(完整版)本科毕业设计-m序列发生器的仿真实现
- 格式:doc
- 大小:373.50 KB
- 文档页数:64
河南师范大学设计性实验报告学期:2014-2015学年第 1 学期m序列发生器设计实现_实验实验小组成员:班级:2013级网络工程班学院:计算机与信息工程学院填表日期: 2014年 11月 29 日实验项目简介:1 问题描述通常产生伪随机序列的数字电路为一反馈移位寄存器。
根据其构成结构,它又分为线性反馈移位寄存器和非线性反馈移位寄存器两类,由线性反馈移位寄存器产生的周期最长的二进制数字序列称为最大长度线性反馈移位寄存器序列,简称m序列。
2.实验原理:此实验是用4位移位寄存器实现可控乘/除法2到8步长为2n电路通过分析不难看出本次实验的乘除法运算中一个只出现三个数字2、4、8写成二进制为0010、0100、1000可以发现每一次乘法都只是将1向左移一个位每一次除法则是向右移一位,那么就可以使用74194双向移位寄存器。
首先要了解4位移位寄存器。
工作原理:74194是一个4位双向移位寄存器。
它具有左移、右移、并行输入数据、保持以及清除等五种功能:当~R=1MA MB=00MA MB=01MA MB=10MA MB=113.一个完整的系统应具有以下功能:1)控制信号的移动方向,通过改变S1S0的编码状态,使移位器左移、右移、保持等。
2)可以得到m序列的周期,通过观察示波器中CLK与Sl或者Sr的波形,可以得出m序列的周期。
4.实验目的:1、掌握M序列信号产生的基本方法2、利用EWB产生M序列信号,设计电路做成M序列信号发5.实验条件:学院提供公共机房,1台/学生微型计算机。
实验总结:1.在实验的过程中,小组成员积极准备。
通过实验加深了对74194芯片性能的了解,提高了各个成员的动手能力。
2.但是由于知识掌握不够全面准确的原因,实验过程中多次出现问题,小组成员积极思考,最终解决了问题。
3.在观察m序列周期的过程中,出现了周期同预期不符合的情况,最终发现是输入脉冲时出现了问题。
南昌大学信息工程学院M序列信号发生器课程设计班级:姓名:学号:基于MULTISIM的序列信号发生器实验目的实验要求实验元件实验原理MLTISIM知识简介MLTISIM中仿真仪器实验设计仿真分析仿真电路示波器显示输出波形实验结果实验结论实验感想一、实验目的:1、掌握M序列信号产生的基本方法2、利用MULTISIM产生M序列信号,设计电路做成M序列信号发生器3、掌握M序列 0 状态消除的基本手段二、实验要求:在MULTISIM中采用移存器自启动电路设计仿真M=31序列信号发生器电路,采用虚拟逻辑分析仪观察波形输出。
要求自制时钟脉冲信号,并能清楚地观察到M序列稳定的波形。
采用EDA进行图形仿真,硬件电路来实现。
三、实验元件函数发生器,双端输入示波器,74LS30,74LS164,74LS005V直流电源四、实验原理1、MULTISIM 软件的简介在众多的 EDA 设计和仿真软件中,MULTISIM 软件以其强大的仿真设计应用功能,在各高校电信类专业电子电路的仿真和设计中得到了较广泛的应用。
软件及其相关库包的应用对提高学生的仿真设计能力,MULTISIM更新设计理念有较大的好处。
MULTISIM(电子工作平台)软件,最突出的特点是用户界面好,各类器件和集成芯片丰富,尤其是其直观的虚拟仪表是 MULTISIM 软件的一大特色。
它采用直观的图形界面创建电路:在计算机屏幕上模仿真实实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取。
MULTISIM 软件所包含的虚拟仪表有:示波器,万用表,函数发生器,波特图图示仪,失真度分析仪,频谱分析仪,逻辑分析仪,网络分析仪等。
这些仪器的使用使仿真分析的操作更符合平时实验的习惯。
电子设计自动化(EDA)技术,使得电子线路的设计人员能在计算机上完成电路的功能设计、逻辑设计、性能分析、时序测试直至印刷电路板的自动设计。
是在计算机辅助设计EDA(CAD)技术的基础上发展起来的计算机设计软件系统。
基于FPGA的m序列发生器摘要m序列广泛应用于密码学、通信、雷达、导航等多个领域,本文提出了一种基于FPGA的伪随机序列产生方法,应用移位寄存器理论从序列的本原多项式出发,获得产生该序列的移位寄存器反馈逻辑式,结合FPGA芯片结构特点,在序列算法实现中采用元件例化语句。
算法运用VHDL语言编程,以A1tera的QuartusⅡ软件为开发平台,给出了序列的仿真波形。
序列的统计特性分析表明:该方法产生的序列符合m序列的伪随机特性,验证了算法的正确性。
关键词:m序列;移位寄存器理论;VHDL语言目录摘要 (I)1 m序列 (1)1.1 理论基础 (1)1.1.1 线性反馈移位寄存器 (2)2 m序列的性质 (5)2.1 均衡性 (5)2.2游程特性 (5)2.4 自相关特性 (5)2.5 伪噪声特性 (7)3 m序列的应用 (9)3.1 扩展频谱通信 (9)3.2 通信加密 (10)4 开发工具简介 (11)4.1 Quartus II简介 (11)4.2 数字系统开发流程 (12)4.3 FPGA简介 (12)5 m序列生成器仿真分析 (16)5.1 反馈系数表存储器设计 (16)5.2 移位存储器设计 (17)5.3 仿真分析 (18)参考文献 (20)附录 (22)1 m序列m序列是伪随机序列的一种 ,结构简单 ,实现方便。
在现代工程实践中 , m 序列在通讯、导航、雷达、通信系统性能的测量等领域中有着广泛的应用。
例如 , 在连续波雷达中可用作测距信号 , 在遥控系统中可用作遥控信号 , 在多址通信中可用作地址信号 , 在数字通信中可用作群同步信号 ,还可用作噪声源及在保密通信中起加密作用等。
伪噪声发生器在测距、通信等领域的应用日益受到人们重视。
目前,m序列产生实现方法主要有3种:(1)门电路实现该方法设计简单,但随移位寄存器级数的增长,电路装调困难,且占用的印制板面积较大。
(2)DSP编程实现该方法专业性过强,不适合一般用户。
m序列Simulink仿真Verilog实现1. 4阶m序列生成器Simulink模型如下:其中,可以在Unit Delay属性中设置初始值为1000,由于Unit Delay输出为double,所以要将其转为Boolean以便进行模二加运算,使用XOR实现。
下面分别是最后一级和所有级的输出波形,可以看出,与上面的是一致的。
Verilog实现`timescale 1ns / 1ps////////////////////////////////////////////////////////////////////////////////// // Company:// Engineer://// Create Date: 11:02:17 05/01/2012// Design Name:// Module Name: PNcode// Project Name:////////////////////////////////////////////////////////////////////////////////// module PNcode(clk,rst,PNstate,PNout);input clk;input rst;output PNstate;output PNout;// PN code n = 4, f(x) = 1 + x + x^4parameter order = 4;reg PNout = 0;reg [order-1 : 0] PNstate = 0;always @ (posedge clk)if(rst == 1)beginPNout <= 0;PNstate <= 4'b1000; // PN seed = b1000endelsebeginPNout <= PNstate[0];PNstate <= {PNstate[3]+PNstate[0], PNstate[3:1]};endendmodule测试文件:`timescale 1ns / 1ps//////////////////////////////////////////////////////////////////////////////// // Company:// Engineer://// Create Date: 14:37:43 05/01/2012// Design Name: PNcode// Module Name: E:/me/CAST/Project/FPGAcomm/PNcode/PNcode_tb.v// Project Name: PNcode////////////////////////////////////////////////////////////////////////////////// module PNcode_tb;// Inputsreg clk;reg rst;// Outputswire [3:0] PNstate;wire PNout;// Instantiate the Unit Under Test (UUT)PNcode uut (.clk(clk),.rst(rst),.PNstate(PNstate),.PNout(PNout));initial begin// Initialize Inputsclk = 0;rst = 1;// Wait 100 ns for global reset to finish#100;rst = 0;// Add stimulus hereendalways beginforever #10 clk = !clk;endendmoduleclk使用一个单独的always模块输出序列:0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 2. 8阶m序列生成器,初始全为11。
m序列产生实验一、实验目的1、m序列产生的基本方法;2、m序列0状态消除的基本手段;二、实验仪器1、JH5001型通信原理实验箱一台;2、MaxplusII开发环境一台;3、JTAG下载电缆一根;4、CPLD下载板一块;5、微机一台;6、示波器一台;三、实验原理m序列产生电路在通信电路设计中十分重要,它广泛使用在扩频通信、信号产生、仪器仪表等等电路中。
m序列有时也称伪噪声(PN)或伪随机序列,在一段周期内其自相关性类似于随机二进制序列。
尽管伪噪声序列是确定的,但其具有很多类似随机二进制序列的性质,例如0和1的数目大致相同,将序列平移后和原序列的相关性很小。
PN序列通常由序列逻辑电路产生,一般是由一系列的两状态存储器和反馈逻辑电路构成。
二进制序列在时钟脉冲的作用下在移位寄存器中移动,不同状态的输出逻辑组合起来并反馈回第一级寄存器作为输入。
当反馈由独立的“异或”门组成(通常是这种情况),此时移位寄存器称为线性PN序列发生器。
如果线性移位寄存器在某些时刻到达零状态,它会永远保持零状态不变,因此输出相应地变为全零序列。
因为n阶反馈移位寄存器只有2n-1个非零状态,所以由n阶线性寄存器生成的PN序列不会超过2n-1个。
周期为2n-1的线性反馈寄存器产生的序列称为最大长度(ML)序列——m序列。
m 序列发生器的一般组成m 序列发生器一般组成如上图所示,它用n 级移位寄存器作为主支路,用若干级模2加法器作为各级移位寄存器的抽头形成线性反馈支路。
各抽头的系数hi 称为反馈系数,它必须按照某一个n 次本原多项式:∑==ni i i x h x h 0)(中的二进制系数来取值。
在伪序列发生模块中,可以根据本原多项式的系数,…..h 8、h 7、h 6、h 5、h 4、h 3、h 2、h 1、h 0产生m 序列,这些系数可表示8进制数(1代表相连抽头进入反馈回路,0代表该抽头不进入反馈回路),如:13、23、103、203四、 课题设计要求在输入时钟256KHz 的时钟作用下,可在外部跳线器的控制下改变产生不同的m 序列,在程序中定义的几个变量为:输入: Main_CLK :输入 256KHz 主时钟 M_Sel[1..0]:选择输出不同的m 序列当 Mode[]=0:本原多项式为13(8进制表示); 当 Mode[]=1:本原多项式为23(8进制表示); 当 Mode[]=2:本原多项式为103(8进制表示); 当 Mode[]=3:本原多项式为203(8进制表示);输出: M_Out :m 序列输出 说明:1、 M_Sel[1..0]与复接模块的m_sel0、m_sel1相连; M_Out 在测试点TPB01输出;五、 实验步骤1、将JH5001二次开发光盘内的基本程序m.tdf 及其它相关程序(在光盘的“2th\student_m ”子目录下)拷入机器内。
西 安 邮 电 大 学实验名称:基于Matlab 直接序列扩频系统性能仿真一、 实验目的通过仿真,进一步掌握m 序列产生方法及其性能,重点掌握直接序列扩频通信系统原理及性能。
二、 实验环境Win10 Matlab2015b三、 实验内容● 产生n=7时203对应的m 序列,并给出其NRZ 波形的自相关函数;● 选用相位差16个码片的两条序列兼做地址和扩频码,构造码分系统,仿真其通信原理;●仿真AWGN 和单频干扰下系统的BER 性能。
四、 实验原理扩频通信的可行性是从香农公式引申而来2log (1+S/N)C W其中,C 为系统信道容量(bit/s );W 为系统信道带宽;N 为噪声功率S 为信号功率。
由上式可以看出,可以从两种途径提高信道容量C ,即加大带宽W 或提高信噪比S/N 。
也就是说当信道容量C 一定时,信道带宽W 和信噪比S/N 是可以互换的,增加带宽可以降低对信噪比的要求,可以使有用信号的功率接近甚至湮没在噪声功率之下。
扩频通信就是通过增加带宽来换取较低的信噪比,这就是扩频通信的基本思想和理论依据。
当信噪比无法提高时,可以加大带宽,达到提高信道容量的目的。
直接序列扩频的原理是,在发射端把有用信号与伪随机序列相乘(或者模二加),使信号的频谱展宽到一个很宽的范围,然后用扩展后的序列去调制载波。
在接收端,把接收到的信号用相同的伪随机序列相乘,有用信号与伪随机码相关,相乘后恢复为扩频前的信号。
输入的数据信息为d(t)(设基带带宽为B 1),由伪随机编码(如m 序列)调制成基带带宽为B 2的宽带信号,由于扩频信号带宽大于数据信号带宽,所以信号扩展的带宽由伪随机码控制,而与数据信号无关。
经扩频调制的信号再经射频调制后即可发送。
直扩系统的原理框图接收端收到发送来的信号,经混频得到中频信号后,首先通过同步电路捕捉并跟踪发端伪码的准确相位,由此产生与发端伪码相位完全一致的伪随机码作为扩频解扩的本地扩频码,再与中频信号进行相关解扩,恢复出扩频前的窄带信号,而在解扩处理中,干扰和噪声与伪随机码不相关故被扩展,通过滤波使之受到抑制,这样就可在较高的解扩输出信噪比条件下进行信息解调解码,最终获得信息数据。
实验九 m 序列产生及其特性实验一、实验目的通过本实验掌握m 序列的特性、产生方法及应用。
二、实验内容1、观察m 序列,识别其特征。
2、观察m 序列的自相关特性。
三、基本原理m 序列是有n 级线性移位寄存器产生的周期为21n -的码序列,是最长线性移位寄存器序列的简称。
码分多址系统主要采用两种长度的m 序列:一种是周期为1521-的m 序列,又称短PN 序列;另一种是周期为4221-的m 序列,又称为长PN 码序列。
m 序列主要有两个功能:①扩展调制信号的带宽到更大的传输带宽,即所谓的扩展频谱;②区分通过多址接入方式使用同一传输频带的不同用户的信号。
1、产生原理图9-1示出的是由n 级移位寄存器构成的码序列发生器。
寄存器的状态决定于时钟控制下输入的信息(“0”或“1”),例如第I 级移位寄存器状态决定于前一时钟脉冲后的第i -1级移位寄存器的状态。
图中C 0,C 1,…,C n 均为反馈线,其中C 0=C n =1,表示反馈连接。
因为m 序列是由循环序列发生器产生的,因此C 0和C n 肯定为1,即参与反馈。
而反馈系数C 1,C 2,…,C n-1若为1,参与反馈;若为0,则表示断开反馈线,即开路,无反馈连线。
图9-1 n 级循环序列发生器的模型一个线性反馈移动寄存器能否产生m 序列,决定于它的反馈系数(0,1,2,,)i c i n =,下表中列出了部分m 序列的反馈系数i c ,按照下表中的系数来构造移位寄存器,就能产生相应的m 序列。
表9-1 部分m 序列的反馈系数表根据表9-1中的八进制的反馈系数,可以确定m 序列发生器的结构。
以7级m 序列反馈系数8(211)i C =为例,首先将八进制的系数转化为二进制的系数即2(010001001)i C =,由此我们可以得到各级反馈系数分别为:01C =、10C =、30C =、41C =、50C =、60C =、71C =,由此就很容易地构造出相应的m 序列发生器。
基于m序列的扩频通信系统的仿真设计摘要对于移动通信系统,总要受到功率和带宽的限制,而且CDMA扩频通信系统又是一个干扰受限系统,在确保通信质量的前提下要求支持高速率、大容量,这些技术上相互制约甚至相互矛盾的要求,导致采用了极其复杂的调制方式和脉冲成形技术,以及差错控制和高级信号处理技术。
目前,计算机仿真的基本内容包括系统、模型、算法、计算机程序设计与仿真结果显示、分析与验证等环节。
本篇论文拟定研究的目的是利用MATLAB软件对现代通信系统的关键环节进行计算机仿真,重点是移动通信系统中常用的CDMA扩频通信中伪随机码部分的仿真。
伪随机码设计是扩频通信的关键技术,随着计算机发展迅速,利用计算机实现伪码的生成和性能的评估是扩频通信系统的重要方式。
计算机辅助设计与分析方法已广为利用,特别是功能强大的通信系统软件包的开发,加速了仿真方法在通信领域的应用。
m序列是一种典型的伪随机序列,它在扩频通信、流密码、信道编码等领域有着十分广泛的应用。
本文介绍了m序列构造方法及基本性能,并利用Matlab中的Simulink 仿真系统及M语言编程实现它们的产生和分析。
仿真结果验证了该方法的正确性和可行性。
关键词:扩频通信;m序列;Matlab仿真Design Of Spreading Spectrum Communication Systems SimulationBased On m SequenceAbstractNormaly mobile telecommunication systems always be restrict by power and bandwidth,and CDMA system is a interference-limited system.As keep the communications quality the same time high speed data transmition service and large system capacity are needed.These request even maybe restrict in technology,so these request need more complex radio technology and error control technology,also has high level signal processing technology.As the moment, the basic elements include computer simulation systems, models, algorithms, computer programming and simulation results show that analysis and verification aspects. The purpose of this paper is to use the development of MATLAB software, the key to modern communications systems by computer simulation, focusing on commonly used in mobile communication systems in CDMA spread spectrum PN code part of the simulation.Pseudo-random code design is the key to spread spectrum communication technology, along with the rapid development of computers, using computers to achieve the pseudo-code generation and performance assessment is an important way to spread-spectrum communication puter-aided design and analysis method has been widely used, in particular, which is a powerful communication system package of development, accelerated simulation method in communications applications.m sequence is a typical pseudo-random sequence,it has been widely used in spread-spectrum communications,stream cipher,channel coding,and other fields.the paper introduces m sequence construction method and the basic performance.m sequences have been produced and analysed by Simulink System and M Programming Language of Matlab.The simulation results show correctness and feasibility of the method.Key words: Spread Spectrum Communication;m Sequence;Matlab Design目录第1章绪论 01.1扩频通信的发展历史 01.2扩频通信研究阶段 01.3扩频通信系统的研究 (1)1.3.1扩频通信系统的概述 (1)1.3.2研究扩频通信目的和意义 (2)1.3.3研究扩频通信的思路 (2)第2章扩频通信的基本原理 (3)2.1扩频通信的定义 (3)2.2扩频通信的理论基础 (4)2.3扩频通信系统 (9)2.3.1扩展频谱系统分类 (9)2.3.2扩频通信系统的主要特点 (13)第3章伪随机编码理论 (15)3.1伪随机编码的基本概念 (15)3.2扩频系统使用的移位寄存器序列 (16)3.3 m序列 (17)3.3.1 m序列的定义 (17)3.3.2 m序列的性质 (18)3.3.3 m序列的构造 (23)第4章m序列仿真设计 (25)4.1通信系统仿真的必要性 (25)4.2 MATLAB与Siumlink (25)4.2.1 MATLAB简介 (25)4.2.2 Simulink简介 (26)4.3仿真模型建立与实现 (27)4.3.1仿真流程 (27)4.3.2编程实现m序列 (28)4.3.3 Simulink实现m序列 (31)4.4仿真注意事项 (37)第5章总结 (39)致谢 (40)参考文献 (41)附录 (42)附录1 Euler函数的计算 (42)附录2 Simulink建模和仿真基本模块 (42)在校学习期间获奖情况....................................... 错误!未定义书签。
通信原理实验:m 序列的仿真设计一.实验目的了解m 序列的概念、产生原理、方法、性质和运用,了解m 序列的框图、仿真波形,学会对m 序列的仿真设计. 二.实验原理✓ m 序列的概念——由线性反馈移位寄存器产生的周期最长的序列。
它是由带线性反馈的移存器产生的周期最长的一种序列,是多级移位寄存器或其他延迟元件通过线性反馈产生的最长的码序列。
✓ m 序列的产生一般来说,在一个n 级的二进制移位寄存器发生器中,所能产生的最大长度的码序周期为12-n。
以m=4为例,若其初始状态为),0,0,0,1(),,,(0123=a a a a ,则在移位一次时,由3a 和0a 模2相加产生新的输入,1014=⊕=a 新的状态变为),0,0,1,1(),,,(0123=a a a a 这样移位15次后又回到初始状态,但若初始状态为(0,0,0,0),则移位后得到地全是0状态,这说意味着在这种反馈中要避免出现全0的状态.在4级移存器共有1624=种不同状态,除全0状态以外还有15种可用.即由任何4级反馈移存器产生的序列的周期最长为15,满足12-n(当n 为4时).图1:m 序列的产生举例:4级m 序列产生器及其状态图2中,ai (i = 0 – n ) - 移存器状态。
ai = 0或1。
ci -反馈状态。
ci = 0表示反馈线断开, ci = 1表示反馈线连通。
如图2中示出的一个一般的纯属反馈移存器的组成,反馈线的连接状态用1c ,=i i c 表示表示此线接通(参加反馈),0=i c 表示断开,反馈线的接线状态不同,就可能以改变此移存器序列的周期.✓ m 序列的性质➢ 均衡性: 在m 序列一个周期N=2n -1内“1”和“0”的码元数大致相等,“0”出现2n-1-1次,“1”出现2n-1次 (即“1”比“0”只多一个) 。
➢ 游程分布:游程是指序列中取值相同的一段元素。
并把这段元素的个数称为游程长度。
例如,在上面的一个周期中,共有8个游程,其中长度为4的游程有1个,即“1111”;长度为3的游程有1个,即“000”;长度为2的游程有两个,即“11”和“00”;长度为1的游程有4个,即两个“1”和两个“0”。
M序列的生成原理与仿真1.1 m序列的生成r 级非退化的移位寄存器的组成如图1 所示,移位时钟源的频率为Rc。
r 级线性移位寄存器的反馈逻辑可用二元域GF(2)上的r 次多项式表示(1)图(1)r 级线性移位寄存器式(1)称为线性移位寄存器的特征多项式,其给出的表示反馈网络的而逻辑关系式是现行的。
因此成为线性移位寄存器。
对于动态线性移位寄存器,其反馈逻辑也可以用线性移位寄存器的递归关系式来表示(2)以式(1)为特征多项式的r 级线性反馈移位寄存器所产生的序列,其周期N≤2r−1。
假设以GF(2)域上r次多项式(1)为特征多项式的r级线性移位寄存器所产生的非零序列{ a i }的周期为N =2r−1,称序列为{ a i }是最大周期的r 级线性移位寄存器序列,简称m序列。
构造一个产生m 序列的线性移位寄存器,首先要确定本原多项式。
本原多项式确定后,根据本原多项式可构造出m 序列移位寄存器的结构逻辑图。
仿真时以n=6的6级移位寄存器为例,产生本源多项式的方法:n=6; %以6级寄存器为例,connections=gfprimfd(n,'all');f1=connections(4,:); %取一组本原多项式序列根据本院多项式确定的反馈系数做出反馈移位寄存器如图(2)所示图(2)m 序列发生器1.2 m 序列自相关函数1.2.1周期自相关函数编写周期自相关函数和非周期自相关函数,实验结果如下图(2)和(3)所示:图(2)m 序列周期自相关函数结论:周期自相关函数R (k )={63 k =0−1 otℎersm 序列周期自相关函数1.2.2非周期自相关函数图(3) m 序列非周期自相关函数1.3 m 序列的互相关函数选用的两个m 序列为一对优选对,以211作为基准本原多项式(反馈系数10001001),217作为配对本原多项式(反馈系数10001111),生成两个m 序列,求出互相关函数如图(4)和(5):、图(4)m 序列互相关函数结论:互相关函数的取值{-1,-17,15}m 序列非周期自相关函数m 序列周期互相关函数m序列非周期互相关函数图(5)m序列非周期互相关函数1.4 附:matlab代码clear;clc;%%------生成m序列-----%%n=6; %以6级寄存器为例,connections=gfprimfd(n,'all');f1=connections(4,:); %取一组本原多项式序列registers1=[1 0 0 0 0 0 ];%给定寄存器的初始状态L=2^n-1; %周期长度sum1=0;for k=1:Lseq(k)=registers1(n); %m序列for j=1:n %进行模2加sum1=sum1+f1(j+1)*registers1(j); %各级寄存器送参与模2加的值sum1=mod(sum1,2);endfor t=n:-1:2 %寄存器移位registers1(t)=registers1(t-1);endregisters1(1)=sum1;sum1=0;end% %%----------------------自相关函数-------------------------%%% %-------非周期自相关函数--------%%a=1-2*seq;b=a;for i=1:LR(i)=sum(a.*b)b=[0 b(1:62)]endplot(R)title('m序列非周期自相关函数');% %-------周期自相关函数------%%% a=1-2*seq;% b=a;% for i=1:L% R(i)=sum(a.*b)% b=[b(63) b(1:62)]% end% plot(R);% title('m序列周期自相关函数');%%-------利用公式编写自相关函数验证---------------%% % a=seq1;% b=[a(1,63),a(1,1:62)];% L=length(b);% n=400;% x=1:n;% for k=1:n% c=xor(a,b);% D=sum(c);% A=L-D;% R(k)=(A-D)/(A+D);% b=[b(L),b(1:L-1)];% end% plot(x,R);% title('gold序列的自相关函数');% xlabel('τ');% ylabel('R(τ)');% grid;。
第1章绪论1.1 课题背景在信息化社会,通信系统担负着信息传输、交换和处理的重要任务。
通信技术的发展代表了一个国家科学技术的发展现状,也成为国家经济发展的一个重要推动力。
扩展频谱通信是通信的一个重要分支和发展方向,它是扩展频谱技术和通信技术相结合的产物。
由于扩展频谱即使具有抗干扰能力强、截获率低、多址能力强、抗多径、保密性好及测距能力强等一系列的优点,使得扩展频谱通信越来越受到人们的重视。
随着大规模或超大规模集成电路技术、微电子技术、为处理技术的迅猛发展以及一些新型器件的广泛应用,扩展频谱通信的发展迈上了一个新的台阶,它不仅在军事通信中占有重要地位,而且正迅速地渗透到民用通信中。
可以毫不夸张地讲,在现代通信系统,特别是无线通信系统,没有扩展频谱技术,这些系统想生存都是比较困难的。
在扩展频谱系统中,伪随机序列起着重要的作用。
在直扩系统中,用伪随机序列将传输信息扩展,在接收时又用它将信息压缩,并使干扰信息功率扩展,提高了系统的抗干扰能力;在跳频系统中,用伪随机序列控制频率合成器产生的频率随机地跳变,躲避干扰;在跳时系统中,用伪随机序列控制脉冲发送的时间和持续时间。
由此可见,伪随机序列性能的好坏,直接关系到整个系统性能的好坏,是一个至关重要的问题。
m序列是最长线性移位寄存器序列,是伪随机序列中最重要的序列中的一种,这种序列易于产生,有优良的自相关特性。
在直扩系统中m序列用于扩展要传递的信号,在跳频系统中m序列用来控制跳频系统的频率合成器,组成随机跳频图案。
电子设计技术由于计算机技术的发展而产生了巨大变化。
本设计是利用电子设计方法,用电路图表示设计思想,用实验电路板搭载实验电路,进行模拟、仿真,用电子测试仪器进行功能、性能测试。
20世纪80年代,计算机辅助设计(CAD)技术开始发展,许多CAD工具软件开始流行。
在信息学科领域也和其他学科一样,计算机辅助设计技术步入了发展轨道。
由于电子科学是计算机科学的基础,计算机学科的发展离不开电子学科的支持,但是计算机科学又反作用于电子科学,加速了电子学科的发展。
M序列产生及其特性仿真实验报告一、三种扩频码序列简介1.1 m序列它是由多级移位寄存器或其他延迟元件通过线性反馈产生的最长的码序列。
m序列的特性1、最长周期序列:N=2n-12、功率平衡性:‘1’的个数比‘0’的个数多13、‘0’、‘1’随机分布:近似高斯噪声4、相移不变性:任意循环移位仍是m序列,仅初相不同5、离散自相关函数:‘0’->+1,‘1’->-11.2 Gold序列Gold序列是两个等长m序列模二加的复合序列两个m序列应是“优选对”特点:1、包括两个优选对m序列,一个Gold序列族中共有2n+1个Gold序列2、Gold序列族中任一个序列的自相关旁瓣及任意两个序列的互相关峰值均不超过两个m序列优选对的互相关峰值1.3OVSF序列又叫正交可变扩频因子,系统根据扩频因子的大小给用户分配资源,数值越大,提供的带宽越小,是一个实现码分多址(CDMA)信号传输的代码,它由Walsh函数生成,OVSF码互相关为零,相互完全正交。
OVSF序列的特点1、序列之间完全正交2、极适合用于同步码分多址系统3、序列长度可变,不影响正交性,是可变速率码分系统的首选多址扩频码4、自相关性很差,需与伪随机扰码组合使用二、三种扩频码序列产生仿真一、M序列的产生代码:X1=1;X2=0;X3=1;X4=0; %移位寄存器输入Xi初T态(0101), Yi为移位寄存器各级输出m=60; %置M序列总长度for i=1:m %1#Y4=X4; Y3=X3; Y2=X2; Y1=X1;X4=Y3; X3=Y2; X2=Y1;X1=xor(Y3,Y4); %异或运算if Y4==0U(i)=-1;elseU(i)=Y4;endendM=U%绘图i1=ik=1:1:i1;plot(k,U,k,U,'rx')xlabel('k')ylabel('M序列')title('移位寄存器产生的M序列')用阶梯图产生表示:X1=1;X2=0;X3=1;X4=0; %移位寄存器输入Xi初T态(0101),Yi为移位寄存器各级输出m=60; %置M序列总长度for i=1:m %1#Y4=X4; Y3=X3; Y2=X2; Y1=X1;X4=Y3; X3=Y2; X2=Y1;X1=xor(Y3,Y4); %异或运算if Y4==0U(i)=-1;elseU(i)=Y4;endendM=U%绘图stairs(M);二、GOLD序列的产生:M序列A的生成:X1=1;X2=0;X3=1;X4=0; %移位寄存器输入Xi初T态(1010), Yi为移位寄存器各级输出m=60; %置M序列总长度for i=1:m %1#Y4=X4; Y3=X3; Y2=X2; Y1=X1;X4=Y3; X3=Y2; X2=Y1;X1=xor(Y3,Y4); %异或运算if Y4==0A(i)=0;elseA(i)=Y4;endendM=A%绘图i1=ik=1:1:i1;plot(k,A,k,A,'rx')xlabel('k')ylabel('M序列')title('移位寄存器产生的M序列')M序列B的生成:X1=0;X2=1;X3=0;X4=1; %移位寄存器输入Xi初T态(0101), Yi为移位寄存器各级输出m=60; %置M序列总长度for i=1:m %1#Y4=X4; Y3=X3; Y2=X2; Y1=X1;X4=Y3; X3=Y2; X2=Y1;X1=xor(Y3,Y4); %异或运算if Y4==0B(i)=0;elseB(i)=Y4;endendN=B%绘图i1=ik=1:1:i1;plot(k,B,k,B,'rx')xlabel('k')ylabel('M序列')title('移位寄存器产生的M序列') 生成gold序列:c=xor(A,B);stairs(c);三、OVSF序列的产生:%Function [OVSF_Codes]=OVSF_Generator(Spread_Fator,Code_Number)%Code_Number=-1 表示生成所有扩频因子=Spread_Factor的ovsf码Code_Number=-1;Spread_Fator=8;OVSF_Codes=1;if Spread_Fator==1return;endfor i=1:1:log2(Spread_Fator)Temp=OVSF_Codes;for j=1:1:size(OVSF_Codes,1)if j==1OVSF_Codes=[Temp(j,:),Temp(j,:) Temp(j,:),(-1)*Temp(j,:)];elseOVSF_Codes=[OVSF_Codes Temp(j,:),Temp(j,:) Temp(j,:),(-1)*Temp(j,:)];endendend%if Code_Number>-1% OVSF_Codes=OVSF_Codes((Code_Number+1),:);%endfigure(3)[b4,t4]=stairs([1:length(OVSF_Codes)],OVSF_Codes); plot(b4,t4);axis([0 130 -1.1 1.1]);title('OVSF序列')三、三种扩频码序列特性仿真(一)M序列自相关函数X1=1;X2=0;X3=1;X4=0; %移位寄存器输入Xi初T态(0101), Yi为移位寄存器各级输出m=2^8-1; %置M序列总长度for i=1:m %1#Y4=X4; Y3=X3; Y2=X2; Y1=X1;X4=Y3; X3=Y2; X2=Y1;X1=xor(Y3,Y4); %异或运算if Y4==0U(i)=-1;elseU(i)=Y4;y = xcorr(U);stairs(y);end互相关函数:输入两个m序列clcclear allclose allm1 = [0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 1 1 0 0 0 1] m2 = [1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1]y = xcorr(m1,m2,'unbiased');stairs(y)(二)Gold码的自相关函数x2=[(2*c)-1];%将运行结果Gold序列c从单极性序列变为双极性序列y1=xcorr(x2,'unbiased');%求自相关性stairs(y1);gridxlabel('t')ylabel('相关性')title('移位寄存器产生的Gold序列的相关性')互相关性gold序列和m序列的互相关性y1=xcorr(c,m1,'unbiased'); stairs(y1);(三)ovsf码的互相关和自相关a=[1 -1 1 1 -1 1 -1 -1];b=[1 -1 -1 1 1 -1 -1 1];P=length(a);%求序列a的自相关函数Ra(1)=sum(a.*a);for k=1:P-1Ra(k+1)=sum(a.*circshift(a,[0,k])); end%求序列b的自相关函数Rb(1)=sum(b.*b);for k=1:P-1Rb(k+1)=sum(b.*circshift(b,[0,k])); end%求序列a和b的互相关函数Rab(1)=sum(a.*b);for k=1:P-1Rab(k+1)=sum(a.*circshift(b,[0,k])); endx=[0:P-1];figure(9)subplot(3,1,1);stem(x,Rab);ylabel('a和b的互相关函数');axis([0 P-1 -10 12]);grid;xlabel('偏移量');subplot(3,1,2);stem(x,Ra);ylabel('a自相关函数');xlabel('偏移量');%axis([0 P-1 -5 30]);subplot(3,1,3);stem(x,Rb);%plot(x,Rb)xlabel('偏移量');ylabel('b的自相关函数');四、总结一、M序列自相关函数近似于冲激函数的形状,不同序列间的互相关特性一致性不好。
1 引言本文的主要内容是移位寄存器74LS194的研究和m序列码发生器的产生原理以及基于MAX+PLUS II、Protel 99SE软件的实现。
m序列码发生器的产生原理和实现是CDMA通信中的核心,具有重要的理论价值和广阔的应用前景。
文中基于对74LS194移位寄存器的研究,对伪随机序列的特性及对m序列发生器的结构进行了分析,运用MAX+PLUS II的模拟仿真和Protel 99SE进行印刷电路板设计,验证其正确性,最终产生m序列码。
1.1 研究此课题的目的伪随机序列系列具有良好的随机性和接近于白噪声的相关函数,并且有预先的可确定性和可重复性。
这些特性使得伪随机序列得到了广泛的应用。
1.2 伪随机序列的应用和意义1.2.1在通信加密中的应用m序列自相关性较好,容易产生和复制,而且具有伪随机性,利用m序列加密数字信号使加密后的信号在携带原始信息的同时具有伪噪声的特点,以达到在信号传输的过程中隐藏信息的目的;在信号接收端,再次利用m序列加以解密,恢复出原始信号[1]。
1.2.2 在雷达信号设计中的应用近年兴起的扩展频谱雷达所采用的信号是已调制的具有类似噪声性质的伪随机序列,它具有很高的距离分辨力和速度分辨力。
这种雷达的接收机采用相关解调的方式工作,能够在低信噪比的条件下工作,同时具有很强的抗干扰能力。
该型雷达实质上是一种连续波雷达,具有低截获概率性,是一种体制新、性能高、适应现代高技术战争需要的雷达。
采用伪随机序列作为发射信号的雷达系统具有许多突出的优点。
首先,它是一种连续波雷达,可以较好地利用发射机的功率。
其次,它在一定的信噪比时,能够达到很好的测量精度,保证测量的单值性,比单脉冲雷达具有更高的距离分辨力和速度分辨力。
最后,它具有较强的抗干扰能力,敌方要干扰这种宽带雷达信号,将比干扰普通的雷达信号困难得多[2]。
1.2.3 在通信系统中的应用伪随机序列是一种貌似随机,实际上是有规律的周期性二进制序列,具有类似噪声序列的性质,在CDMA中,地址码都是从伪随机序列中选取的,在CDMA中使用一种最易实现的伪随机序列:m序列,利用m序列不同相位来区分不同用户;为了数据安全,在CDMA的寻呼信道和正向业务信道中使用了数据掩码(即数据扰乱)技术,其方法是用长度为2的42次方减1的m序列用于对业务信道进行扰码(注意不是扩频),它在分组交织器输出的调制字符上进行,通过交织器输出字符与长码PN码片的二进制模工相加而完成。
实验三 m 序列的仿真验证一、实验目的:利用matlab 验证m 序列的产生方法及其自相关特性。
二、实验要求:设m 序列的生成多项式为431)(x x x g ++=,求(1)m 序列的输出及其自相关序列;(2)设脉冲成形为P (t )=s T t <<⎩⎨⎧010其他画出其m 序列信号的自相关函数;(3)设脉冲波形为升余弦成形(a=0),画出其m 序列信号的自相关函数。
三、实验原理:M 序列即为maximal length linear feedback shift register sequence 它具有类似与随机噪声的某些统计特性,有时可以重复产生的。
四、实验源码%m 序列发生器及其自相关 mseq.mclear all;close all;g=19;%G=10011;state=8;%state=1000L=1000;%m 序列产生N=15;mq=mgen(g,state,L);%m 序列自相关ms=conv(1-2*mq,1-2*mq(15:-1:1))/N;figure(1)subplot(222)stem(ms(15:end));axis([0 63 -0.3 1.2]);title('m 序列自相关序列')%m 序列构成的信号(矩形脉冲)N_sample=8;Tc=1;dt=Tc/N_sample;t=0:dt:Tc*L-dt;gt=ones(1,N_sample);mt=sigexpand(1-2*mq,N_sample);mt=conv(mt,gt);figure(1)subplot(221);plot(t,mt(1:length(t)));axis([0 63 -0.3 1.2]);title('m序列矩形成型信号')st=sigexpand(1-2*mq(1:15),N_sample);s=conv(st,gt);st=s(1:length(st));rt1=conv(mt,st(end:-1:1))/(N*N_sample);subplot(223)plot(t,rt1(length(st):length(st)+length(t)-1));axis([0 63 -0.3 1.2]);title('m序列矩形成型信号的自相关'); xlabel('t');Tc=1;dt = Tc/N_sample;t=-20:dt:20;gt=sinc(t/Tc);mt = sigexpand(1-2*mq, N_sample);mt = conv(mt,gt);st2=sigexpand(1-2*mq(1:15),N_sample);s2=conv(st2,gt);st2=s2;rt2=conv(mt,st2(end:-1:1))/(N*N_sample);subplot(224);t1=-55+dt:dt:Tc*L-dt;%plot(t,mt(1:length(t)));plot(t1,rt2(1:length(t1)));axis([0 63 -0.5 1.2]);title('m序列since成形信号的自相关'); xlabel('t');。
编号:审定成绩:重庆邮电大学移通学院毕业设计(论文)设计(论文)题目:m序列发生器的仿真实现单位(系别):电子信息工程系学生姓名:专业:班级:学号:指导教师:答辩组负责人:填表时间:2012 年 5 月重庆邮电大学移通学院教务处制重庆邮电大学移通学院毕业设计(论文)任务书设计(论文)题目 m序列发生器的仿真实现学生姓名系别专业班级指导教师职称联系电话教师单位重庆邮电大学下任务日期__ 2012__年_03_月_ _日主要研究内容、方法和要求1、掌握扩频通信的基本概念,了解m序列在扩频通信中的作用2、了解m序列的性质和特点3、掌握m序列发生器的结构,能够实现不同PN序列周期的m序列4、掌握matlab仿真软件的应用5、利用matlab仿真工具来实现不同周期的m序列进度计划第3-5周:查阅资料,了解m序列在扩频通信中的作用第6-8周:了解m序列的随机性质以及m序列产生原理第9-11周:用matlab仿真工具实现不同周期的m序列第12-13周:撰写论文初稿,给出论文目录第14-15周:撰写并修改论文第16周:准备毕业答辩主要参考文献1、啜钢,移动通信原理与系统,北京邮电大学出版社,2005.9.2、田日才,扩频通信,清华大学出版社,2007.4.3、王立宁,matlab与通信仿真,人民邮电出版社,2000.1.4、吴海红,CDMA扩频通信中m序列与Gold序列的比较及应用,喀什师范学院学报,2010.3.指导教师签字:年月日教研室主任签字:年月日备注:此任务书由指导教师填写,并于毕业设计(论文)开始前下达给学生。
摘要现代社会发展要求通信系统功能越来越强,性能越来越高,构成越来越复杂;另一方面,要求通信系统技术研究和产品开发缩短周期,降低成本,提高水平。
这样尖锐对立的两个方面的要求,只有通过使用强大的计算机辅助分析设计技术和工具才能实现。
现代计算机科学技术快速发展,已经研发出了新一代的可视化的仿真软件。
这些功能强大的仿真软件,使得通信系统仿真的设计和分析过程变得相对直观和便捷,由此也使得通信系统仿真技术得到了更快的发展。
在通信领域中,伪随机码越来越受到人们的重视,被广泛应用于导弹、卫星、飞船轨道测量和跟踪、雷达、导航、移动通信、保密通信和通信系统性能的测量以及数字信息处理系统中,m序列是伪随机码中带线性反馈移位寄存器周期最长的一种基本序列。
本文前言对本次毕业设计的内容作了概述,第一章主要介绍了扩频通信的基本内容,包括扩频通信的概念、主要特点、扩频通信系统的模型以及m序列在扩频通信中的应用;第二章主要是对m序列的定义、原理以及性质的研究;第三章针对m序列的仿真实现以及分析的研究。
【关键词】扩频通信伪随机m序列移位寄存器仿真ABSTRACTThe development of modem society requires communications system ,the other levels.We carl msoNe the conflict by using the computer aided design technology and tools.The rapid development of compmer science causes the successful research and devdopmem of new generation visual simulation software.The simulation software is powerful which makes the process of design and analysis of communications system simulation more intuitional and convenient.Today,the communications system simulation is rapid developing.Pseudorandom code is more and more attractive than ever before. It is widely used in the orbit measuring and tracing of guided missile, satellite and airship. The performance measurement of system such as radar, common communication, secrecy communication and communication system is also used in the system of digital signal processing (DSP). The m sequence is a kind of pseudorandom code and longest period sequence.The first part of the content of this graduation design foreword ed, The first chapter mainly introduces the spread spectrum communication the basic content, including the concept of spread spectrum communication, main characteristics, spread spectrum communication system model and the m sequence in spread spectrum communication application; The second chapter is mainly on the m sequence of the definition, principles and properties of; The third chapter in the m sequence simulation andanalysis study.【key words】spread spectrum communication PN code m sequence shift register simulate目录前言 (2)第一章扩频通信基础 (4)第一节扩频通信的基本概念及相关模型 (4)第二节扩频通信系统的主要特点 (10)第三节m序列在扩频通信中的应用 (12)第二章m序列 (13)第一节m序列的定义 (13)第二节m序列的原理 (14)第三节m序列的性质 (17)第三章m序列发生器的仿真及分析 (20)第一节MATLAB软件介绍 (20)第二节m序列的仿真及分析 (21)结论 (26)致谢 (27)参考文献 (28)附录 (29)一、英文原文 (29)二、英文翻译 (38)前言扩展频谱通信(Spread Spectrum Communication)是将待传送的信息数据被伪随机编码(扩频序列:Spread Sequence)调制,实现频谱扩展后再传输,接收端则采用同样的编码进行解调及相关处理,恢复原始信息数据。
显然,这种通信方式与一般常见的窄带通信方式相反,是在扩展频谱后,宽带通信,再相关处理恢复成窄带后解调数据。
扩展频谱通信方式有许多优点,如抗干扰、抗噪音、抗多径衰落、低功率谱密度下工作、有保密性、可多址复用和任意选址、高精度测量等。
扩展频谱通信作为新型通信方式,特别引人注目,得到了迅速发展,如今在移动通信、卫星通信、宇宙通信、雷达、导航以及测距等领域得到越来越广泛的应用。
扩频通信的优势主要来自于伪随机码具有白噪声的统计特性。
而随着扩频速率的不断提高,扩频码的长度急剧增加,利用计算机设计并验证扩频码的各项指标能大大提高效率。
m序列是伪随机序列中最重要的序列中的一种,是最长的线性移位寄存器序列。
既然,m序列在扩频通信中占据着极其重要的位置,而对于m序列的产生及仿真的研究,自然也就有很大的必要性。
1、在通信加密中的应用m序列自相关性较好,容易产生和复制,而且具有伪随机性,利用m 序列加密数字信号使加密后的信号在携带原始信息的同时具有伪噪声的特点,以达到在信号传输的过程中隐藏信息的目的;在信号接收端,再次利用m序列加以解密,恢复出原始信号。
2、在雷达信号设计中的应用近年兴起的扩展频谱雷达所采用的信号是已调制的具有类似噪声性质的伪随机序列,它具有很高的距离分辨力和速度分辨力。
这种雷达的接收机采用相关解调的方式工作,能够在低信噪比的条件下工作,同时具有很强的抗干扰能力。
该型雷达实质上是一种连续波雷达,具有低截获概率性,是一种体制新、性能高、适应现代高技术战争需要的雷达。
采用伪随机序列作为发射信号的雷达系统具有许多突出的优点。
首先,它是一种连续波雷达,可以较好地利用发射机的功率。
其次,它在一定的信噪比时,能够达到很好的测量精度,保证测量的单值性,比单脉冲雷达具有更高的距离分辨力和速度分辨力。
最后,它具有较强的抗干扰能力,敌方要干扰这种宽带雷达信号,将比干扰普通的雷达信号困难得多。
3、在通信系统中的应用[1]伪随机序列是一种貌似随机,实际上是有规律的周期性二进制序列,具有类似噪声序列的性质,在CDMA中,地址码都是从伪随机序列中选取的,在CDMA中使用一种最易实现的伪随机序列:m序列,利用m序列不同相位来区分不同用户;为了数据安全,在CDMA的寻呼信道和正向业务信道中使用了数据掩码(即数据扰乱)技术,其方法是用长度为2的42次方减1的m序列用于对业务信道进行扰码(注意不是扩频),它在分组交织器输出的调制字符上进行,通过交织器输出字符与长码PN码片的二进制模工相加而完成。
迄今为止,人们获得的伪随机序列仍主要是PC(相控)序列,移位寄存器序列(m和M序列),Gold序列,GMW序列,级联GMW序列,Kasami 序列等。
其中,m序列是最有名和最简单的,也是研究的最透彻的序列。
m序列还是研究其它序列的基础。
它序列平衡,有最好的自相关特性,但互相关满足一定条件的族序列数很少(对于本原多项式的阶数小于等于13的m序列,互为优选对的序列数不多于6),且线性复杂度很小。
m序列族序列数极其巨大(当寄存器级数等于6时,有226个序列)。
但其生成困难,且其互相关特性目前知之甚少,一般很少用。
本次毕业设计,首先,了解了扩频通信的基本内容;其次,研究m序列性质、原理及特点等内容;最后,研究生成序列的反馈移位寄存器、反馈逻辑函数,主要针对它们的生成、随机特性以及相关特性的研究,m 序列的Matlab生成源程序是基于线性反馈移位寄存器结构而编写的,并最后在理论证明的基础上应用matlab对m序列进行仿真验证。