应,从而了解地物的光谱特征和组成。
地物光谱仪的功能包括:
1. 反射率测量:地物光谱仪可以测量地物在不同波长下的反射率,从而获得地物的光谱曲线。
2. 吸收特征分析:通过测量地物在不同波长下的光谱曲线,可以了解地物对特定波长光的吸收情况,从而分析地物的化学成分和物理特性。
3. 光谱比较:地物光谱仪可以将不同地物的光谱曲线进行对比分析,从而判断地物的分类和变化。
4. 地表温度测量:地物光谱仪可以通过测量地物在不同波长下的辐射能量,间接获得地表温度信息。
5. 多光谱影像获取:地物光谱仪可以通过获取多个波段的光谱信息,生成多光谱影像,用于地表覆盖分类、环境监测等应用。
地物光谱仪的工作原理主要基于以下几点:
1. 波长选择:地物光谱仪通常采用光栅或滤光片等装置,以选择特定的波长范围进行测量。
2. 光谱测量:地物光谱仪通过光学传感器记录地物在不同波长下的入射光强和反射光强,得到反射率的光谱曲线。
3. 数据处理与分析:地物光谱仪将测量得到的数据进行处理和分析,可以得到地物的光谱特性和光谱指数等指标,用于地物
分类和特征分析。
综上所述,地物光谱仪通过测量地物在不同波长下的反射和辐射特性,来获得地物的光谱特征和组成信息,用于环境监测、农林资源调查、地质勘探等领域。
野外地物波谱测试实验指导使用光谱反射仪测试地物波谱的实验步骤1、首先确定需要测定的地物类型,任何不同地物都具有各自不同的光谱特性,都可以作为测定目标。
如:草地、灌木、乔木、水泥地、大理石地、水体等,植物还可以分为健康与不健康的,水体也可以分为无污染与有污染的。
2、确定测量时是采用顺光、逆光或顶光,然后放置标准板,标准板的位置应该与地物的位置一致。
3、光谱反射仪的使用:(1)由开关按钮、电池检查钮(Check)、视场角旋钮(2°或10°)、波长轮鼓(400nm~1050nm)、镜头和观测孔等。
首先打开镜头盖,不要用手触摸镜头,然后打开开关按钮,按住电池检查钮(Check),如果从观测孔中观测到刻度值大于3就能说明电池仍有电,反之则需要更换电池;从观测孔中除了刻度以外还可以看见一个大圈中间还有一个小圈,大圈是10°视场角的观测范围,小圈是2°视场角的观测范围,一般使用10°视场角,也就是说在观测时大圈中应该充满所测地物而没有任何其它物体;观测孔中得刻度是从0到4,读取时应该估读出小数点后两位。
(2)转动波长轮鼓,从400nm开始依次测量,首先让镜头对准目标地物,通过观测孔读数并记录,再让镜头对准标准板读数记录。
(3)然后将波长轮鼓调到425nm,同前面一样读取地物与标准板的读数,依此按照波长顺序重复数次。
4、读物波谱反射系数的计算:分别将各个波长获得的标准板读数值与其目标物读数相减,然后根据相减所得差值在反射率查询表中查询对应的反射率。
5、反射波谱曲线的绘制:以波长(400nm~1050nm)为横轴,反射率为纵轴,画出光谱反射曲线。
6、对多个地物的反射光谱曲线进行比较分析。
光谱反射率测定记录表地点目标地物类型时间天气顶光()顺光()逆光()。
地物光谱测量实验报告一实验目的1.掌握地物反射波谱测量的基本原理2.了解典型地物类型的光谱特征,并通过测量得到其反射光谱曲线植被土壤水体3.通过实验更深入的了解表征辐射的物理量、以及地表同入射光的作用机制辐射亮度L (radiance)反射率R (reflectance)二实验器材1.fieldspec 3,产自美国ASD公司,其数据间隔为1nm,光谱范围350nm-2500nm2.手提电脑3.白板和灰板三实验步骤将地物与已知反射率的白板(标准板)相比较,求出地物反射率R具体操作:1 光谱仪探头对准白板优化(OPT)2 点击RAD图标3 按空格键存储4 光谱仪探头对准目标地物5 按空格键存储四实验结果1植被的反射波谱特征1 )不同种类的植物均具有相似的反射波谱曲线2 )可见光区域,由于叶绿素的强烈吸收,植物的反射、透射率均低,仅在0.55附近有一10-20%的反射峰而呈绿色。
3 )近红外区域,在0.7—1.3之间形成50-60%的强反射峰,由于不同种植物的叶内细胞结构差异大,不同种植物的反射率在该波段具有最大的差值,故是区分植物种类的最低波段。
4 )1.45、1.95、2.7为中心的三个吸收带为水吸收带,高斯曼发现,还三人吸收带之间的两个反射峰(1.65及2.2)上,各值与非多汁植物反射率差别非常明显。
两图皆较符合其光谱特征2水体的反射波谱特征反射率在各波段内都低(一般在3%左右),在可见光部分为4-5%,在0.6处降至2-3%,到0.75以后的近红外波段,水成了全吸收体。
可以看出,可见光波段反射率逐渐降低,在红外波段,水成为完全吸收体。
两图的差异反应出水全反射部分的影响。
3土壤的反射波谱特征1)反射率:与土壤质地、有机质含量、氧化含量和含水量及盐份等因素有关;粉砂>砂土>腐质土。
2)反射光谱曲线由可见光到红外呈舒缓向上的缓倾延伸可以看出,四图的土壤光谱特征大致呈相同的逐渐缓慢增长的趋势。
地物光谱仪在光谱测量中的使用在遥感领域中,为了研究各种不同地物或环境在野外自然条件下的可见和近红外波段反射光谱,需要适用于野外测量的光谱仪器。
对野外地物光谱进行测量,我们使用的是美国asd公司fieldspec?誖handheld手持便携式光谱分析仪。
其主要技术指标为:波长范围为300~1100nm,光谱采样间隔为1.6nm,灵敏度线性:±1%。
fieldspec?誖handheld手持便携式光谱分析仪可用于户外目标可见—近红外波段的光谱辐射测量。
该光谱仪在户外主要利用太阳辐射作为照明光源,利用响应度定标数据,可测量并获得地物目标的光谱辐亮度;利用漫反射参考板对比测量,可获得目标的反射率光谱信息;通过对经过标定的漫反射参考板的测量,可获得地面的总照度以及直射、漫射照度光谱信息;利用特定的辅助测量机械装置,可获得地面目标的brdf(方向反射因子)光谱信息参数。
为了使地物光谱数据可靠和高的质量,使数据便于对比和应用,有必要提出地物光谱测试规范和测量要求。
1仪器的标准和标定1.1光谱分辨率实用分辨宽度对0.04~1.10μm小于5nm,1.1~2.5μm小于15nm。
对于fieldspec?誖handheld手持便携式光谱分析仪,起始波长为325nm,终止波长为1075nm,波长步长为1nm,则光谱分辨率取3nm。
1.2线性标定线性动态范围有3个量级,最大信号对应为0.8~1.0,太阳常数照明的白板(<90%)峰值响应输出。
线性误差小于3%(回归误差)。
1.3光谱响应度的标定反射率小于、等于15%(大于1%)的目标,信噪比应大于10。
反射率大于15%的目标,信噪比应大于20。
2野外测定方法与工作规范2.1目标选取选取测量目标要具有代表性,应能真实反映被测目标的平均自然性。
对于植被冠层及用物的测量应考虑目标和背景的综合效应。
2.2能见度的要求对一般无严重大气污染地区,测量时的水平能见度要求不小10km。
地物光谱仪使用方法一、地物光谱仪的初步了解。
1.1 地物光谱仪啊,那可是个相当厉害的小玩意儿。
它就像是一个能看透地物本质的小侦探。
这个仪器主要就是用来测量地物的反射率、透射率啥的。
比如说,咱们想知道一块土地或者一片树叶,在不同波段的光照射下,是怎么个反应,就得靠它。
1.2 拿到地物光谱仪的时候,先别急着动手操作。
就像新认识个朋友,得先看看它长啥样。
看看各个部件是不是都完好无损,有没有什么明显的磕碰或者损坏的地方。
这就好比相亲的时候,先打量打量对方的外貌,第一印象很重要嘛。
二、地物光谱仪的操作准备。
2.1 接下来呢,要找一个合适的测量环境。
这个环境啊,不能太随意。
就像盖房子得找个好地基一样。
要避免周围有太多的干扰源,像那种特别强烈的人造光源啊,或者是乱七八糟的反射面。
如果周围乱糟糟的,那测量出来的数据就跟那“乱麻一团”,根本没法用。
2.2 然后就是校准。
这一步可不能马虎,就如同运动员比赛前要热身一样重要。
按照仪器的说明书,一步一步来校准。
这就好比给仪器定个标准,让它知道什么是对的,什么是错的。
如果不校准,那就像是没头的苍蝇到处乱撞,测出来的数据肯定是“牛头不对马嘴”。
2.3 在开始测量之前,还得确定好测量的目标。
是要测量一大片草地呢,还是单独一棵大树。
目标明确了,操作起来才不会“稀里糊涂”。
就像厨师做菜,得先知道要做啥菜,才能准备食材一样。
三、地物光谱仪的实际测量。
3.1 开始测量的时候,要把仪器的探头对准目标物。
这时候得稳稳当当的,就像狙击手瞄准目标一样。
如果手抖得像筛糠似的,那测量的数据肯定不准确。
而且探头和目标物之间的距离也要合适,不能太远也不能太近,就像人与人之间的社交距离一样,得恰到好处。
3.2 测量过程中,要多测量几个点。
这叫“广撒网”,这样得到的数据才更全面,更能反映目标物的真实情况。
可不能只测量一个点就觉得大功告成了,那可就有点“一叶障目”了。
每个点的测量数据都要记录好,这数据就像是宝藏一样,要是丢了或者记错了,那前面的努力可就“付诸东流”了。
地物反射波谱是指地球表面上不同物体或材料对不同波长的光的反射特性。
通过测量地物反射波谱,可以获取有关地表特征、材料组成和环境状况的信息。
地物反射波谱通常在可见光、红外线和近红外波段进行测量。
这些波段的光谱范围和特点使得可以区分和识别不同的地物类型和属性。
不同物体的反射波谱曲线具有独特的特征,这是由于不同材料对光的吸收、散射和反射特性不同。
地物反射波谱在遥感和地球观测领域有广泛的应用。
通过卫星、飞机或无人机等遥感平台获取的多光谱或高光谱影像可以用于分析土地利用、植被覆盖、水体质量、污染物检测等方面的信息。
基于地物反射波谱的数据分析和处理,可以实现地表特征的分类、变化监测和环境评估。
地物反射波谱是对地球表面不同物体或材料对不同波长光的反射特性进行测量和分析的技术。
它为地球科学、环境监测和资源管理等领域提供了重要的信息和工具。
实验一 地物光谱反射率的野外测定一 实验目的1、学习地物光谱的测定方法2、认识地物光谱反射率的规律3、掌握绘制地物反射光谱曲线的方法二 原理及方法地物光谱反射率的野外测定原理主要是利用电磁辐射和各地物光谱特征进行测定(参照课本)。
实验采用垂直测量方法,计算公式为:()()()()λρλλλρs Vs V •=式中,()λρ为被测物体的反射率,()λρs 为标准板的反射率,()λV ,()λVs 分别为测量物体和标准板的仪器测量值。
三 实验仪器1、ISI921VF-256野外地物光谱辐射计,波段范围为可见-近红外的380~1050nm ,仪器性能稳定,携带方便,数据提取容易。
2、标准参考板(白板或灰板)。
图1ISI921VF-256野外地物光谱辐射计 3、仪器介绍3-1主机面板结构图2.主机面板示意图部件功能描述1 电源开关仪器开关电源操作2 头部电缆连接插座连接光学测试头部3 USB口通讯电缆插座连接笔记本或台式电脑,进行数据传输4 GPS天线插座GPS接收天线(为选择配置)5 充电插座主机内置Ni-H电池充电,※同步录像摄像头电源6 液晶显示屏操作界面文字、曲线显示7 对比度电位器液晶屏对比度调节8 保险丝座主机保险丝9 键盘数字键0~9 菜单选择及数字输入确认键(ENTER)功能确认退出键(ESC) 返回上级菜单复位键(RESET)系统复位3-2光学头部结构图3.光学头部如图所示,光学头部上有以下部件: ➢ 电缆: 用于连接主机箱 ➢ 镜头: 配有与主光轴平行的半导体激光指示器 ➢ 把手: 手持之用,上置有“测量”和“指示”按钮(大拇指部位) ➢ 支架安装孔: 2个M4螺孔,用于固定安装 ➢ ※摄像头: 同步显示功能的图象获取;为选择配置3-3 基本配置连接注意:所有电气连接必须在关电的状态下进行,否则可能引起设备损害! 3-3-1安装如测试采用手持操作方式,则无需任何机械安装。
如采用手持测量杆,需事先使用两个M4×10螺钉将测量头部固定于测量杆顶部,并调整好所需的测量角度。
实验一:目标地物反射波谱的测量(3学时)
原理与方法
地物光谱反射率野外测定的原理可参看相应教材,这里不再进行赘述。
实习采用垂直测量的方法,计算公式如下:
)()()
()(λρλλλρs V V s ⋅=
(1.1)
式中:)(λρ为被测物体的反射率,)(λρs 为标准板的反射率,)(λV 、)(λs V 分别为测量
物体和标准板的仪器测量值。
实验仪器
1 可见光-近红外光谱辐射计,波长范围0.4~2.5m μ(有0.4~1.1m μ或1.3~2.5m μ两种仪器),以其性能稳定,便于携带,数据的提取比较容易。
表1-1列出了目前常用的光谱仪,仪器的具体使用方法可参见相关的仪器说明书。
2 标准参考板(白板或灰板)。
表1-1 常见的光谱辐射仪
实验目的
1 学习地物光谱的测定方法;
2 认识地物光谱反射率的规律; 3学习绘制地物反射光谱曲线。
实验报告
内容包括:目的、仪器、测量目标基本信息、环境参数表、测试数据表、一组反射率曲线图、误差分析等。
实验三地物光谱测量问题一.分析地物光谱测量过程中的几种主要的影响因素.答:1.光照条件:晴天地方时9:30-14:30.测量时尽量避免阴影和反射体的影像;测量者着深色服装,尽量远离测量点.2.大气特性和稳定性:尽量缩短两次测量之间的时间间隔以减小误差.3.参考(标准)白板:使用参考白板时不应该接触光学面.随着使用次数的增多,反射性能若出现明显退化,需要清洁或更换,并重新定标.问题二.在Excel或Matlab中绘制测量得到的典型地物的光谱曲线,并从地物的光谱响应特征或特征波段的测量结果对数据的质量进行分析和简要评价.答: 图一. 典型地物的光谱曲线从可见光区到大约0.7um的近红外光谱区,可看到健康植被的反射率急剧上升。
在0.7-1.3um区间,植物的反射率主要来自植物叶子内部结构。
健康绿色植物在0.7-1.3um间,的光谱特征的反射率高达(45%-50%),透过率高达(45%-50%),吸收率低至(<5%)。
植物叶子一般可反射入射能量的40%-50%,其余能量大部分透射过去,因为在这一光谱区植物叶子对入射能量的吸收最少(一般少于5%)。
在光谱的近红外波段,植被的光谱特性主要受植物叶子内部构造的控制。
在可见光波段与近红外波段之间,即大约0.76um附近,反射率急剧上升,形成“红边”现象,这是植物曲线的最为明显的特征,是研究的重点光谱区域。
许多种类的植物在可见光波段差异小,但近红外波段的反射率差异明显。
土壤反射率显得很少有“峰和谷”的变化。
这是因为影响土壤反射率的因素较少作用在固定的波段范围。
影响土壤反射率的因素有:含水量、土壤结构(砂、壤、粘土的比例)、表面粗糙度、铁氧化物的存在以及有机物的含量。
这些因素是复杂的、可变的、彼此相关的。
例如,土壤的含水量会降低反射率。
对于植被在大约1.4um、1.9um和2.7um处水的吸收波段上,这种影响最为明显(粘土在1.4um和2.2um处也有氢氧基吸收带)。
一、实验目的1. 学习地物光谱的测定方法;2. 认识地物光谱反射率的规律;3. 掌握绘制地物反射光谱曲线;4. 了解不同地物光谱特性的差异。
二、实验时间2019年11月10日中午三、实验地点某高校遥感与地理信息系统实验室四、实验仪器1. AvaField-EDU地物光谱仪;2. AvaReader软件。
五、实验原理地物光谱是指地物对不同波长电磁波的吸收、反射和透射能力。
地物光谱特性测量实验主要研究地物在不同波长范围内的光谱反射率。
通过测量地物的光谱反射率,可以分析地物的物理、化学、生物等特性。
六、实验步骤1. 安装AvaReader软件,连接AvaField-EDU地物光谱仪;2. 根据实验要求,选择待测地物,如植被、岩石、土壤等;3. 将地物放置在光谱仪的测量平台上,调整仪器至合适的位置;4. 启动光谱仪,设置测量参数,如光谱范围、积分时间等;5. 开始测量地物的光谱反射率,记录数据;6. 利用AvaReader软件对测量数据进行处理和分析;7. 绘制地物反射光谱曲线,分析地物光谱特性。
七、实验结果与分析1. 植被地物光谱特性实验选取了不同类型的植被,如草地、树林等,测量了其光谱反射率。
结果表明,植被在可见光波段(0.4-0.76 μm)的反射率较高,在近红外波段(0.76-2.5 μm)的反射率逐渐降低。
这是因为植被中含有大量的叶绿素,对蓝光和绿光有较强的吸收能力,而对红光和近红外光的反射能力较强。
2. 岩石地物光谱特性实验选取了不同类型的岩石,如花岗岩、玄武岩等,测量了其光谱反射率。
结果表明,岩石的反射光谱曲线具有明显的相似特征,曲线特征与其成分、风化程度、含水状态、颗粒大小、表面粗糙程度、色泽等有关。
不同岩石的光谱图形态各异,但其反射光谱曲线大致呈上升趋势。
3. 土壤地物光谱特性实验选取了不同类型的土壤,如沙土、黏土等,测量了其光谱反射率。
结果表明,土壤的反射光谱特征主要受土壤中原生矿物和次生矿物、土壤水分含量、土壤有机质、铁含量、土壤质地等因素决定。