流体力学:6-粘性流体流动
- 格式:ppt
- 大小:2.68 MB
- 文档页数:143
第六章流体力学基础基本概念一、流体的粘滞性流体流动时,由于流体与固体壁面的附着力及流体本身的分子运动和内聚力,使各流体层的速度不相等。
在两个相邻流体层之间的接触面上,将产生一对阻碍两层流体相对运动的等值反向的摩擦力,叫做内摩擦力。
流体的粘滞性:流体流动时产生内摩擦力的性质。
二、理想流体与实际流体粘性流体:具有粘性的流体(实际流体)。
理想流体:忽略了粘滞性的流体。
三、流体流动的基本概念1.稳定流动与非稳定流动(1)稳定流动运动流体内任意点的速度u和压力p仅仅是空间坐标()z,的函数,而不x,y随时间变化而变化。
()zu,=,uyx()z,p,=xyp(2)非稳定流动运动流体内任意点的速度u和压力p不仅是空间坐标()z,的函数,也随x,y时间而不同。
()t z,,=u,yxu()t z,,=pp,yx2.迹线与流线(1)迹线流体质点的运动轨迹。
(2)流线流场:流体流动的空间。
流线:是流场中某一瞬间绘出的一条曲线,在这条曲线上所有各流体质点的流速矢量与该曲线相切。
流线的性质:①稳定流动时,流线形状不随时间而变化;②稳定流动时,同一点的流线始终保持不变,且流线上质点的迹线与流线重合,即流线上的质点沿流线运动;③流线既不会相交,又不能转折,只能是光滑的曲线。
假定某一瞬间有两条流线相交于M点或转折。
M处就该有两个速度矢量,这是不符合流线的定义。
3.流管、微小流速及总流(1)流管在流场中取出一段微小的封闭曲线,过这条曲线上各点引出流线,这些流线族所围成的封闭管状曲面。
(2)微小流束及总流流束:在流管中运动的流体。
微小流束:断面无穷小的流束称为微小流束。
微小流束断面上各点的运动要素相等。
流管内的流体只能在流管内流动,流管外的流体也只能在流管外流动。
伯努利方程一、理想流体的伯努利方程仅在重力作用下作稳定流动的理想流体gu g p Z g u g p Z 2//2//22222111++=++ρρ=常数1Z 和2Z :过流断面1-1和2-2距基准面0-0的高度,1u 和2u :断面1-1和2-2的流速,1p 和2p :断面1-1和2-2的压力,ρ:为流体密度。
第六章流动阻力及能量损失本章主要研究恒定流动时,流动阻力和水头损失的规律。
对于粘性流体的两种流态——层流与紊流,通常可用下临界雷诺数来判别,它在管道与渠道内流动的阻力规律和水头损失的计算方法是不同的。
对于流速,圆管层流为旋转抛物面分布,而圆管紊流的粘性底层为线性分布,紊流核心区为对数规律分布或指数规律分布。
对于水头损失的计算,层流不用分区,而紊流通常需分为水力光滑管区、水力粗糙管区及过渡区来考虑。
本章最后还阐述了有关的边界层、绕流阻力及紊流扩散等概念。
第一节流态判别一、两种流态的运动特征1883年英国物理学家雷诺(Reynolds O.)通过试验观察到液体中存在层流和紊流两种流态。
1.层流观看录像1-层流层流(laminar flow),亦称片流:是指流体质点不相互混杂,流体作有序的成层流动。
特点:(1)有序性。
水流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。
(2)粘性占主要作用,遵循牛顿内摩擦定律。
(3)能量损失与流速的一次方成正比。
(4)在流速较小且雷诺数Re较小时发生。
2.紊流观看录像2-紊流紊流(turbulent flow),亦称湍流:是指局部速度、压力等力学量在时间和空间中发生不规则脉动的流体运动。
特点:(1)无序性、随机性、有旋性、混掺性。
流体质点不再成层流动,而是呈现不规则紊动,流层间质点相互混掺,为无序的随机运动。
(2)紊流受粘性和紊动的共同作用。
(3)水头损失与流速的1.75~2次方成正比。
(4)在流速较大且雷诺数较大时发生。
二、雷诺实验如图6-1所示,实验曲线分为三部分:(1)ab段:当υ<υc时,流动为稳定的层流。
(2)ef段:当υ>υ''时,流动只能是紊流。
(3)be段:当υc<υ<υ''时,流动可能是层流(bc段),也可能是紊流(bde段),取决于水流的原来状态。
图6-1图6-2观看录像3观看录像4观看录像5实验结果(图6-2)的数学表达式层流:m1=1.0, h f=k1v , 即沿程水头损失与流线的一次方成正比。
力学中的流体力学及粘弹性流体的性质研究流体力学是力学的一个分支,主要研究流体的运动规律和性质,包括流体内部的流动状态、压力分布、阻力、混合等。
流体力学是许多领域的基础,比如工程、物理、化学、生物等。
本文将着重介绍流体力学中的粘弹性流体及其特性。
1. 粘弹性流体的性质粘弹性流体一般指那些既具有液体的流动性质,又具有固体的弹性性质,即既能够流动,又能够回复原来的状态。
这些物质的特性通常表现为粘性和弹性的耦合,即应力和应变的关系不再是线性的,而是非线性的。
因此,粘弹性流体是一类比较复杂的流体,具有复杂的流动特性。
粘弹性流体的流动特性可以用许多不同的方法来描述,其中最常用的方法是使用粘度和弹性来描述流体的流动行为。
粘度通常是指流体内部的阻力,而弹性通常是指流体内部的应变能。
这两个特性可以同时影响粘弹性流体的流动规律。
2. 粘弹性流体的流变学流变学是研究物质流动过程的科学,它涉及到物质的变形和变形速率。
在流变学中,粘弹性流体是一个十分重要的研究对象,因为它是一类具有复杂性的非牛顿流体。
不同于牛顿流体,粘弹性流体在受到剪切应力时,它的应变率不再是线性的。
为了描述这种非线性,人们提出了许多不同的流变模型,例如齐奇模型、Maxwell模型、Oldroyd模型等等。
这些模型在模拟不同类型的流体流动行为上具有广泛的应用。
3. 粘弹性流体的应用由于其独特的物理特性,粘弹性流体在许多实际应用中发挥了重要作用。
以下是一些具体的应用:3.1 生物医学粘弹性流体在医疗应用中具有广泛的应用,例如用来测试肌肉收缩情况、诊断和治疗疾病、设计人工关节等等。
3.2 工业应用许多工业应用需要使用粘弹性流体,例如制造环氧树脂、设计高分子半导体材料、生产润滑剂以及打印油墨等等。
3.3 土木工程在土木工程中,粘弹性流体的研究主要集中在软基土壤的力学性质方面。
这类土壤通常是由于各种原因引起的松软或压缩,以至于难以承受重压。
研究粘弹性流体在软基土壤中的特性和行为对于改善工程质量具有重要意义。
流体力学中的流体粘性和黏滞性流体力学中的流体粘性和黏性流体力学是研究流体运动和流体力学性质的科学领域。
在流体力学中,流体粘性和黏性是两个重要的概念。
本文将详细介绍流体粘性和黏性的概念、特点以及其在不同领域的应用。
一、流体粘性的概念和特点流体粘性是指流体内部分子间相互摩擦的性质。
当一个力作用于流体时,流体分子会相互移动并产生内部的相对运动,即流体内部会产生剪切应力。
而流体粘性就是流体对剪切应力的抵抗能力。
1. 流体的黏性流体的黏性是流体粘性的一种表现形式。
黏性是指流体内部分子的相互作用力导致的粘滞效应。
当流体受到外力作用时,分子之间会互相摩擦并产生内部的扰动。
流体的黏性可以通过流动的阻力和黏滞系数来描述。
黏滞系数越大,流体的黏性越大,流动受阻越明显。
2. 流体的牛顿性和非牛顿性根据流体黏性的不同特性,流体可以分为牛顿流体和非牛顿流体。
牛顿流体是指在剪切应力作用下,流体的黏滞系数保持不变的流体。
在牛顿流体中,流体的黏滞系数与流体的剪切速率无关。
水和空气是典型的牛顿流体。
非牛顿流体是指在剪切应力作用下,流体的黏滞系数随剪切速率的变化而变化的流体。
在非牛顿流体中,流体的黏滞系数会随着剪切应力的增加而减小或增加。
例如,墨汁和牛奶都是非牛顿流体。
二、流体粘性和黏性的应用流体的粘性和黏性在多个领域都有着广泛的应用。
1. 工程领域的应用在工程领域中,流体粘性和黏性的研究对于设计和优化各种结构和系统至关重要。
例如,汽车工程师需要考虑空气对车辆运动的阻力,以及黏性对车辆行驶稳定性的影响。
同时,在船舶和飞机设计中,黏性的考虑也是十分重要的。
2. 传热领域的应用流体的粘性和黏性对于传热过程有着明显的影响。
在传热装置中,如换热器和冷却剂管道中,黏滞系数决定了热传递的速率和传热效率。
而流体的黏性也直接影响着粘弹性材料的应用,如胶水、涂料等。
3. 地球科学中的应用流体粘性和黏性的研究对于地球科学领域的地壳运动、地震活动以及火山喷发等现象的解释和预测具有重要意义。
粘性流体的基本性质及其在实际问题中的应用粘性流体是指在流动过程中具有阻力和黏滞性的流体。
相比于牛顿流体(如水和空气),粘性流体在流动中表现出更复杂的行为。
粘性流体的特性在许多领域有着广泛的应用,包括工程、医学、化学等。
本文将介绍粘性流体的基本性质,并探讨其在实际问题中的应用。
一、粘性流体的基本性质1. 粘度粘度是衡量流体粘性的物理量。
粘度越高,流体越黏稠,流动越困难。
粘度可以分为动态粘度和运动粘度两种。
动态粘度是指单位面积内两层流体之间的切力与切变速率之比。
运动粘度则是指单位质量流体通过单位面积时发生的粘滞阻力。
2. 滞后现象粘性流体在受力后会出现滞后现象,即应力与应变之间存在时间延迟的关系。
在应力变化时,粘性流体的应变不会立即发生变化,而是会存在一定的滞后时间。
3. 流动性粘性流体的流动性与其粘度有着密切关系。
高粘度的粘性流体在流动过程中更容易形成涡流并阻碍流动,而低粘度的粘性流体则更容易快速流动。
二、粘性流体在实际问题中的应用1. 工程领域粘性流体在工程领域中有广泛的应用。
例如,在飞机设计中,粘性流体力学模拟可以帮助工程师预测飞机在不同速度下的空气阻力和升力分布,从而优化设计方案。
此外,粘性流体的研究对于液体的输送和处理等工程问题也具有重要意义。
2. 医学领域粘性流体在医学领域中的应用主要体现在血液和体液的流动方面。
粘性流体力学的研究可以帮助医生了解血液在管道中的行为,并对心血管类疾病进行预测和诊断。
此外,粘性流体还被应用于药物输送系统的设计和药物的体内释放机制的研究中。
3. 化学领域粘性流体在化学领域中的应用广泛,例如在聚合物加工中、涂料和胶黏剂的制备中等。
通过研究粘性流体的流变性质,科学家可以优化化学反应和加工过程。
此外,聚合物溶液的黏度和流变特性也在药物制剂和材料科学中发挥重要作用。
总结:本文介绍了粘性流体的基本性质及其在实际问题中的应用。
粘性流体通过其特殊的流动行为,在工程、医学和化学等领域发挥着重要的作用。
流体复习整理资料第一章 流体及其物理性质1.流体的特征——流动性:在任意微小的剪切力作用下能产生连续剪切变形的物体称为流体。
也可以说能够流动的物质即为流体。
流体在静止时不能承受剪切力,不能抵抗剪切变形。
流体只有在运动状态下,当流体质点之间有相对运动时,才能抵抗剪切变形。
只要有剪切力的作用,流体就不会静止下来,将会发生连续变形而流动。
运动流体抵抗剪切变形的能力(产生剪切应力的大小)体现在变形的速率上,而不是变形的大小(与弹性体的不同之处)。
2.流体的重度:单位体积的流体所的受的重力,用γ表示。
g 一般计算中取9.8m /s 23.密度:=1000kg/,=1.2kg/,=13.6,常压常温下,空气的密度大约是水的1/8003. 当流体的压缩性对所研究的流动影响不大,可忽略不计时,这种流体称为不可压缩流体,反之称为可压缩流体。
通常液体和低速流动的气体(U<70m /s )可作为不可压缩流体处理。
4.压缩系数:弹性模数:21d /d pp E N m ρβρ==膨胀系数:)(K /1d d 1d /d TVV T V V t ==β5.流体的粘性:运动流体内存在内摩擦力的特性(有抵抗剪切变形的能力),这就是粘滞性。
流体的粘性就是阻止发生剪切变形的一种特性,而内摩擦力则是粘性的动力表现。
温度升高时,液体的粘性降低,气体粘性增加。
6.牛顿内摩擦定律: 单位面积上的摩擦力为:3/g N m γρ=p V V p V V p d d 1d /d -=-=β21d 1d /d d p V m NV p pρβρ=-=h U μτ=内摩擦力为: 此式即为牛顿内摩擦定律公式。
其中:μ为动力粘度,表征流体抵抗变形的能力,它和密度的比值称为流体的运动粘度ν τ值既能反映大小,又可表示方向,必须规定:公式中的τ是靠近坐标原点一侧(即t -t 线以下)的流体所受的内摩擦应力,其大小为μ du/dy ,方向由du/dy 的符号决定,为正时τ与u 同向,为负时τ与u 反向,显然,对下图所示的流动,τ>0, 即t —t 线以下的流体Ⅰ受上部流体Ⅱ拖动,而Ⅱ受Ⅰ的阻滞。