理想流体、稳定流动、粘性流体..
- 格式:ppt
- 大小:2.24 MB
- 文档页数:47
流动的特点:趋向最低能量状态存在流动的条件:分子间作用力较小。
剪切力的作用,可形成速度梯度。
密度:单位容积的流体所具有的质量称为密度,以符号ρ表示。
密度的大小与该种流体的温度与压力有关,即与可压缩性与温度膨胀性有关。
流体的可压缩性:流体受压力作用时发生体积变化的性质称为可压缩性,常用体积压缩系数βe表示。
其物理意义是单位压力变化所造成的流体体积的相对变化率。
流体的温度膨胀性:由温度膨胀系数βt表示。
βt是指单位温度升高值(1℃)所引起的流体体积变化率。
粘性:当流体在外力作用下,流体微元间出现相对运动时,随之产生阻碍流体层相对运动的内摩擦力,流体产生内摩擦力的这种性质称为粘性。
流体内摩擦定理:p16粘性力(粘性内摩擦力)产生的原因:这种阻力是由分子间的相互吸引力和分子不规则运动的动量交换产生的阻力组合而成。
分子间吸引力产生的阻力、分子不规则运动的动量交换产生的阻力液体与气体粘性力产生的主要因素:液体:低速流动时,不规则运动弱,主要取决于分子间的吸引力;高速流动时,不规则运动增强,变为不规则运动的动量交换引起。
气体:主要取决于分子不规则运动的动量交换。
压强和温度对流体粘性的影响:压强:由于压强变化对分子动量交换影响小,所以气体的粘度随压强变化很小。
而压强加大使分子间距减小,故压强对液体粘性的影响较大。
但低压下压强对液体粘度影响很小。
温度:对于液体,温度升高,分子间距增大,粘度将显著减小;对于气体,温度升高,分子不规则运动加剧,粘度增大。
比热容:单位质量流体温度变化1℃时所需交换的热量流体:在任何微小的剪切力的作用下都能够发生连续变形的物质称为流体。
层流:不同层之间的流体质点没有相互混杂,本层的流体质点总是沿着本层流动,流体质点的运动轨迹是一条光滑的曲线,这种流动称为层流。
紊流:流体在流动过程中层与层之间的质点互相混杂,流体质点的运动轨迹杂乱无章。
湿空气:含有水蒸气的空气称为湿空气绝对湿度绝对湿度:每立方米湿空气中所含水蒸气的质量称为湿空气的绝对湿度。
第六章流体力学基础基本概念一、流体的粘滞性流体流动时,由于流体与固体壁面的附着力及流体本身的分子运动和内聚力,使各流体层的速度不相等。
在两个相邻流体层之间的接触面上,将产生一对阻碍两层流体相对运动的等值反向的摩擦力,叫做内摩擦力。
流体的粘滞性:流体流动时产生内摩擦力的性质。
二、理想流体与实际流体粘性流体:具有粘性的流体(实际流体)。
理想流体:忽略了粘滞性的流体。
三、流体流动的基本概念1.稳定流动与非稳定流动(1)稳定流动运动流体内任意点的速度u和压力p仅仅是空间坐标()z,的函数,而不x,y随时间变化而变化。
()zu,=,uyx()z,p,=xyp(2)非稳定流动运动流体内任意点的速度u和压力p不仅是空间坐标()z,的函数,也随x,y时间而不同。
()t z,,=u,yxu()t z,,=pp,yx2.迹线与流线(1)迹线流体质点的运动轨迹。
(2)流线流场:流体流动的空间。
流线:是流场中某一瞬间绘出的一条曲线,在这条曲线上所有各流体质点的流速矢量与该曲线相切。
流线的性质:①稳定流动时,流线形状不随时间而变化;②稳定流动时,同一点的流线始终保持不变,且流线上质点的迹线与流线重合,即流线上的质点沿流线运动;③流线既不会相交,又不能转折,只能是光滑的曲线。
假定某一瞬间有两条流线相交于M点或转折。
M处就该有两个速度矢量,这是不符合流线的定义。
3.流管、微小流速及总流(1)流管在流场中取出一段微小的封闭曲线,过这条曲线上各点引出流线,这些流线族所围成的封闭管状曲面。
(2)微小流束及总流流束:在流管中运动的流体。
微小流束:断面无穷小的流束称为微小流束。
微小流束断面上各点的运动要素相等。
流管内的流体只能在流管内流动,流管外的流体也只能在流管外流动。
伯努利方程一、理想流体的伯努利方程仅在重力作用下作稳定流动的理想流体gu g p Z g u g p Z 2//2//22222111++=++ρρ=常数1Z 和2Z :过流断面1-1和2-2距基准面0-0的高度,1u 和2u :断面1-1和2-2的流速,1p 和2p :断面1-1和2-2的压力,ρ:为流体密度。
50316流体的分类
流体可以根据其性质和行为进行分类,主要包括:
1. 理想流体和非理想流体:理想流体是指没有黏性和内聚力的流体,其流动受到理想流体力学方程描述;非理想流体则包括了具有黏性和内聚力的流体,如水、空气等。
2. 压缩性流体和不可压缩流体:压缩性流体在流动过程中会发生密度变化,而不可压缩流体在流动过程中密度基本保持不变。
3. 稳定流和非稳定流:稳定流是指流体在流动过程中速度和压力分布保持不变的流动状态,而非稳定流则包括了湍流和层流等不稳定的流动状态。
4. 旋转流和无旋流:旋转流是指流体在流动过程中存在旋转运动,而无旋流则是指流体在流动过程中不存在旋转运动。
5. 粘性流体和非粘性流体:粘性流体是指具有黏性的流体,其流动受到黏性力的影响;非粘性流体则是指没有黏性的流体,如理想流体。
一、名词解释。
1、雷诺数:是反应流体流动状态的数,雷诺数的大小反应了流体流动时,流体质点惯性力和粘性力的对比关系。
2、流线:流场中,在某一时刻,给点的切线方向与通过该点的流体质点的刘速方向重合的空间曲线称为流线。
3、压力体:压力体是指三个面所封闭的流体体积,即底面是受压曲面,顶面是受压曲面边界线封闭的面积在自由面或者其延长面上的投影面,中间是通过受压曲面边界线所作的铅直投影面。
4、牛顿流体:把在作剪切运动时满足牛顿内摩擦定律的流体称为牛顿流体。
5、欧拉法:研究流体力学的一种方法,是指通过描述物理量在空间的分布来研究流体运动的方法。
6、拉格朗日法:通过描述每一质点的运动达到了解流体运动的方法称为拉格朗日法。
7、自由紊流射流:当气体自孔口、管嘴或条缝以紊流的形式向自由空间喷射时,形成的流动即为自由紊流射流。
8、流场:充满流体的空间。
9、无旋流动:流动微团的旋转角速度为零的流动。
10、有旋流动:运动流体微团的旋转角速度不全为零的流动。
11、自由射流:气体自孔口或条缝向无限空间喷射所形成的流动。
12、稳定流动:流体流动过程与时间无关的流动。
13、不可压缩流体:流体密度不随温度与流动过程而变化的液体。
14、驻点:流体绕流物体迎流方向速度为零的点。
15、流体动力粘滞系数u:表征单位速度梯度作用下的切应力,反映了粘滞的动力性质。
16、压力管路的定义。
---凡是液流充满全管在一定压差下流动的管路都称为压力管路。
17、作用水头的定义。
----任意断面处水的能量,等于比能除以。
含位置、压力水头和速度水头。
单位为m。
18、层流:当流体运动规则,各部分分层流动互不掺混,流体质点的迹线是光滑的,而且流场稳定时,此种流动形态称为层流。
19、湍流:当流体运动极不规则,各部分流体相互剧烈掺混,流体质点的迹线杂乱无章,流场极不稳定时。
此种流动形态称为“湍流”。
20、表面张力:液体表面任意两个相邻部分之间的垂直与它们的分界线的相互作用的拉力。
流体的流动教学内容:1、理想流体的定常流动:理想液体、定常流动、流线与流管、流量、液流连续原理。
2、伯努利方程式:伯努利方程式及伯努利方程式的应用。
3、实际液体:粘滞性、层流、粘滞系数、牛顿液体、湍流、雷诺数。
4、牛顿液体与非牛顿液体。
湍流。
泊肃叶公式。
5、斯托克斯公式。
流阻。
血液的流动。
血压。
一、填空题1.根据连续性方程和伯努利方程,水平管中管径细的地方 流速 大,压强 小 ,喷雾器就是根据这一原理制成的。
2.液体的粘滞系数随温度升高 而减小 ,气体的粘滞系数随温度升高 增大 。
3.我们把 绝对不可压缩 和 完全没有粘性 的流体称为理想流体。
4.当雷诺数Re <1000时,液体做 层流 ,当雷诺数Re>1500时,液体做 湍流 。
5.牛顿流体指的是,在一定温度下 黏度 为常量,即遵循 牛顿粘滞 定律的流体。
6.实际流体伯努利方程的表达式为W gh v P gh v P ∆+++=++222212112121ρρρρ W 的物理意义是 单位体积实际液体从截面1运动到截面2过程中,克服内摩擦力所消耗的能量。
7.对于实际流体来说,雷诺数大于1500时,流体做湍流;雷诺数小于___1000__时,流体做层流。
8.牛顿液体粘滞系数的大小取决于液体的 种类 和 温度 。
9.水中水管的截面面积在粗处为S 1=40 cm 2 ,细处为S 2=10 cm 2 ,管中水的流量为Q =3000 cm 3/s 。
则粗处水的流速为V 1= 75cm/s ,细处水的流速为V 2= 300cm/s 。
10.伯努利方程的表达式为222212112121gh v P gh v P ρρρρ++=++,使用该方程的条件是 理想流体在同一流管内做定常流动 。
二、选择题1、液体中上浮的气泡,当其达到收尾速度时,气泡所受 [ D ]A.浮力超过粘滞力与重力之和B.粘滞力等于浮力与重力之和C.重力等于浮力与粘滞力之和D.浮力等于粘滞力与重力之和2、用斯托克司定律测定流体的粘度时,球的速度可是[ D ]。
第三章 流体的运动一.目的要求:1.掌握理想流体和稳定流动的概念,连续性方程和伯努利方程的物理意义并熟练应用,掌握粘滞定律和泊肃叶定律的意义和应用。
2.理解粘性流体伯努利方程的物理意义,层流和湍流,雷诺数,斯托克斯定律及应用。
二.要点:1.理想流体是流体的理想模型。
绝对不可压缩和没有内摩擦力(即没有粘滞性)的流体称为理想流体。
2.连续性方程2211v S v S Q ==是绝对不可压缩的流体稳定流动时体积流量守恒的数学表述,是质量流量守恒在绝对不可压缩的流体稳定流动时的特例。
3.伯努利方程从能量的角度研究流体的运动规律,是流体动力学基本方程,其适用条件是:理想流体、稳定流动。
对同一流管中的各截面或同一流线上的各点都有:常量=++gh v P ρρ221该方程是理想液体作稳定流动时的功能关系。
要掌握在各种条件下,该方程的具体应用。
4.实际液体流动时由于具有内摩擦力f 形成层流,各液层间速度差异的程度用速度梯度dxdv 来描述。
牛顿层流关系式dx dvS f η=给出了内摩擦力与速度梯度的关系,同时也给出粘度dxdvS f⋅=η的物理意义。
要注意η取决于液体本身的性质并与温度有关。
5.流体发生湍流时所消耗的能量比层流多,雷诺数ηρvrR e =可帮助我们判断在什么情况下容易产生湍流。
6.泊肃叶定律给出了实际液体在水平均匀细圆管中稳定流动时,流量或某一截面处平均流速与管径、管长、管两端压强差、液体粘度之间的关系。
fR P L P s L P R Q ∆=∆=∆=ηπηπ8824 或 L Ps L P R v ηπη882∆=∆= 流阻4288RLS L R f πηπη==,其串联、并联规律与电学中电阻的串联并联规律对应。
并应注意流管半径的微小变化会引起流阻的很大变化。
实际液体在水平均匀细圆管中稳定流动时,是分层流动,流速v 沿管径方向呈抛物线分布:)(22214r R LP P v --=η。
在管轴处)0(=r ,速度取得最大值:2214R LP P v η-=max ,在管壁处)(R r =,速度取得最小值0 。