热工过程自动化
- 格式:pdf
- 大小:28.21 MB
- 文档页数:104
热工自动化第一篇:热工自动化1生产过程实现自动化,称为自动调节.2自动调节的重要依据是检测部件的检测准确性先决条件是稳定性要求,核心是调节部件 3 用方框表示系统中的各个元部件(硬件);• 用箭头表示系统中有关的物理量(信号);• 用进入方框的箭头表示各元部件的输入量;• 用离开方框的箭头表示各元部件的输出量。
4 被调对象即被调节的生产设备或者生产过程被调量即通过调节需要维持的物理量给定值即根据生产要求,被调量的固定数值扰动引起被调量变化的各种原因调节作用量即在调节作用下,控制被调量变化的物理量调节机关即在调节作用下,用来改变调节作用量的装置一.按给定值信号的特点分类ν 1.恒值调节系统ν 2.程序调节系统ν 3.随机(动)调节系统二.按调节系统的结构分类1.闭环(反馈)调节系统2.前馈调节系统3.复合调节系统三.按调节系统闭环回路的数目分类1.单回路调节系统2.双回路调节系统3.多回路调节系统四.按被调量数目分类1.单输入单输出(SISO)调节系统2.多输入多输出(MIMO)调节系统五.按调节作用的形式分类1.连续调节系统2.离散调节系统六.按系统的特性分类1.线性调节系统2.非线性调节系统6自动调节系统动态试验依据何原则选取典型输入信号? 1稳定性2准确性3快速性评价自动调节系统性能,常用哪些时域指标,是述其含义与实际生产要求?(1)系统的稳定性不稳定的系统是不能工作的,所以必须对控制系统的稳定性进行判断并且研究影响稳定性的因素。
指标: 衰减率ν、衰减比n、衰减指数m等。
(2)系统的动态特性系统的动态特性是指系统从一个稳定状态变化到另一个稳定状态的过渡过程中输出与输入间的关系。
系统的动态特性,可以通过系统的暂态响应来评价。
指标: 动态偏差ym、调节(过渡)时间 ts等。
(3)系统的稳态特性系统的稳态性能就是系统进入稳定状态后所表现出的特性,主要靠系统的稳态响应来评价。
指标: 稳态误差ess等。
探讨火电厂热工自动化及控制一.热工自动化的内容热工过程自动化主要包含自动检测、自动调节、顺序控制、自动保护4个主要方面。
自動地检查和测量反映生产过程运行情况的各种物理量、化学量以及生产设备的工作状态,以监视生产过程的进行情况和趋势,称为自动检测。
锅炉汽轮机装有大量的热工检测仪表,包括测量仪表、变送器、显示仪表和记录仪表等,它们随时显示、记录、积算和变送机组运行的各种参数,如温度、压力、流量、水位、转速等,以便进行必要的操作和控制,保障机组安全、经济地运行。
目前,大型汽轮机的自动检测项目包括:蒸汽压力和温度、真空度、监视段抽汽压力、润滑油压、调速油压、转速、转子轴向位移、转子与汽缸的相对热膨胀、汽轮机振动、主轴挠度、轴承温度与润滑油温度、推力瓦温度等许多项目。
在建新机组均设置汽机本体安全监视系统,配备完整的汽轮机监视仪表。
汽机监视仪表能连续测量汽轮发电机组轴承及汽轮机本体的运行机械参数,显示机组运行状态;当参数超出定值时,输出信号作为记录和报警;重要参数超限时输出停机信号至汽轮机紧急跳闸系统装置,立即关闭汽机自动主汽门实现紧急停机。
自动维持生产过程在规定的工况下进行,称为自动调节。
电力用户要求汽轮机发电设备提供足够数量的电力和保证供电质量。
电的频率是供电质量的主要指标之一。
为了使电频率维持在一定的精度范围内,就要求汽轮机具备高性能的转速自动调节系统。
锅炉运行中,必须使一些能够反映锅炉工作状况的重要参数维持在规定范围内或按一定的规律变化,如维持汽包水位给定值和保证锅炉的出力满足外界的要求。
根据预先拟定的步骤和条件,自动地对设备进行一系列的操作,称为顺序控制。
顺序控制主要用于机组启停、运行和事故处理。
每项顺序控制的内容和步骤是根据生产设备的具体情况和运行要求决定的,而顺序控制的流程则是根据操作次序和条件编制出来,并用自动装置来实现,这种装置称为顺序控制装置。
顺序控制装置必须具备逻辑判断能力和联锁保护功能;在进行每一项操作后,必须判明这一步操作已实现,并为下一步操作创造好条件,方可自动进入下一步操作,否则,应中断顺序,同时进行报警。
热工过程自动化的主要内容1、热工参数自动检测利用各种监测系统及仪表对表征热工过程状况的各种参数进行连续的检测和显示。
主要热工参数:温度、压力、流量、夜位等。
2、热工自动调节系统当某一参数在外界干扰的影响下,偏离正常工艺条件时,借助自动调节装置自动使参数回到规定的数值范围内。
如:汽包水位自动调节系统。
图DHWH0a主汽压力变化调节给煤量(练习)b炉膛负压调节引风量c燃烧调节送风量d过热气温调喷水量调节器显示仪表3、自动信号联锁保护及程序控制当热工参数超出允许的变化范围时,保护系统自动发出声光信号或联锁系统采取紧急措施打开或切断某些通路。
如锅炉水为保护,当水位高或低于极限值时,保护系统动作停止锅炉运行。
程序控制是按某一程序或时间对系统进行有序操作。
如锅炉定期吹灰、排污、辅机起停等。
第一章测量概述Measure Introduction第一节测量的基本概念测量技术是研究测量原理,测量方法和测量工具的一门学科。
通过测量可以了解生产过程是否符合工艺规程规定,是否达到预定的质量安全指标、经济指标,以便根据测量结果,通过控制系统对生产过程予以正确的调整。
测量是监视生产过程的耳目,也是实现生产过程自动化的基础。
一、测量的定义measurement definitionx=aUxa,国际单位制 International Unit米(m),千克(kg), 秒(s), 开尔文 (k),摩尔 (mol),坎德拉, 安培(A)例如:1牛顿=1公斤×1米/秒平方 b,等精度测量 c,测量值和真值约定真值nx x x X n+++=......21___相对真值--------用标准表指示值代替 二、测量方法a 直接测量与间接测量b 接触测量与非接触测量c 静态测量与动态测量过程检测仪表多数采用动态接触间接测量 三、测量仪表或系统的组成1传感元件2 传输变送元件3 显示部件第二节 测量误差 Measurement error研究的目的 正确估计测量的可信程度,探讨消除或减小误差的方法手段 a 分析误差来源 b 减小其影响c 估计误差大小一、测量误差的定义Measurement error definition在测量中,始终中存在着各种各样的影响因素,这些影响因素的变化, 使得测量结果与被侧量真值之间存在着一定差别,即测量误差。
1热工自动化概述North China Electric Power University 第一章热工自动化概述第一章热工自动化概述§1.1 热工自动化概况§1.2 常见的热工自动化系统§1.3 热工控制系统的组成§1.4 常规PID调节器常规PID调节器§1.5 热工控制系统的运行评价§1.6 SAMA图SAMA图1 North China Electric Power University 第一章热工自动化概述§1-1 热工自动化概况2 North China Electric Power University 第一章热工自动化概述一、自动化领域发生了革命性的变化? 芯片技术:促进了自动化技术由“模拟”向“数字” 芯片技术:促进了自动化技术由“模拟” 数字” 时代的飞跃;?网络信息技术:分布式工业自动控制系统(DCS: 网络信息技术:分布式工业自动控制系统(DCS: Distributed Control System)为实现先System)进的工业自动化系统提供了强有力的硬件、软件平台。
软件平台。
3 North China Electric Power University 第一章热工自动化概述?自动控制理论:自动化技术由基于微分方程、传递函自动控制理论:数的古典理论阶段进入基于状态空间法和最优化方法的现代理论阶段,进而,逐步发展到基于专家系统、模糊控制和人工神经网络的智能时代。
? 信息处理技术:数据高速传输、数据压缩存储、数据信息处理技术:融合、数据挖掘等技术的发展,为实现基于信息集成的生产过程的控制与管理现代化奠定了基础。
4 North China Electric Power University 第一章热工自动化概述二、电力的发展趋势1. 国民经济的飞速增长,增加了对能源的需求量,国民经济的飞速增长,增加了对能源的需求量,电力工业逐渐发展为大电网、大机组、高参数、电力工业逐渐发展为大电网、大机组、高参数、高度自动化。
热工自动化中的智能控制研究
热工自动化是一种将计算机和仪器设备应用于热工过程的控制系统。
智能控制是一种结合了人工智能和控制理论的控制方法,它可以根据环境的变化自主地调整控制策略,以实现系统的最优控制效果。
在热工自动化中,智能控制的研究可以应用于许多领域,如能源系统、制冷空调系统和工业炉窑等。
智能控制可以通过自适应、优化和预测等技术来提高系统的能效、运行稳定性和安全性。
智能控制可以通过自适应技术来提高系统的鲁棒性。
自适应控制可以根据系统的性能指标,动态地调整控制策略,以适应环境变化和系统参数的变动。
在能源系统中,智能控制可以根据能源需求和供给的变化,实时调整能源的生产和消费。
这样可以提高系统的能源利用率,减少能源浪费。
智能控制可以通过优化技术来提高系统的效率。
优化控制可以在系统的运行过程中,通过数学规划等方法,寻找系统的最优控制策略。
在制冷空调系统中,智能控制可以通过优化控制器的参数,使系统达到最佳的制冷效果。
这样可以减少系统的能耗,提高制冷效率。
智能控制可以通过预测技术来提高系统的安全性。
预测控制可以根据系统的历史数据和环境的变化,预测系统的未来状态,并根据预测结果调整控制策略。
在工业炉窑中,智能控制可以通过预测燃料的燃烧效果和炉温的变化,及时调整燃料和空气的供给,以保证炉窑的安全运行。
智能控制是热工自动化中的一项重要研究内容。
通过智能控制的应用,可以提高系统的性能和效率,实现能源的节约和环境的保护。
随着人工智能和控制技术的不断发展,智能控制在热工自动化中的应用前景将会更加广阔。
1.火电厂热工过程自动化主要包括下列内容:自动检测、自动调节、自动保护、程序控制。
2.调节:在设备运行中参数总要经常受到各种因素的影响而偏离额定值,此时,运行人员就要及时进行操作,对他们加以控制,使这些参数保持为所希望的数值,这一过称称为调节。
由人工操作来完成的称为人工调节。
假若用一整套自动控制装置来代替人工操作就是自动调节。
3.实现自动调节所需要的自动调节装置主要有:测量单元(变送器),调节单元(调节器),执行单元(执行器)4.调节系统的分类:按信号的馈送方式分为反馈调节系统(调节时间长,能克服扰动),前馈调节系统(只能克服扰动,不存在稳定性分析),前馈-反馈调节系统。
5.调节过程:从发生扰动,经过调节,直到系统重新建立平衡的这段过程6.衡量调节过程好坏:稳定性,快速性,准确性7.传递函数:线性定常系统在零初始条件下,输出量的拉普拉斯变换式与输入量的拉普拉斯变换式之比。
8.静态放大系数:G(S)=C(S)/R(S)=K(s-Z1)(s-Z2) …(s-Zm)/(s-P1)(s-P2)…(s-P n)中,若取s=0,即微分方程中所有导数项都为零,则上式变为a0c(t)=b0r(t),则传递函数G(0)就是静态放大系数,即G(0)=C(0)/R(0)=b0/a0.称为系统的静态方程,反映了在稳态时输出与输入之间的关系。
9.基本环节:比例环节,积分环节,惯性环节,微分环节,实际微分环节,纯迟延环节。
10.环节的连接方式:串联,并联,反馈11.三种基本调节作用:比例调节作用P(作用动作快,对偏差有放大作用,会增加振荡),积分调节作用I(调节时间慢,能消除偏差,积分作用强会加强振荡甚至造成系统不稳定),微分调节作用D(不能消除偏差,只能使其不变,优化动态品质,恶化静态品质)。
12.自动调节器:比例调节器P,比例积分调节器PI,比例微分调节器PD,比例积分微分调节器PID。
13.工业调节器分为:模拟式调节器,数字式调节器14.模拟式自动调节器调节规律的实现方法:采用不同的反馈回路来实现调节器的动作规律;采用运算放大器的不同连接方式来实现调节器的动作规律15.二阶系统阶跃响应的特征量:上升时间tr,峰值时间tp,超调量Mp,衰减率ψ,调节时间ts,稳态误差e(∞)。
电厂热工自动化技术日期:目录•电厂热工自动化技术概述•电厂热工自动化系统组成及功能•电厂热工自动化设备及技术•电厂热工自动化系统设计与优化•电厂热工自动化技术面临的挑战与解决方案•电厂热工自动化技术发展趋势与展望电厂热工自动化技术概述电厂热工自动化技术是指利用自动化仪表、控制系统、计算机等设备和技术,对火力发电厂的热力系统进行监测、控制和优化,以提高发电效率、保障生产安全和降低运行成本。
定义自动化技术贯穿于电厂的整个生产过程中,具有复杂性、高精度性、高可靠性等特点。
通过对热力系统的实时监测和控制,能够实现电厂的节能减排、提高效率和降低成本等目标。
特点定义与特点第一阶段(20世纪初-20世纪60年代)初始发展阶段,主要特点是手工操作和简单仪表控制,生产过程以经验为主导。
电厂热工自动化技术的发展历程第二阶段(20世纪60年代-20世纪80年代)自动化技术开始进入快速发展阶段,出现了许多自动化设备和控制系统,如DCS、PLC等,生产过程逐渐实现半自动化。
第三阶段(20世纪80年代至今)自动化技术进入高级发展阶段,计算机技术、信息技术和人工智能等技术的广泛应用,使得电厂的自动化水平不断提高,生产过程实现高度自动化。
电厂热工自动化技术的应用场景包括锅炉、汽轮机、发电机等主要设备的监测和控制,以及燃烧系统、给水系统、蒸汽系统等辅助系统的控制。
火电厂的热力系统通过对单元机组的整体协调控制,实现锅炉和汽轮机的优化运行,提高机组整体效率。
单元机组协调控制系统包括燃烧自动控制、给水自动控制、蒸汽温度自动控制等,通过对锅炉各参数的控制,实现锅炉的高效运行。
锅炉自动控制系统包括转速自动控制、负荷自动控制、凝汽器真空度自动控制等,通过对汽轮机各参数的控制,保证汽轮机的稳定运行。
汽轮机自动控制系统电厂热工自动化系统组成及功能测量系统能够实现对电厂热工过程中各种温度的精确测量,包括热电偶、热电阻等温度传感器以及相应的数据采集装置。
电厂热工过程自动化基本知识第一节概述1、电厂热工过程自动化主要内容1)自动检测,即对反映热工过程运行状态的物理量、化学量以及表征设备工作状态的参数进行自动的检查、测量和监视.2)自动调节,即自动维持一个或几个能够表征热力设备正常工作状况的物理量为规定值,消除因各种因素干扰和影响造成的运行工况偏离.3)自动保护,即在热力设备发生异常,甚至事故时能够自动采取保护措施,防止事故进一步扩大,或保护设备不受损坏.4)程序控制,即根据预先拟定的程序及条件,自动地对机组进行启动、停止及其他一系列操作.2、自动调节基本概念在电力生产过程中,为了保证生产的安全性、经济性,保持设备的稳定运行,必须对标志生产过程进行情况的一些物理参数进行调节,使它们保持在所要求的额定值附近,或按照一定的要求变化,如汽轮机转速,锅炉蒸汽温度、压力,汽包水位,炉膛负压等.在设备运行中这些参数总要经常受到各种因素的影响而偏离额定值规定值,此时,用一整套自动控制装置来实现操作的过程,就是自动调节.例如,在锅炉运行过程中,锅炉出口主汽压是锅炉进出热量平衡的标志,汽压的变化表示锅炉的蒸发量和汽轮机的耗汽量不相适应,这就意味着锅炉燃料燃烧产生的热量与产生一定蒸汽所需的热量不相适应,因此,汽压是表征锅炉运行状况的一个重要参数.通常希望将汽压保持在某一规定的数值,运行中,运行人员必须经常地监视仪表,监视汽压的变化.若由于某种原因如汽轮机负荷变化,汽压偏离所规定的数值,那么运行人员就要进行手动操作,调整锅炉的燃料量,使锅炉产生的蒸汽适应汽轮机负荷的需要,使汽压恢复到规定数值.这里,锅炉是被调节的设备,称为调节对象;需要调节的物理量汽压称为被调量;被调量的汽压的规定数值称为给定值或目标值;引起被调量汽压偏离给定值的各种原因比如汽轮机负荷的变化,锅炉燃料量的变化等称为扰动;调整燃料量的装置如燃油阀、制粉系统等称为调节机构;由调节机构控制被调量的作用称为调节作用;随调节机构动作而改变数量的燃料量就是调节量.调节过程的实质是随时检测被调量偏差并纠正偏差的过程,以维持被调量等于或接近于给定值.1、自动调节装置实现自动调节作用所需要的自动调节装置主要有:1)测量单元变送器,用来测量被调量的大小,并能把被调量水位、温度、压力和流量等转换成与之成比例或其他固定的函数关系并便于远距离传送和综合的测量信号.2)调节单元调节器,接受测量单元送来的被调量信号,并把它与给定值进行比较,当被调量偏离给定值时,调节单元将偏差信号按它的大小和方向以预定的规律进行运算例如比例、积分、微分等,根据运算结果发出一定规律的调节信号给执行器.3)执行单元执行器,按照调节单元发出的调节信号去移动调节机构,改变调节量.汽轮机负荷比较偏差值调节作用调节给定值PO量简图:锅炉汽压自动调节原理图当调节对象锅炉受到扰动,被调量偏离给定值后,测量单元压力变送器检测出被调量的变化,被调量与其设定值比较后的偏差值通过调节单元进行放大、运算和综合,调节单元输出的信号控制执行器,改变调节器,直到被调量恢复到给定值或接近给定值为止.第二节自动调节系统生产流程过程中存在着两种流程:1物质和能量流程,如蒸汽锅炉中燃料燃烧产生的热量被受热面中的水吸收,水变成蒸汽,蒸汽经过过热器加热后送到汽轮机作功;2信息流程,如在锅炉的汽压自动调节中,为了维持汽压为规定值,自动调节检测汽压的偏差,然后根据偏差控制燃料量,使燃料量满足产生一定蒸汽量的需要.汽压调节对象和自动调节装置是通过信息的传递相互连接而构成自动调节系统的,这样,研究自动调节系统就是研究信息的流程,即研究信号间的相互连接、传递和转换问题.1、调节系统分类按信号馈送方式分类1)反馈调节系统.是最基本的调节系统,按被调量与给定值的偏差进行调节,调节的目的是尽可能地减小或消除被调量与给定值之间的偏差.参见锅炉汽压自动调节原理图.反馈调节系统属于闭环调节系统.由于调节系统是按被调量与给定值的偏差进行调节的,因此,在调节对象受到扰动作用时,只有在被调量出现偏差后才开始调节,调节只是为尽快地消除偏差.例如讲BFG热值的变化;燃料热值的变化设定值与实际值发生变化时引起锅炉主蒸汽压力变化的调节过程.2)前馈调节系统.调节器直接根据扰动信号进行调节,扰动是调节的依据.由于该系统没有被调量的反馈信号,不构成闭环回路,故称为开环调节系统.λt对象简图:前馈调节系统方框图扰动λt是引起被调量Ct变化的原因,前馈调节器根据扰动进行调节,就可能及时抵消扰动λt对被调量Ct的影响,从而使被调量保持不变.但由于是开环系统,调节效果无法检查,调节结束后不能保证被调量等于给定值,所以前馈调节系统在实际生产过程中是不能单独应用的.例如送风量的变化是引起炉膛压力波动的扰动,吸风调节采用送风前馈信号.3)前馈—反馈调节系统复合调节系统在反馈调节系统中加入对于主要扰动的前馈调节,构成了前馈—反馈调节系统.+-简图:复合调节系统方框图当扰动发生后,前馈调节的作用是及时地补偿扰动对被调量的影响,而反馈调节的作用则是保证被调量的偏差在允许的给定范围内.因此前馈——反馈调节系统有较好的调节效果.2、调节系统分类按给定值信号特点分类1)恒值调节系统在调节系统工作过程中,被调量的给定值恒定不变,从而使被调量保持为某一固定数值.这是热工过程自动调节中应用最多的一种调节系统,如锅炉的过热蒸汽温度、压力、汽包水位等自动调节系统都是恒值调节系统.2)程序调节系统被调量的给定值是一个已知的时间函数,调节的目的是保证被调量按预先确定的时间函数来改变.例如,锅炉在滑压启动过程中,汽压和汽温要按预先给定的曲线升高,即按一定的升温、升压曲线启动,就要采用程序调节系统.3)随动调节系统被调量的给定值往往是无规律的,按事先不能确定的一些外来因素而改变.调节的结果是使被调量尽快和准确地跟随给定值变化.例如,在汽轮机启动过程中,采用计算机对汽轮机转速实现最优升速控制.汽轮机的最优升速率不是预先给定的,而是通过计算机按过热汽温、再热汽温、汽缸壁温等参数在线计算出热应力的数值,与允许的热应力进行比较,同时参照升速时汽轮机的振动、串轴等参数确定的,这样可缩短启动时间.计算机控制主汽门的开度,使汽轮机转速跟随最优升速率而升高.4)比值调节系统维持两个变量之间的比值保持一定数值.例如锅炉燃烧过程中,要求空气量随燃料量的变化而成比例变化,这样,才能保证经济燃烧.因此,对于锅炉燃烧经济性的调节,要求采用比值调节系统.3、自动调节系统的过渡过程在自动调节系统中,把被调量不随时间变化的平衡状态称为静态或稳态,把被调量随时间变化的不平衡状态称为动态.当系统处于静态时,扰动等于零,给定值不变,调节器和调节阀的输出都暂时不改变,这时被调量也就保持不变.当有扰动发生时,系统平衡被破坏,被调量偏离给定值,于是调节器控制调节阀,改变调节量,使被调量回到给定值,系统恢复平衡状态.这样从扰动发生,经过调节,直到系统重新建立平衡的这段过程,称为调节系统的过渡过程,或称为调节过程.一个调节系统在不同形式和幅度的扰动作用下,其调节过程是不一样的.在实际生产过程中可能遇到的扰动形式是多种多样的.为了比较调节系统工作品质的好坏,分析系统工作品质能否满足生产过程的需要,通常要选定一种比较典型的或经常出现的扰动形式,作为研究调节系统工作品质的标准输入信号.在热工过程自动调节系统中,最常用的是单位阶跃函数.在阶跃扰动作用下,过渡过程有四种基本形式:1衰减振荡过程,即被调参数经过一段时间的振荡后,能很快趋向于一个新的平衡,是比较理想的;2非周期过程,即被调参数没有振荡,单调地趋向于一个新的平衡,是一个稳定的过程;3扩幅振荡过程,即被调参数的变化幅度越来越大,直到超出限值,或受到限幅保护装置的限制为止,是一种不稳定的过程;4等幅振荡过程,被调参数的数值以及执行机构的位置都作等幅振荡,幅值既不衰减也不发散,是一种边界稳定过程.4、衡量调节过程指标1稳定性:调节过程的稳定性是对调节系统最基本的要求.只有稳定的系统才能完成正常的调节任务,不稳定的系统在工程上不能采用的.2快速性:指调节过程持续时间的长短.一般希望过渡过程时间越短越好,以避免在调节过程中出现前波未平,后波有起,被调量长期不能稳定在给定值附近的情况.3准确性:指被调量偏差的大小,它包括动态偏差和静态偏差.对于一个调节系统,必须首先保证其稳定性好,同时兼顾调节的快速性和准确性.第三节自动调节器基本调节规律自动调节器是构成自动调节系统的核心部分,它主要包括测量单元、调节单元、执行单元.测量单元和执行单元的动态特性一般都可近似看作为比例环节或时间常数很小的惯性环节,因而自动调节器的调节规律主要是指调节单元的动态性质,它直接影响着自动调节系统的调节品质.1、三种基本调节作用1)比例调节作用比例调节作用是指调节器的输出与输入成比例关系.动态方程为μt=Kpet.其中:μt为执行机构位移即调节器的输出;et为给定值与被调量的偏差,et=rt-ct;Kp为比例系数或比例增益.比例调节作用的动作规律是:执行机构的位移量μt与偏差et的大小成比例,即偏差越大,执行机构输出位移也越大;偏差的变化速度越大,执行机构输出位移的速度也越大.比例调节作用的特点是:动作快,对干扰能及时和有很强的抑制作用,但由于执行机构的位移与被调量的偏差有一一对应的关系,所以调节的结果是被调量存在着静态偏差.2)积分调节作用积分调节作用是指调节机构的位移量的变化速度dμ/dt与偏差信号et成比例的作用.动态方程式为:μt= 1/Tt edt0i其中:μt为执行机构位移即调节器的输出;et为给定值与被调量的为积分时间.偏差,et=rt-ct;TI积分调节作用的动作规律是:只要对象的被调量不等于给定值即偏差存在,那么执行机构就会不停地动作,而且偏差的数值越大,执行机构的移动速度就越大,只有当偏差等于零时即被调量等于给定值,调节器的输入信号为零,调节过程才能结束,执行机构才停止动作,调节系统才能平衡.积分调节作用的突出优点是能消除静态偏差,因为只要被调量存在偏差,调节作用变随时间不断加强,直至偏差为零.在被调量偏差消除后,由于积分规律的特点,执行机构将停留在新的与负荷变化相适应的位置上.缺点:由于积分调节作用是随时间而逐渐增强的,与比例调节作用相比过于迟缓,所以在改善静态品质的同时却恶化了动态品质,使过渡过程的振荡加剧,甚至造成系统不稳定.所以,在实际生产过程中几乎不采用单纯的积分调节作用.3)微分调节作用微分调节作用是指调节机构的位移量与被调量偏差的变化速度成正比,它的动态方程为:μt=Tdde/dt,其中:μt为执行机构位移即调节器的输出;et为给定值与被调量的偏差,et=rt-ct;Td为微分时间.微分调节作用的特点是:与比例和积分调节作用相比,它是超前的调节作用,因为在调节过程刚开始时,被调量的偏差小,但其变化速度却较大,可使执行机构产生一个较大的位移,有利于克服动态偏差.但是,当调节过程结束,即当偏差的变化速度等于零时,微分调节器的输出也将等于零,即执行机构的位置最后总是回复到原来的数值,这就不能适应负荷的变化,不能满足调节的要求.因此,只有单纯微分调节作用的调节器,在工业上是不能使用的.2、自动调节器典型调节规律1)比例调节器P调节器采用比例调节器的调节是有差调节.调节器的比例增益的选择有其两重性.比例增益Kp 越小比例带越大,Kp=1/δ,调节器的动作幅度越小,调节过程越稳定,但被调量的静态偏差增大.反之,比例增益Kp越大比例带δ越小,调节器的动作幅度越大,被调量的静态偏差减小,但调节过程易出现振荡,稳定性降低.2)比例积分调节器PI调节器在比例积分调节器中,当改变比例带δ的数值时,既改变比例作用,也改变积分作用.而两个作用的比值则不变;改变积分时间Ti的数值,只是改变积分作用的大小,从而改变了调节器中比例作用和积分作用的相对大小.比例积分调节器兼有比例调节作用和积分调节作用的特点.调节系统中采用这种调节器时,由比例作用保证调节过程的稳定性,增大比例带δ数值,可以削弱振荡倾向,但比例带δ过大,将削弱调节作用,使调节过程的时间拖长;增大Ti 值使比例作用相对增强,也能削弱振荡倾向,但Ti值不宜过大,因为Ti值过大,调节作用的积分成分将过小,调节过程时间将很长.积分调节作用可保证调节结果无差,因此,比例积分调节器在工业上得到广泛的应用.3)比例微分调节器PD比例微分调节器有两个可以整定的参数.改变微分时间Td的数值只改变微分作用的大小,改变比例带δ的数值将同时改变比例作用和微分作用的大小,而两者的比值不变.如系统处于平衡状态,则微分作用消失,但比例微分调节器仍具有比例调节器的特点,即调节过程结束后,被调量存在静态偏差.如果对象存在较大的延迟和惯性,单纯采用比例调节器达不到调节的要求时,就可以引入微分调节器作用.只要微分作用的大小选择适当,不仅可以减小调节过程中被调量的动态偏差,也能减小调节过程的振荡倾向.4)比例积分微分调节器PID比例调节作用的特点是保证过程的稳定性;积分调节作用的特点是保证调节过程作无差调节;微分调节作用的特点是补偿调节对象的延迟和惯性.3、调节器调节规律对调节品质的影响1)比例调节器P不论是什么对象,采用比例调节器都是有差调节,比例带δ越大,静态偏差就越大.调节器的比例带δ增大,意味着在相同的被调量变化下,调节作用较小,因而在受到扰动后,被调量的动态偏差将增大.总之,比例调节器的比例带δ越大,系统的衰减率越大,过程越稳定;但是,增大比例带δ,将导致过程的动态偏差和静态偏差的增大.2)比例积分调节器PI比例积分调节器的主要优点是能靠积分作用消除静态偏差,因此,在热工过程自动化中得到了最广泛的应用.与比例调节器的比例作用相似,增加比例带δ可以增加系统的稳定性,越短,系统的稳定性下降越多.积分作用使系统的稳定性下降,积分时间Ti从提高系统稳定性的角度出发,需要加大比例带δ和增加积分时间T,i 然而比例带和积分时间过大时,调节器的调节作用减弱.3)比例积分微分调节器PID微分调节作用有助于克服迟延所造成的被调量的过大变化.比例积分微分调节器既能实现无差调节,又能改善调节过程的动态品质,在工业上得到了较广泛的应用.4、复杂调节系统1)串级调节系统串级调节系统的调节品质较好,在热工自动控制中得到了广泛的应用.对于时间常数较大,阶次较高和有较大迟延的调节对象,在某些场合下即使采用PID调节规律依然不能得到满意的调节品质,这时可采用串级调节系统.系统中除了主被调量外,还有一个辅助被调量,辅助被调量对调节作用的响应应比较迅速.例如锅炉过热汽温调节系统,当减温水量改变后,过热汽温的变化较慢,减温器出口汽温变化较快,这时就可把减温器出口汽温作为过热汽温调节系统中的辅助被调量,形成一个调节回路,构成串级调节系统.1对象Ⅱ CS- - 调节对象简图:串级调节系统方框图与单回路调节系统的区别在于有两个调节器,有两个闭合回路.由调节器Ⅰ和调节对象Ⅰ构成的回路称为副回路或内回路,调节器Ⅰ称为副调节器,调节对象Ⅰ的输出信号称为辅助被调量.由调节器Ⅱ、副回路和调节对象Ⅱ所构成的回路称为主回路或外回路,调节器Ⅱ称为主调节器,调节对象Ⅱ的输出信号称为主被调量,调节对象Ⅰ和调节对象Ⅱ统称是系统的调节对象.特点:1对副回路所受到的扰动具有很强的克服能力;2副回路起改善调节对象动态特性的作用,从而提高整个系统的调节品质.2)采用中间被调量微分信号的调节系统对于时间常数大,阶次高和迟延大的调节对象,为了改善调节品质,除了采用串级调节外,还可以采用引入中间被调量微分信号的调节系统.例如过热汽温调节系统,其中间被调量就是减温器后的汽温,汽温调节器除接受过热器出口温度信号外,还同时接受减温器后汽温的微分信号.简图:采用中间被调量微分信号的调节系统方框图特点是调节器除了接受调节对象的主被调量信号外,还接受一个中间被调量的微分信号.由于中间被调量的响应比主被调量快,因此,这个微分信号起着导前作用,以补偿主被调量的滞后.在稳态时,中间被调量微分信号等于零,调节器维持主被调量为规定值.3)前馈—反馈调节系统按被调量偏差进行调节的负反馈系统,当系统受到扰动时,调节器要等到被调量出现偏差后才开始调节,因而调节作用总是落后于扰动作用的.被调量产生偏差的原因是扰动,如果调节系统能直接按扰动进行调节,就有可能及时消除被调量的偏差,这种按扰动进行的调节称为前馈调节.前馈调节是开环调节,不构成闭合回路.一般采用前馈调节器实现局部补偿,以改善调节品质,同时采用反馈调节,以确保被调量在稳态时能恢复到给定值.一般,系统中存在着经常变动、可测而不可控的扰动时,反馈调节难以克服扰动对被调量的显着影响,这时为了改善调节品质,可以引入前馈调节.例如锅炉汽包水位调节系统,引入蒸汽流量前馈信号.蒸汽流量对被控水位来说就是一个可测而不可控的扰动信号.。
浅谈电厂热工自动化及事故预防电力是现代社会不可或缺的能源,而电厂的热工自动化技术对于提高发电效率、降低生产成本、保障电力安全具有重要意义。
事故预防也是电厂热工自动化系统中不可忽视的部分。
本文将从电厂热工自动化的意义、技术应用以及事故预防方面进行探讨。
我们来谈谈电厂热工自动化的意义。
电厂热工自动化是指采用先进的控制技术、仪表和自动化设备,实现对发电设施的热工过程进行实时监测、控制与优化。
这项技术的意义主要体现在以下几个方面:1. 提高发电效率。
通过热工自动化系统,可以实现对燃煤、燃气、核能等能源的高效利用,最大限度地提高发电效率,降低能源消耗,从而减少对环境的影响。
2. 降低生产成本。
热工自动化技术可以实现发电设备的智能化运行管理,减少人力成本,降低维护费用,提高设备利用率,降低生产成本。
3. 提高电力安全性。
热工自动化系统可以对发电设备进行实时监测,及时发现和处理异常情况,提高电力生产的安全性和稳定性。
我们看一看电厂热工自动化技术的应用。
目前,电厂热工自动化技术已经非常成熟,主要应用在以下几个方面:1. 控制系统。
包括发电过程中的控制,例如燃烧控制、压力控制、温度控制等。
2. 监测系统。
用于监控发电设备的运行状态和参数,保证设备的正常工作。
3. 诊断系统。
通过数据分析和模型预测,实现对发电设备的故障诊断和预防。
4. 优化系统。
利用先进的算法和模型,对发电设备的运行进行优化,提高发电效率。
我们来谈谈电厂热工自动化中的事故预防。
电厂热工自动化系统在事故预防方面扮演着重要角色,主要体现在以下几个方面:1. 预警系统。
热工自动化系统可以通过实时监测和预警功能,及时发现潜在的安全隐患,提前采取措施进行预防。
2. 安全管理系统。
热工自动化系统可以对电厂的安全管理进行全面覆盖,包括作业安全、设备安全、环境安全等方面。
3. 应急措施。
在发生事故时,热工自动化系统可以通过智能控制,实现对设备的自动停机、故障隔离等应急措施,最大限度地减少事故损失。
热工自动化介绍热工自动化介绍:⒈热工自动化概述⑴热工自动化定义⑵热工自动化的应用领域⑶热工自动化的重要意义⒉热工自动化系统组成⑴主要设备和组件⑵控制系统⑶监控系统⑷数据采集与处理系统⑸传感器和执行器⑹通信网络⒊热工自动化系统的工作原理⑴信号采集与传输⑵数据处理与控制⑶监控与调节⑷故障诊断与维护⒋热工自动化系统的优势⑴提高生产效率⑵提高产品质量⑶降低生产成本⑷减少劳动力需求⑸提高工作环境安全性⒌热工自动化系统的设计与实施⑴系统需求分析⑵系统设计与方案选择⑶硬件设备选型与布局⑷软件开发与编程⑸系统调试与优化⑹系统验收与运维⒍热工自动化系统的应用案例⑴工业生产车间的燃烧控制系统⑵建筑物的暖通空调系统⑶能源发电厂的控制与监测系统⑷汽车制造工厂的生产线控制系统附件:本文档涉及的相关资料和技术文献。
法律名词及注释:⒈自动化:指利用电子技术、计算机技术、机械技术等先进技术,代替人工完成生产或工作过程的一种技术手段。
⒉控制系统:指通过采集传感器信号,经过处理和计算后,采取相应的控制策略和动作,控制生产工艺或设备的系统。
⒊监控系统:指对生产工艺或设备状态进行实时监测和记录的系统。
⒋数据采集与处理系统:指采集传感器数据并对其进行处理、存储和分析的系统。
⒌传感器:指能够将某种物理量转化为电信号输出的装置。
⒍执行器:指根据控制信号,对某一设备或工艺进行动作的装置。
⒎通信网络:指实现不同设备之间数据传输和通信的网络系统。
热工过程自动控制原理课程设计1. 引言本课程设计旨在通过实际的热工过程控制系统,帮助学生更好地理解热工过程自动控制原理。
本次课程设计主要包括以下内容:热工过程自动控制基础、温度控制、压力控制、流量控制和自动化程度优化等方面。
2. 热工过程自动控制基础热工过程自动控制系统是指通过自动化技术实现对热工过程的自动控制。
其中自动化技术包括传感器、执行器、控制器和人机界面等。
热工过程自动控制主要应用于各种生产过程中的热处理、加热、冷却、干燥、燃烧等环节。
热工过程自动控制系统的主要特点包括:控制精度高、响应速度快、控制范围广、操作简单等。
同时,热工过程自动控制系统也具有很强的适应性和可靠性。
3. 温度控制温度控制是热工过程自动控制系统中最常见的一种控制方式。
通过温度传感器采集实时温度信号,传输至控制器,由控制器通过调节执行器的动作实现温度的自动控制。
温度控制的主要方法包括:比例控制、积分控制、微分控制和PID控制等。
其中,PID控制是温度控制中最为广泛应用的一种控制方式,其控制精度高,响应速度快,适用于各种热工过程的自动控制。
4. 压力控制压力控制是一种常见的热工过程自动控制方式。
通过压力传感器采集实时压力信号,传输至控制器,由控制器通过调节执行器的动作实现压力的自动控制。
压力控制的主要方法包括:比例控制和PID控制等。
其中,PID控制同样适用于压力控制,其控制精度高,响应速度快,能够实现对不同范围的压力进行自动控制。
5. 流量控制流量控制是一种能够实现对液体或气体流量自动控制的控制方式。
通过流量传感器采集实时流量信号,并传输至控制器,由控制器通过调节执行器的动作实现对流量的自动控制。
流量控制的主要方法包括:比例控制、积分控制、微分控制和PID控制等。
其中,PID控制同样适用于流量控制,其控制精度高,能够较好地实现对液体或气体流量的自动控制。
6. 自动化程度优化热工过程自动控制系统的自动化程度是评价自动化程度的一个重要指标。