(参考资料)数值分析笔记
- 格式:pdf
- 大小:1.07 MB
- 文档页数:6
20世纪最好的十个算法( Computing in Science & Engineering 评选)1.1946.Los Alamos的Von Neumann,Stan Vlam,Nick Metropolis编的Metropolis算法,即Monte Carlo方法2.1947兰德公司的Grorge Dantzig创造的线性规划的单纯性算法3.1950.美国国家标准局数值分析所的Magnus Hestenes,Edward Stiefel, Cornelius Lanczos的Krylovz空间迭代法4.1951 橡树岭国家实验室的Alston Householder矩阵计算的分解方法5.1951 John Backus在IBM领导的小组研制的Fortron最优编译程序6.1959-61 伦敦的Ferranti Ltd的J.G.F.Francis的称为QR的算法的计算机本征值的稳定的算法7.1962London的Elliot Brothers Ltd的Tony Hoare提出的快速(按大小)分类法8.1965 IBM的Cooley与Princeton及Bell的Turkey的FFT算法9.1977 Brighham Young大学的Helaman Ferguson和Rodney Forcede的整数关系侦察算法10.1987 Yale的Leslie Greengard和Vladinimir Rokhlin发明的快速多级算法数值代数上课内容:一、预备知识(基础)1)误差分析2)范数理论3)初等变换与矩阵分解二、线性方程组的求解1)直接法2)迭代法3)最小二乘问题与矩阵广义逆三、矩阵特征值问题1)普通特征值问题a)幂法和反幂法b)QR方法2)对称特征值问题各部分的主要知识要点:(主要看上课笔记)一、预备知识(基础)§1 误差分析基本要求:1)了解数值代数的研究对象与特点及主要研究内容2)了解误差的基本知识及误差来源、误差种类3)了解浮点运算和舍入误差分析4)了解算法的评价及算法的向后稳定§2范数理论基本要求:1)熟练掌握向量范数的定义,会判断给定的某个函数是否是向量范数(范数的三个条件正定性、齐次性和三角不等式)2)了解常用向量范数、范数等价定理3)熟练掌握矩阵范数的定义,会判断给定的某个函数是否是矩阵范数(范数的三个条件正定性、齐次性和三角不等式)4)熟练掌握几个特殊的矩阵范数-算子范数、相容范数、酉不变范数的定义5)掌握常用矩阵范数1-范数,2-范数, -范数,F-范数的定义,并清楚且会证明它们分别属于算子范数、相容范数、酉不变范数的那一种范数6)会证明常用的范数不等式7)了解矩阵的谱和谱半径的定义二、初等变换与矩阵分解§1初等变换(主要看上课笔记)基本要求:1)了解初等变换的一般形式和一般初等变换的性质2)熟练掌握两种特殊的初等变换-Gauss消元变换、Household变换a)熟练掌握Gauss消元变换的定义和性质,特别是消元性质,会利用Gauss消元变换对向量进行消元b) 熟练掌握Householder变换/初等Hermit阵的定义和性质,特别是变换性质和消元性质,会利用Householder变换对向量进行消元,会求Householder变换矩阵3)熟练掌握Givens旋转变换的定义和性质,特别是消元性质即消元特点,会灵活运用Givens 旋转变换对向量进行消元(消调某一个变量)4)了解交换阵的定义即性质§2 矩阵分解1、基于Gauss消元阵的分解基于Gauss消元阵的分解,包括无主元LU分解、列主元LU分解、对称正定阵的Cholesky 分解基本要求:1)熟练掌握无主元LU分解的具体过程,会写出相应的程序,给定一个矩阵,会计算它的LU 分解矩阵2) 了解LU 分解的不稳定性和LU 分解的唯一性及存在条件det()0(1,2,,).1n n k k n A R D A k n A L U A LU ⨯∈=≠== 若阶方阵的顺序主子式则可唯一地分解为一个单位下三角阵和非奇异的上三角阵的乘积。
数值分析复习资料一、重点公式第一章 非线性方程和方程组的数值解法 1)二分法的基本原理,误差:~12k b ax α+--<2)迭代法收敛阶:1lim0i pi ic εε+→∞=≠,若1p =则要求01c <<3)单点迭代收敛定理:定理一:若当[],x a b ∈时,[](),x a b ϕ∈且'()1x l ϕ≤<,[],x a b ∀∈,则迭代格式收敛于唯一的根;定理二:设()x ϕ满足:①[],x a b ∈时,[](),x a b ϕ∈, ②[]121212,,, ()(),01x x a b x x l x x l ϕϕ∀∈-≤-<<有 则对任意初值[]0,x a b ∈迭代收敛,且:110111i i iii x x x llx x x lαα+-≤---≤-- 定理三:设()x ϕ在α的邻域内具有连续的一阶导数,且'()1ϕα<,则迭代格式具有局部收敛性;定理四:假设()x ϕ在根α的邻域内充分可导,则迭代格式1()i i x x ϕ+=是P 阶收敛的 ()()()0,1,,1,()0j P j P ϕαϕα==-≠ (Taylor 展开证明)4)Newton 迭代法:1'()()i i i i f x x x f x +=-,平方收敛 5)Newton 迭代法收敛定理:设()f x 在有根区间[],a b 上有二阶导数,且满足: ①:()()0f a f b <; ②:[]'()0,,f x x a b ≠∈;③:[]'',,f x a b ∈不变号④:初值[]0,x a b ∈使得''()()0f x f x <;则Newton 迭代法收敛于根α。
6)多点迭代法:1111111()()()()()()()()()i i i i i i i i i i i i i i i f x f x f x x x x x f x f x f x f x f x f x x x -+-----=-=+----收敛阶:P =7)Newton 迭代法求重根(收敛仍为线性收敛),对Newton 法进行修改 ①:已知根的重数r ,1'()()i i i i f x x x rf x +=-(平方收敛) ②:未知根的重数:1''()(),()()()i i i i u x f x x x u x u x f x +=-=,α为()f x 的重根,则α为()u x 的单根。
数值分析期末复习资料数值分析期末复习题型:一、填空 二、判断 三、解答(计算) 四、证明第一章误差与有效数字一、有效数字1、定义:若近似值X*的误差限是某一位的半个单位,该位到x*的第一位非零数字共有n 位,就说x*有n 位有效数字。
2、两点理解:(1) 四舍五入的一定是有效数字(2) 绝对误差不会超过末位数字的半个单位eg. ・§丄% 3、 定理1 (P6):若x*具有n 位有效数字,则其相对误差虧疗茲T 4、考点:(1)计算有效数字位数:一个根据定义理解,一个根据定理1 (P7例题3) 二、避免误差危害原则 1、原则:(1) 避免大数吃小数(方法:从小到大相加;利用韦达定理:xl*x2= c / a ) 避免相近数相减(方法:有理化)eg. V777-77 =c ・2 X2sin7 或 减少运算次数(方法:秦九韶算法)eg.P20习题14 三. 数值运算的误差估计 1、公式:(1) 一元函数:I £*( f 3))1 Q |「(於)1・| £*(力|或其变形公式求相对误差(两边同时除以f (卅))eg. P19习题1、2、5(2) (3) ln(x + £)- In x = In 1;1 — cos X =(2)多元函数(P8) eg. P8例4, P19习题4第二章插值法一、插值条件1、定义:在区间[a, b]上,给定n+1个点,aWxoVx[V・・・VxWb的函数值yi=f(xi),求次数不超过n的多项式P(x),饋兀)=儿 i =0,1,2,…,力2、定理:满足插值条件、n+1个点、点互异、多项式次数Wn的P(x)存在且唯一二、拉格朗日插值及其余项1、n次插值基函数表达式(P26 (2.8))2、插值多项式表达式(P26 (2.9))3、插值余项(P26 (2.12)):用于误差估计4、插值基函数性质(P27 (2. 17及2. 18)) eg. P28例1三、差商(均差)及牛顿插值多项式1、差商性质(P30):(1)可表示为函数值的线性组合(2)差商的对称性:差商与节点的排列次序无关(3)均差与导数的关系(P31 (3.5))2、均差表计算及牛顿插值多项式例:已知X=1,4,9的平方根为1,2,3,利用牛顿基本差商公式求"的近似值。
第一章1.设x 为准确值,x*为x 的一个近似值.称e*=x*-x 为近似值的绝对误差,简称误差。
ε*=|e*|叫做近似值的误差限,e ∗x=x ∗−x x为相对误差,εr∗=ε∗|x ∗| 为相对误差限。
2.采用四舍五入原则时,值的误差不超过末位数字的半个单位(对π估计值取3.14时,误差|π-3.14|≤0.5 * 10-2). 3.ε(x 1∗±x 2∗)≤ ε(x 1∗)+ε(x 2∗) ε(x 1∗·x 2∗)≤|x 1∗|ε(x 2∗)+|x 2∗|ε(x 1∗) ε(x 1∗/x 2∗)≤|x 1∗|ε(x 2∗)+|x 2∗|ε(x 1∗)|x 2∗|24.相近数相减、大数吃小数等问题会加大误差。
T1. 已测得某场地长Ɩ的值为Ɩ*=110m ,宽d 的值为d*=80m ,已知 |Ɩ - Ɩ*| ≤ 0.2m ,|d – d*| ≤ 0.1m.试求面积s=Ɩd 的绝对误差限与相对误差限。
解:因为s= Ɩd, ðs ðƖ=d,ðsðd =Ɩ.故 ε(s∗)≈|(ðs ðl)∗|ε(l ∗)+|(ðs ðd)∗|ε(d ∗), (ðs ðl )∗=d ∗=80m (ðsðd)∗=l ∗=110m ε(l ∗)=0.2m ε(d ∗)=0.1m得绝对误差限 ε(s ∗)=27(m 2)相对误差限εr∗=ε(s ∗)|s ∗|=ε(s ∗)l ∗d ∗≈0.31%T3. 计算I n =e −1∫x n e xdx(n =0,1,…)1并估计误差。
解:由分部积分可得I n =e −1∫x n d (e x )=e −1(x n e x |01−∫e x d (x n )1)1=1−e −1n ∫x n−11e xdx =1−nI n−1 I 0=e−1∫e x10dx =1−e −1得到通式{I n =1−nI n−1 (n =1,2,…)I 0=1−e −1(1)为计算出I 0须先计算e -1,采用泰勒展开式,取k=7,使用四位小数计算。
数值分析笔记4.21
笔记只是上课的辅助部分,远远不如老师讲的精彩!只看笔记是很枯燥的,而听老师上课时很有趣的。
前半小时复习上次所学,(此处省略300字)
把zuotu1 改成如下
再新建一个文件myfun 作为子程序,以便被zuotu1调用。
双击打开写入
含义如下 1. 输入量为x 输出量为y
回到zuotu1 继续写
保存,运行
第二节插值
一、插值的定义(老师讲的时候没记下来,此处省略100字)
二、插值的方法
三、用matlab解决插值问题
下面详细介绍
二插值方法
一维插值
1.拉格朗日插值(略,老师说了解一下,我就没记定义)结论,用拉格朗日插值与原曲线有很大差异
黑色是原曲线其他颜色是 n取不同值拉格朗日插值的图形
2.分段线性插值(略定义)
3. 三次样条插值 (略定义)
(老师在黑板上 讲解了用三次样条曲线 插值的原理,我的高数学的太差,复述不明白,略) 三种插值的比较 (取自老师课件)
例题1
打开软件命名 chazhi.m
程序如下:
保存运行
结果如下:
例题2
打开老师的文件夹,找到双击打开运行
老师用三种插值方法做了图(程序老师解释了,可惜我没完全记下来)
二维插值的定义
这里 z0 表示一个矩阵以x0为列数以y0 为行数例题3
打开老师程序里 wendu.m
运行后
老师把步长改为 0.01
运行结果如下
例题4
打开 HD1
11
运行
(当然程序内容更多不懂了,老师说以后多练习就好了。
)。
岩土工程数值分析读书笔记摘要:阅读笔记分为两部分:理论学习和plaxis模拟相关问题。
理论部分0岩土工程数值分析简介岩土工程问题解析分析是以弹塑性力学理论和结构力学作为理论依据,适用于解决连续介质、各向同性材料、未知量少、边界条件简单的工程问题,存在很大的局限性。
岩土工程问题数值分析是借助于计算机的计算能力,适用于解决材料复杂、边界条件复杂、任意荷载、任意几何形状,适用范围广。
岩土工程数值分析发展过程:20世纪40年代,使用差分法解决了土工中的渗流及固结问题,如土坝渗流及浸润线的求法、土坝及地基的固结等。
20世纪60年代,使用有限元法成解决了土石坝的静力问题的求解。
20世纪70年代,使用有限元法解决了土石坝及高楼(包括地基)的抗震分析。
20世纪80年代,边界元法异军突起,解决了半无限域的边界问题;地基的静力及动力问题都使用边界元法得到了有效地解决。
岩土工程数值分析的方法有两类,一类方法是将土视为连续介质,随后又将其离散化,如有限单元法、有限差分法、边界单元法、有限元线法、无单元法以及各种方法的耦合。
另一类计算方法是考虑岩土材料本身的不连续性,如裂缝及不同材料间界面的界面模型和界面单元的使用,离散元法,不连续变形分析,流形元法,颗粒流等数值计算方法。
1数值分析过程中存在的问题及解决措施问题:(1)对岩土工程数值分析方法缺乏系统的知识和深入的理解,出现问题时不知道在什么情况下属于理论问题或数学模型问题;在什么情况下是属于计算方法问题或本构模型问题;在什么情况下是参数的确定问题或计算本身的问题等。
(2)各种本构模型固有的局限性。
具有多相性土的物理力学性质太复杂,难以准确地用数学模型和本构模型描述。
例如邓肯一张模型不能反映剪胀性,不能反映压缩与剪切的交叉影响;(3)现有的试验手段和设备不能提供适当、合理和精确的参数。
靠少数样本点所获得的参数难以准确地描述整个空间场地的物理力学性能;土的参数因土样扰动难以高质量的获取,其精度很差。
数值分析笔记4.30笔记只是上课的辅助部分,远远不如老师讲的精彩!本次课程比较难,可能复述的不太明白。
新课导入由于数据测量存在误差,所以测量的点不一定完全正确。
插值的方法,可以通过这些点,但由于这些点存在误差,所以在生产实际中插值未必是最好的办法,从而引入拟合的概念。
找一条合适的曲线,让它到每个测量点的距离的平方和最小。
这条曲线就是我们要的拟合曲线。
曲线的类型往往通过我们的经验来取得。
常见的有以下几种类型一、 线性拟合若给定数组(i i y x ,) 其中 i =1,2,…… n 把各个点放到坐标系里,得到如果得到以下点,我们根据点的分布,推断可能有一条直线,可以最接近每个点,设直线为 y=a 1 +a 2 x图形中 a 1 为截距,a2 为斜率,若a1 a2 可知,则直线可求。
那么如何得到一个合适的曲线呢。
对应相同的x 测量点的值为1y ,曲线上的点为 121x a a + 这两距离就是第一个误差。
即 误差=1121y x a a -+ 对于2x 点,道理一样。
如果简单把这些误差累加,由于方向不同,可能使部分误差抵消。
比如有4个点误差分别为1,5,-3,-3.如果简单做和,为0.数值上显示没有误差,与实际不符。
因此对每一个误差做平方,使其符号一致再求和。
可以真实显示出曲线和各个点的位置关系是否最好。
设关于21,a a 的方程为),(21a a S 则有:∑=-+niiiyxaa1221])[(=),(21aaS误差平方和最小的直线,就是与原数据拟合最好的。
利用matlab软件进行线性拟合有两种函数“\”“polyfit()”老师证明了一下函数的合理性,我的高数、线数基本忘光,复述有困难,此处省略500字。
介绍matlab 使用中函数的格式例题一:具体步骤:打开MATLAB软件:新建文件夹disanke 双击右键新建文件quxnh.m 双击打开删除前三行写入程序如下分别用“\”“polyfit”编程运行后结果二、 非线型拟合 方法1. 线性化 例题:y=x ae b 该曲线 为非线型曲线, 可以两端同时去对数y l n =a ln +bx取 z=lny A=lna则 z= a+bx z 与x 间 为线型 2. 直接法用matlab 解决非线性拟合的方法:这两个函数所需信息量比较多,老师上课时候逐条介绍了,我复述不清楚,此处省略300字。
数值分析知识点总结说明:本文只提供部分较好的例题,更多例题参考老师布置的作业题和课件相关例题。
一、第1章 数值分析与科学计算引论1. 什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系?相对误差限:**r r e ε=的一个上界。
有效数字:如果近似值*x 的误差限是某一位的半个单位,该位到*x 的第一位非零数字共有n 位,就说x *共有n 位有效数字。
即x *=±10m ×(a 1+a 2×10-1+…+a n ×10-(n-1)),其中a 1≠0,并且*11102m n x x -+-≤⨯。
其中m 位该数字在科学计数法时的次方数。
例如9.80的m 值为0,n 值为3,绝对误差限*211102ε-=⨯。
2. 一个比较好用的公式:f(x)的误差限:()***()'()()f x f x x εε≈ 例题:二、第2章插值法例题:5. 给出插值多项式的余项表达式,如何用其估计截断误差?6. 三次样条插值与三次分段埃尔米特插值有何区别?哪一个更优越?7. 确定n+1个节点的三次样条插值函数需要多少个参数?为确定这些参数,需加上什么条件?8. 三弯矩法:为了得到三次样条表达式,我们需要求一些参数:对于第一种边界条件,可导出两个方程:,那么写成矩阵形式:公式 1对于第二种边界条件,直接得端点方程:,则在这个条件下也可以写成如上公式1的形式。
对于第三种边界条件,可得:也可以写成如下矩阵形式:公式 2求解以上的矩阵可以使用追赶法求解。
(追赶法详见第五章)例题:数值分析第5版清华大学出版社第44页例7三、第3章函数逼近与快速傅里叶变换的正交多项式?什么是[-1,1]上的勒让德多项式?它有3.什么是[a,b]上带权()x什么重要性质?4.什么是切比雪夫多项式?它有什么重要性质?5.用切比雪夫多项式零点做插值点得到的插值多项式与拉格朗日插值有何不同?6.什么是最小二乘拟合的法方程?用多项式做拟合曲线时,当次数n较大时,为什么不直接求解法方程?例题请参考第3章书上的作业题和课件上的例题。
数值分析知识点总结一、绪论数值分析是一门研究如何使用数值方法解决数学问题的学科。
它广泛应用于科学、工程、医学等领域。
在数值分析中,我们通常将实际问题转化为数学模型,然后使用计算机进行计算。
数值分析的主要内容包括:误差分析、插值与拟合、线性方程组求解、微分方程求解等。
二、误差分析误差分析是数值分析中的一个重要概念。
它包括绝对误差、相对误差和误差限等概念。
在计算过程中,误差会传递和累积,因此需要进行误差分析以评估计算结果的精度。
常用的误差分析方法有:泰勒级数展开、中点公式等。
三、插值与拟合插值与拟合是数值分析中的两个重要概念。
插值方法用于通过一组已知数据点生成一个函数,该函数能够近似地描述这些数据点之间的关系。
拟合方法则是通过一组已知数据点生成一个最佳拟合线或曲面,使得这个线或曲面与已知数据点之间的误差尽可能小。
常用的插值与拟合方法有:线性插值、多项式插值、样条插值、最小二乘法等。
四、线性方程组求解线性方程组是数值分析中经常遇到的一类方程组。
对于线性方程组,我们通常使用迭代法或直接法进行求解。
迭代法包括:雅可比迭代、高斯-赛德尔迭代、松弛法等。
直接法包括:高斯消元法、逆矩阵法等。
在实际应用中,我们通常会选择适合问题的计算方法,并根据需要进行优化。
五、微分方程求解微分方程是描述变量之间的函数关系的一类方程。
在数值分析中,我们通常使用数值方法对方程进行离散化处理,然后使用计算机进行求解。
常用的微分方程求解方法有:欧拉方法、龙格-库塔方法等。
对于复杂的微分方程,我们还可以使用谱方法、有限元方法等进行求解。
六、总结数值分析是一门应用广泛的学科,它涉及到许多数学知识和计算机技术。
在实际问题中,我们需要根据问题的特点选择合适的数值方法进行解决。
在进行计算时,需要注意误差分析、算法的稳定性和收敛性等问题。
随着计算机技术的发展,数值分析的应用领域也在不断扩大,例如、大数据分析等领域。
因此,数值分析的学习和应用具有重要意义。