第二章 电磁波谱与地物波谱特征
- 格式:ppt
- 大小:467.00 KB
- 文档页数:33
第二章 电磁辐射和地物波普特征电磁波普:是按电磁波在真空中的波长递增或频率递减而排列的,它包括γ射线、X 射线、紫外线、可见光、红外线、无线电波等。
大气窗口:指电磁波通过大气层时较少被反射、散射和吸收的,透过率较高的波段。
反射波谱:指地物反射率随波长的变化规律,通常用平面坐标曲线表示,横坐标表示波长,纵坐标表示反射率,同一物体的波谱曲线反映出不同波段的不同反射率,将此与遥感传感器的对应波段接收的辐射数据相对照,可以得到遥感数据与对应地物的识别规律。
瑞利散射:大气粒子的直径比辐射的波长小得多时发生的散射,通常是由大气分子和原子引起的,对可见光波段影响非常明显。
米氏散射:当大气中粒子的直径与辐射的波长相当时发生的散射,这种散射主要由大气中的微粒引起,例如气溶胶、小水滴。
散射强度与波长的二次方成反比,并且向前散射强度大于向后散射强度,具有明显的方向性。
无选择性散射:当大气中粒子的直径比辐射的波长大得多时发生的散射,散射的特点是散射强度与波长无关。
辐射亮度:假设有一辐射源是面状的,向外辐射的强度随辐射的方向不同而不同,则辐射亮度L 定义为辐射源在某一方向上,单位投影表面,单位立体角的辐射通量。
太阳天顶角:太阳入射光线与地面垂线方向构成的夹角,与太阳高度角之和为90°。
后向散射:在两个均匀介质的分界面上,当电磁波从一个介质中入射时,会在分界面上产生散射,这种散射叫做表面散射。
在表面散射中,散射面的粗糙度是非常重要的,所以在不是镜面的情况下必须使用能够计算的量来衡量。
通常散射截面积是入射方向和散射方向的函数,而在合成孔径雷达及散射计等遥感器中,所观测的散射波的方向是入射方向,这个方向上的散射就称作后向散射。
绝对黑体:如果有一种物体对任何波长的辐射能量都全部吸收,这个物体叫绝对黑体。
维恩位移定律:在一定温度下,绝对黑体的与辐射本领最大值相对应的波长λ和绝对温度T 的乘积为一常数,即λT=b 。
上述结论称为维恩位移定律,式中,b=0.002897m ·K ,称为维恩常量。
第二章电磁波普与地物波普特征第一节电磁波与电磁波谱2.1.1 电磁波与电磁波谱1.电磁波一个简单的偶极振子的电路,电流在导线中往复震荡,两端出现正负交替的等量异种电荷,类似电视台的天线,不断向外辐射能量,同时在电路中不断的补充能量,以维持偶极振子的稳定振荡。
当电磁振荡进入空间,变化的磁场激发了涡旋电场,变化的电场又激发了涡旋磁场,使电磁振荡在空间传播,这就是电磁波。
2.电磁辐射电磁场在空间的直接传播称为电磁辐射。
1887年德国物理学家赫兹由两个带电小球的火花放电实验,证实了电磁场在空间的直接传播,验证了电磁辐射的存在。
装载在遥感平台上的遥感器系统,接收来自地表、地球大气物质的电磁辐射,经过成像仪器,形成遥感影象。
3.电磁波谱γ射线、X射线、紫外线、可见光、红外线和无线电波(微波、短波、中波、长波和超长波等)在真空中按照波长或频率递增或递减顺序排列,构成了电磁波谱。
目前遥感技术中通常采用的电磁波位于可见光、红外和微波波谱区间。
可见光区间辐射源于原子、分子中的外层电子跃迁。
红外辐射则产生于分子的振动和转动能级跃迁。
无线电波是由电容、电感组成的振荡回路产生电磁辐射,通过偶极子天线向空间发射。
微波由于振荡频率较高,用谐振腔及波导管激励与传输,通过微波天线向空间发射。
由于它们的波长或频率不同,不同电磁波又表现出各自的特性和特点。
可见光、红外和微波遥感,就是利用不同电磁波的特性。
电磁波与地物相互作用特点与过程,是遥感成像机理探讨的主要内容。
4.电磁辐射的性质电磁辐射在传播过程中具有波动性和量子性两重特性。
2.1.2 电磁辐射的传播电磁辐射通过不同的介质时,其强度、波长、相位、传播方向和偏振面等将发生变化,这些变化可能是单一的,也可能是复合的。
电磁波可以采用频率、相位、能量、极化等物理参数来描述。
电磁波在传播中遵循波的反射,折射,衍射,干涉,吸收,散射等传播规律。
2.1.3 电磁辐射的测量与度量单位遥感信息是从遥感器定量记录的地表物体电磁辐射数据中提取的。