第6章 窄带随机过程
- 格式:pdf
- 大小:1.13 MB
- 文档页数:8
实验报告实验题目:窄带随机过程的模拟窄带随机过程的模拟一、实验目的(1)了解具有任意功率谱(低频)的正态随机过程的模拟; (2)了解窄带随机过程的模拟方法。
二、实验原理(1)任意功率谱的正态随机过程的模拟假定需要产生一个持续时间为d T 的高斯随机过程的一个样本()X t ,要求功率谱满足()X G f 。
为此,可以先将()X t 进行周期延拓,得到一个周期信号,然后对周期信号进行傅里叶级数展开。
即0201()()j f k k k dXt X e f T π∞=-∞==∑由于傅里叶级数是k X 的线性组合,所以,如果k X 是零均值的高斯随机变量,那么()X t 也是零均值高斯过程,如果{}()Xt 是两两正交的序列,则周期信号的功率谱为线谱。
即 2220()()(())kk k X k G f g f kf gE X δ∞=-∞=- =∑通过选择k g 就可以得到期望的功率谱。
假定()X G f 是带限的,即()0()X G f f B = >那么,{}2k g 只有有限项,共21M +项,与此对应的傅里叶级数也是21M +项。
因此,只需产生21M +个互相正交的零均值高斯随机变量{}11,,,,M M M M X X X X --+- 。
然后据此构造时域样本函数即可,有02()[]()Mj f k i t k k MX i X i t X e π∆=-=∆=∑其中t ∆为任意小的时间间隔。
(2)窄带随机过程的模拟对于窄带系统,当系统输入白噪声或宽带噪声时,输出可以表示为0()()cos[()]Y t A t t t ω=+Φ其中0ω为中心频率,()A t 和()t Φ是满变化的随机过程,对上式展开得00()()cos ()sin c s Y t A t t A t t ωω=-其中,()()cos (),()()sin ()c s A t A t t A t A t t =Φ=Φ,是慢变化的随机过程,分别称为窄带随机过程的同向分量和正交分量。
计算机与信息工程学院综合性实验报告一、实验目的1、基于随机过程的莱斯表达式产生窄带随机过程。
2、掌握窄带随机过程的特性,包括均值(数学期望)、方差、概率密度函数、相关函数及功率谱密度等。
3、掌握窄带随机过程的分析方法。
二、实验仪器或设备1、一台计算机2、MATLAB r2013a 三、实验内容及实验原理基于随机过程的莱斯表达式00()()cos ()sin y t a t t b t t ωω=- (3.1)实验过程框图如下:理想低通滤波器如图所示:图1 理想低通滤波器()20AH ∆ω⎧ω≤⎪ω=⎨⎪⎩其它(3.2) 设白噪声的物理谱0=X G N ω(),则系统输出的物理谱为 220=()=20Y X N AG H G ∆ω⎧0≤ω≤⎪ωωω⎨⎪⎩()()其它(3.3) 输出的自相关函数为:01()()cos 2Y Y R G d τωωτωπ∞=⎰ /221cos 2N A d ωωτωπ∆=⎰ (3.4) 20sin 242N A ωτωωτπ∆∆=⋅∆ 可知输出的自相关函数()Y R τ是一个振荡函数。
计算高斯白噪声x(t)、限带白噪声()a t 、()b t 及窄带随机过程()y t 的均值,并绘出随机过程各个随机过程的自相关函数,功率谱密度图形。
四、MATLAB 实验程序function random(p,R,C) %产生一个p 个点的随机过程%--------------------------高斯窄带随机过程代码--------------------------% n=1:p;w=linspace(-pi,pi,p); wn=1/2*pi*R*C;[b,a]=butter(1,wn,'low'); %产生低通滤波器Xt=randn(1,p); %产生p 个点均值为0方差为1的随机数,即高斯白噪声 at=filter(b,a,Xt); %让高斯白噪声通过低通滤波器y_at=at.*cos(w.*n); %产生随机过程a(t)y_bt=at.*sin(w.*n); %产生随机过程b(t)yt=y_at-y_bt; %产生一个p个点的高斯窄带随机过程subplot(211)plot(yt)title('高斯窄带随机过程y(t)')subplot(212)pdf_ft=ksdensity(yt) ;plot(pdf_ft)title('y(t)的概率密度图')disp('均值如下')E_Xt=mean(y_at)E_at=mean(y_at)E_bt=mean(y_bt)E_ft=mean(yt)%-----------------------自相关函数代码如下--------------------------% figure(2)R_Xt=xcorr(Xt); %高斯白噪声X(t)的自相关函数R_at=xcorr(at); %限带白噪声的自相关函数R_y_at=xcorr(y_at); %随机过程a(t).coswt的自相关函数R_y_bt=xcorr(y_bt); %随机过程b(t).coswt的自相关函数R_ft=xcorr(yt);subplot(2,2,1);plot(R_Xt);title('高斯白噪声的自相关函数R_Xt'); %并绘制图形subplot(2,2,2)plot(R_at);title('限带白噪声的自相关函数R_a_bx'); %并绘制图形subplot(2,2,3)plot(R_y_bt);title('随机过程b(t)的自相关函数R_y_bt');subplot(2,2,4)plot(R_ft);title('高斯窄带随机过程y(t)的自相关函数R_yt');%------------------------功率谱密度代码如下---------------------------% figure(3)subplot(1,2,1)periodogram(Xt);title('高斯白噪声功率谱密度S_Xt');subplot(1,2,2)periodogram(at);title('限带白噪声功率谱密度S_a_bt');figure(4)subplot(3,1,1)periodogram(y_at);title('随机过程a(t).coswt概率密度概率密度S_y_at');subplot(3,1,2)periodogram(y_bt);title('随机过程b(t).sinwt功率谱密度S_y_bt');subplot(3,1,3);periodogram(yt);title('高斯窄带随机过程y(t)的功率谱密度S_yt');五、实验结果将上述random 函数放在Path 中后,在Commaod Window 中输入:random(1000,10,0.001)时,输出结果如下:01002003004005006007008009001000-0.50.5高斯窄带随机过程y(t)0102030405060708090100246y(t)的概率密度图0500100015002000-50005001000高斯白噪声的自相关函数R X t 0500100015002000-101020限带白噪声的自相关函数R ab x 0500100015002000-50510随机过程b(t)的自相关函数R yb t 0500100015002000-101020高斯窄带随机过程y(t)的自相关函数R y t00.51-40-30-20-10010Normalized Frequency (⨯π rad/sample)P o w e r /f r e q u e n c y (d B /r a d /s a m p l e )高斯白噪声功率谱密度S X t 00.51-80-60-40-200Normalized Frequency (⨯π rad/sample)P o w e r /f r e q u e n c y (d B /r a d /s a m p l e )限带白噪声功率谱密度S ab t0.10.20.30.40.50.60.70.80.91-80-60-40-200Normalized Frequency (⨯π rad/sample)P o w e r /f r e q u e n c y (d B /r a d /s a m p l e )随机过程a(t).coswt 概率密度概率密度S ya t00.10.20.30.40.50.60.70.80.91-60-40-200Normalized Frequency (⨯π rad/sample)P o w e r /f r e q u e n c y (d B /r a d /s a m p l e )随机过程b(t).sinwt 功率谱密度S yb t0.10.20.30.40.50.60.70.80.91-50-40-30-20-10Normalized Frequency (⨯π rad/sample)P o w e r /f r e q u e n c y (d B /r a d /s a m p l e )高斯窄带随机过程y(t)的功率谱密度S y t在Commaod Window 中输出的结果如下:E_Xt = 0.0020 E_at= 0.0020 E_bt= -0.0020 E_ft = 0.0040六、实验结果分析:1、由于高斯白噪声Xt是标准正态的,所以均值趋近于零,而at,bt是由Xt通过一个线性系统(低通滤波器)得到的,所以输出均值不变,仍为零,从程序运行结果可以看出,Xt,at,bt均值都趋近于零。
随机过程数学建模分析任何通信系统都有发送机和接收机,为了提高系统的可靠性,即输出信噪比,通常在接收机的输入端接有一个带通滤波器,信道内的噪声构成了一个随机过程,经过该带通滤波器之后,则变成了窄带随机过程,因此,讨论窄带随机过程的规律是重要的。
一、窄带随机过程。
一个实平稳随机过程X(t),若它的功率谱密度具有下述性质:中心频率为ωc,带宽为△ω=2ω0,当△ω<<ωc时,就可认为满足窄带条件。
若随机过程的功率谱满足该条件则称为窄带随机过程。
若带通滤波器的传输函数满足该条件则称为窄带滤波器。
随机过程通过窄带滤波器传输之后变成窄带随机过程。
图1 为典型窄带随机过程的功率谱密度图。
若用一示波器来观测次波形,则可看到,它接近于一个正弦波,但此正弦波的幅度和相位都在缓慢地随机变化,图2所示为窄带随机过程的一个样本函数。
图1 典型窄带随机过程的功率谱密度图图2 窄带随机过程的一个样本函数二、窄带随机过程的数学表示1、用包络和相位的变化表示由窄带条件可知,窄带过程是功率谱限制在ωc附近的很窄范围内的一个随机过程,从示波器观察(或由理论上可以推知):这个过程中的一个样本函数(一个实现)的波形是一个频率为ƒc且幅度和相位都做缓慢变化的余弦波。
写成包络函数和随机相位函数的形式:X(t)=A(t)*cos[ωc t+ Φ(t)]其中:A(t)称作X(t)的包络函数; Φ(t)称作X(t)的随机相位函数。
包络随时间做缓慢变化,看起来比较直观,相位的变化,则看不出来。
2、莱斯(Rice)表示式任何一个实平稳随机过程X(t)都可以表示为:X(t)=A c(t) cosωc t-A S(t) sinωc t其中同相分量:A c(t)= X(t) cosφt= X(t) cosωc t+sinωc t=LP[X(t) *2cosωc t]正交分量:A S(t) = X(t)sinφt=cosωc t— X(t) sinωc t= LP[-X(t) *2sinωc t](LP[A]表示取A的低频部分)。
随机过程数学建模分析任何通信系统都有发送机和接收机,为了提高系统的可靠性,即输出信噪比,通常在接收机的输入端接有一个带通滤波器,信道内的噪声构成了一个随机过程,经过该带通滤波器之后,则变成了窄带随机过程,因此,讨论窄带随机过程的规律是重要的。
一、窄带随机过程。
一个实平稳随机过程X(t),若它的功率谱密度具有下述性质:中心频率为ωc,带宽为△ω=2ω0,当△ω<<ωc时,就可认为满足窄带条件。
若随机过程的功率谱满足该条件则称为窄带随机过程。
若带通滤波器的传输函数满足该条件则称为窄带滤波器。
随机过程通过窄带滤波器传输之后变成窄带随机过程。
图1 为典型窄带随机过程的功率谱密度图。
若用一示波器来观测次波形,则可看到,它接近于一个正弦波,但此正弦波的幅度和相位都在缓慢地随机变化,图2所示为窄带随机过程的一个样本函数。
图1 典型窄带随机过程的功率谱密度图图2 窄带随机过程的一个样本函数二、窄带随机过程的数学表示1、用包络和相位的变化表示由窄带条件可知,窄带过程是功率谱限制在ωc附近的很窄范围内的一个随机过程,从示波器观察(或由理论上可以推知):这个过程中的一个样本函数(一个实现)的波形是一个频率为ƒc且幅度和相位都做缓慢变化的余弦波。
写成包络函数和随机相位函数的形式:X(t)=A(t)*cos[ωc t+ Φ(t)]其中:A(t)称作X(t)的包络函数; Φ(t)称作X(t)的随机相位函数。
包络随时间做缓慢变化,看起来比较直观,相位的变化,则看不出来。
2、莱斯(Rice)表示式任何一个实平稳随机过程X(t)都可以表示为:X(t)=A c(t) cosωc t-A S(t) sinωc t其中同相分量:A c(t)= X(t) cosφt= X(t) cosωc t+sinωc t=LP[X(t) *2cosωc t]正交分量:A S(t) = X(t)sinφt=cosωc t— X(t) sinωc t= LP[-X(t) *2sinωc t](LP[A]表示取A的低频部分)。
信息与通信工程学院实验报告(软件仿真性实验)课程名称:随机信号分析实验题目:窄带随机信号的产生及分析班级:学号:实验目的和任务1•掌握窄带随机信号的产生方法以及窄带滤波器的设计2•掌握窄带随机信号包络相位的提取实验内容及原理(一)实验原理在一般无线电接收机中,通常都有高频或中频放大器,它们的通频带往往远小于中心频率,既有这种线性系统通称为窄带线性系统在通信、雷达等许多电子系统中,都常常用一个宽带平稳随机过程来激励一个窄带滤波器,这是在滤波器输出端得到的便是一个窄带随机过程。
若用示波器观测此波形,则可看到, 它接近一个正弦波,但此正弦波的幅度和相位都在缓慢的随机变化。
我们可以证明,任何一个是窄带随机过程X(t)都可以表示为:成绩指导教师:陈友兴学生姓名:X(t) = A(t)cos( .0t ⑴)式中,「。
是固定值,对于窄带随机过程来说,0 一般取窄带滤波器的中心频率或载波频率。
在实际应用中,常常需要检测出包络A(t)和「t的信息。
若将窄带随机过程X(t)送入包络检波器,则在检波器的输出端可得到包络A(t),若将窄带随机过程X(t),送入一个相位检波器,便可检测出相位信息」t,如图3.1所示。
(二)实验内容1.产生一输入信号X(t)二A(t)cos[ st (t)]N(t),其中A(t戶1 cqst,•■i=2n二1000( n 为学号),,'。
「'i,:(t)与A(t) 一样,N(t)为高斯白噪声;2•按图3.1的系统,设计一个低通滤波器,使得X(t)通过系统后的输出W(t)为窄带信号。
三、实验步骤或程序流程1. 输入信号,求输入信号的均值、方差、自相关函数、傅里叶变换、功率谱密度,分析各参数的特性;2.设计一个低通滤波器;3.分析滤波后信号时域、频域的各参数的特性。
四、实验数据及程序代码clear all ;clc;close all ;i=19; %学号为19n=1024;Fs=20000*i;t=0:1/Fs:(n-1)/Fs;wo=2*pi*1000*i;At=cos(wo*t); %输入信号的包络Nt=normrnd(0,1,1,n); %高斯白噪声Xt=At.*cos(4*wo*t+At)+Nt;M1=mean(Xt); %求输入信号的均值V1=var(Xt); %求输入信号的方差X1=xcorr(Xt, 'unbiased' ); %求X(t )的自相关函数window=boxcar(length(t)); %产生一个矩形窗[P1,f1]=periodogram(Xt,window,n,Fs); %求X( t )的功率谱密度%P11=10*log10(P1);F1=abs(fft(Xt)); %求傅里叶变换后幅度freq=(0:n/2)*Fs/n;figure(1)输入信号功率谱密度 ' ); %绘出输入信号功率谱密度图 1(1:n/2+1)), 'k' );title( ' 输入信号傅里叶变换特性 ' ); %绘出输入信% %带通滤波器设计 % Fs2=Fs/2; % fs1=800*i;fp1=900*i; % fs2=1100*i;fp2=1200*i;% ws1=fs1*pi/Fs2; wp1=fp1*pi/Fs2; % % ws2=fs2*pi/Fs2; wp2=fp2*pi/Fs2;% tr_width=min((wp1-ws1),(wp2-ws2));% 过渡带宽% N=ceil(6.6*pi/tr_width); % 计算 N % N=N+mod(N,2);%保证滤波器系数长 N+1为奇数 % wind=(hamming(N+1))'; % wc1=(wp1+ws1)/2;wc2=(ws2+wp2)/2; % fc1=wc1/pi;fc2=wc2/pi; % b=fir1(N,[fc1 fc2],wind); % 用汉明窗函数设计低通滤波器% omega=linspace(0,pi,512); % 频率抽样 512 个点 % mag=freqz(b,1,omega);%计算频率响应% magdb=20*log10(abs(mag)); % 计算对数幅度频率响应 % figure(2)% subplot(121),stem(b,'.');grid on;%axis([0 N-1]); % xlabel('n');ylabel('h(n)');title(' 单位抽样响应 '); % subplot(122),plot(omega*Fs/(2*pi),magdb);grid on; % xlabel(' 频率 ');ylabel('dB');title(' 幅度频率响应 ');%低通滤波器设计subplot(223);plot(f1,P1);title( subplot(224);plot(freq,abs(F 号傅里叶变换特性图归一化通带和阻带截止角频率deltaw=ws-wp; N=ceil(6.6*pi/deltaw);%计算 NN=N+mod(N,2); %呆证滤波器系数长 N+1为奇数 wind=(hamming(N+1))'; wn=(fp+fs)/Fs;b=fir1(N,wn,wind); % 用汉明窗函数设计低通滤波器 omega=linspace(0,pi,512); % 频率抽样 512个点 mag=freqz(b,1,omega); % 计算频率响应magdb=20*log10(abs(mag)); % 计算对数幅度频率响应figure(2)subplot(121),stem(b, '.' );grid on; %axis([0 N-1]);xlabel( 'n' );ylabel( 'h(n)' );title( ' 单位抽样响应 ' ); subplot(122),plot(omega*Fs/(2*pi),magdb);gridon; %axis([0 f1*4 -100 10]);xlabel( '频率' );ylabel( 'dB' );title( ' 幅度频率响应 ' );At=conv(Xt,b); %滤波Wt=At([33:1056]);M2=mea n( Wt);嫁带随机信号均值 V2=var(Wt); %窄带随机信号方差X2=xcorr(Wt, 'unbiased' ); %窄带随机信号自相关函数Fs2=Fs/2; fp=3000*i; fs=4000*i; wp=fp*pi/Fs2; %归一化通带截止角频率 ws=fs*pi/Fs2;%归一化阻带截止角频率%6dB截止频率%过渡带宽% P22=10*log10(P2); figure(3)subplot(221);plot(Wt);title( '窄带随机信号时域特性’);%绘出窄带随机信号时域特性曲线 subplot(222);plot(X2);title( '窄带随机信号自相关函数’);淤出窄带随机信号自相关函数图subplot(223);plot(f2,P2);title( '窄带随机信号功率谱密度');%会出窄带随机信号功率谱密度图五、实验数据分析及处理图3.1输入信号特性曲线4 2D-2 -4 笹入伯号自柞关圉数2 --------------- -------------- ■ -------输入僮号时域培任曲线500 1000 150010 10C0 2000 3000输入信号帖里叶燹取特性分析:由自相关函数图形可看出,中心点上相关程度最高,在其他地方,自相关函数接近 于零。
湖南大学本科课程《随机过程》第6章习题及参考答案主讲教师:何松华 教授1. 给定实数x 和一个平稳随机过程()X t ,定义理想门限系统的特性为1()()0()X t xY t X t x≤⎧=⎨>⎩ 试证:(1) [()]()X E Y t F x =;(2) ()](,,)Y X R F x x ττ=证:(1) ()Y t 在任意时刻为只有两种取值1,0的随机变量,则[()]1{()1}0{()0}{()1}{()}(,)() ()X X E Y t P Y t P Y t P Y t P X t x F x t F x =⨯=+⨯====≤==根据平稳性(2)根据相关函数定义,有()][()()]11{()1,()1}01{()0,()1} 10{()1,()0}00{()0,()0}{()1,()1}{(),()}(,;,)(,;) ()Y X X R E Y t Y t P Y t Y t P Y t Y t P Y t Y t P Y t Y t P Y t Y t P X t x X t x F x x t t F x x ττττττττττ=+=⨯⨯+==+⨯⨯+==+⨯⨯+==+⨯⨯+===+===+≤≤=+=根据平稳性2.设平方律检波器的传输特性为2y x =,在检波器输入端加入一窄带高斯随机过程()X t ,其概率密度函数为22()()}2X Xx a f x σ-=- 在检波器后联接一个理想低通滤波器,求低通滤波器输出过程的一维概率密度和均值;当0a =时结果有何变化。
解:根据题意,()X t 为非零均值的中频窄带随机过程,可以表示为:00()()cos()()sin()C S X t a A t t A t t ωω=+-其中()C A t 、()S A t 为零均值窄带随机过程的同向分量以及正交分量,都服从均值为0、方差为2X σ的正态分布,且在同一时刻互不相关,则检波器输出信号22002222200000()[()cos()()sin()]1111()()2()cos()()cos(2)()cos(2)2222 2()sin()()()sin(2)C S C S C C S S C S X t a A t t A t t a A t A t aA t t A t t A t t aA t t A t A t t ωωωωωωω=+-=++++--- 通过理想低通滤波后,滤波器输出信号为2221()[()()]2C S Z t a A t A t =++由于随机变量()C A t 、()S A t 为互不相关(正态分布情况与独立等价)的正态随机变量,则22122()()()C S XXA t A t Z t σσ=+服从自由度为2的卡方分布,即11121/22/211221()22(2/2)z z Z z ef z e ---==Γ 221()()2X Z t Z t a σ=+,2122[()]()[()]XZ t a Z t h Z t σ-==,根据随机变量函数的概率密度关系,()Z t 的一维概率密度分布函数为22122()1()[()] ()X z a Z Z Xdh z f z f h z e z a dz σσ--==≥2222222211[()]{[()()]}[]22C S X X X E Z t E a A t A t a a σσσ=++=++=+当0a =时,221() (0)X zZ Xf z e z σσ-=≥,2[()]X E Z t σ=。
实验报告实验题目:窄带随机过程的模拟一、实验目的了解随机过程特征估计的基本概念和方法,学会运用MATLAB软件产生各种随机过程,对随机过程的特征进行估计,并通过实验了解不同估计方法所估计出来的结果之间的差异。
二、实验原理(1)高斯白噪声的产生提示:利用MATLAB函数randn产生(2)自相关函数的估计111()()ˆ()1ˆ()N m n x N m x n m n n x n m x n N R m R m x x N m --=--+=⎧+⎪⎪=⎨⎪=⎪-⎩∑∑对有偏估计对无偏估计提示:MATLAB 自带的函数为xcorr(),阐述xcorr 的用法(3)功率谱的估计利用周期图方法估计功率谱,21ˆ()()xG X N=ωω 其它谱估计方法:…….提示:MATLAB 自带的函数为periodogram(),阐述periodogram()的用法;阐述其它谱估计方法的用法。
(4)均值的估计111ˆ()N x n mx n N -==∑ 提示:MATLAB 自带的函数为mean()(5)方差的估计12211ˆ[()]N xn x n x N -==-∑σ提示:MATLAB 自带的函数为var()(6) AR(1)模型的理论自相关函数和理论功率谱对于AR(1)模型()(1)()X n aX n W n =-+,自相关函数为2||2()1m X a R m a =-σ ,其功率谱为22()(1)X j G aeωσω-=-。
三、实验内容1. 相关高斯随机序列的产生按如下模型产生一组随机序列()(1)()x n ax n w n =-+,其中()w n 为均值为1,方差为4的正态分布白噪声序列。
(1)产生并画出a=0.8和a=0.2的x(n)的波形; (2)估计x(n)的均值和方差;(3)估计x(n)的自相关函数,并画出相关函数的图形。
2. 两个具有不同频率的正弦信号的识别设信号为12()sin(2)2cos(2)()x n f n f n w n ππ=++,1,2,,n N = ,其中()w n 为零均值正态白噪声,方差为2σ。
随机信号分析目录CONTENTSCONTENTS窄带随机过程的定义窄带随机过程的莱斯表示窄带随机过程的莱斯表示证明小结⚫定义:一个实平稳随机过程X(t),若它的功率谱密度具有下述性质00() ()0 X c c X S S ωωωωωωω⎧−≤≤+⎪=⎨⎪⎩其它且带宽,满足则称此随机过程为窄带平稳随机过程,以下简称窄带随机过程。
2c ωω∆=0ωω∆<<窄带随机过程的功率谱密度图)(ωX S O ωω∆ω∆000 c c ωωωωω−+000 - -c c ωωωωω−−+窄带随机过程的一个样本函数缓慢变化的包络[B(t )]频率近似为ω0有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)窄带随机过程的莱斯表示⚫窄带随机过程的莱斯表示式:其中:00ˆ()()cos ()sin a t X t t X t t ωω=+00ˆ()()sin ()cos b t X t t X t t ωω=−+将X(t)表示成解析过程:0000ˆˆ()cos ()sin ()sin ()cos X t t X t t j X t t X t t ωωωω⎡⎤⎡⎤=++−+⎣⎦⎣⎦ˆ()()()X t X t jXt =+[]000ˆ()()()cos sin j t X t e X t jX t t j t ωωω−⎡⎤=+−⎣⎦0()()()j tX t e a t jb t ω−=+证明:()a t =()b t ==+ωX t a t jb t e j t()()()0][=−++ωωωωa t t b t t j a t t b t t ()sin ()cos ()sin ()cos 0000][][=−ωω()()sin ()cos 00X t a t t b t t =+ωωa t X t t X t t ()()cos ()sin ˆ00=−+ωωb t X t t X t t ()()sin ()cos ˆ00取实部:=X t ()=Xt ()ˆ窄带随机过程的莱斯表示有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)窄带随机过程的定义:一个是平稳随机过程X(t),若它的功率谱密度具有下述性质00() ()0 X c c X S S ωωωωωωω⎧−≤≤+⎪=⎨⎪⎩其它且带宽,满足则称其为窄带随机过程。
第六章窄带随机过程第⼋讲窄带随机过程8.1 希尔伯特变换和解析过程8.1.1 希尔伯特变换⼀.希尔伯特变换的定义设有实信号)(t x ,它的希尔伯特变换记作)(?t x或)]([t x H ,并定义为τττπd t x t x H t x ?∞∞--==)(1)]([)(?⽤'ττ+=t 代⼊上式,进⾏变量替换,可得到上式的等效形式为:'')'(1)(?τττπd t x t x ?∞∞-+-=也可得'')'(1)(?τττπd t x t x ?∞∞--=希尔伯特反变换为τττπd t xt x H t x ?∞∞----==)(?1)](?[)(1经变量替换后得τττπτττπd t xd t x∞-∞∞-+=--=)(?1)(?1)(⼆.希尔伯特变换的性质1. 希尔伯特变换相当于⼀个090的理想移相器。
从定义可以看出,希尔伯特变换是)(t x 和tπ1的卷积,即tt x t xπ1*)()(?=于是,可以将)(?t x看成是将)(t x 通过⼀个具有冲激响应为t t h π1)(=的线性滤波器的输出。
由冲激响应可得系统的传输函数为)sgn()(ωωj H -=式中,)sgn(ω为符号函数,其表达式为0101)sgn(<-≥=ωωω可得滤波器的传输函数为00)(<≥-=ωωωj j H即)(<≥-=ωπωπω?上式表明,希尔伯特变换相当于⼀个090的理想移相器。
由上述分析可得,)(?t x的傅⽴叶变换)(?ωX 为)()sgn()sgn()()(?ωωωωωX j j X X-=-?= 2. )(?t x的希尔伯特变换为)(t x -,即)()](?[t x t x H -=。
3. 若)(*)()(t x t v t y =,则)(t y 的希尔伯特变换为)(*)(?)(?*)()(?t x t v t x t v t y==4.)(t x 与)(?t x的能量及平均功率相等,即 dt t xTdt t x Tdt t xdt t x TTT TT T ?-∞→-∞→∞∞-∞∞-==)(?21lim )(21lim )(?)(2222此性质说明希尔伯特变换只改变信号的相位,不会改变信号的能量和功率。