等差数列和的最值问题
- 格式:pptx
- 大小:139.66 KB
- 文档页数:9
求等差数列前n 项和的最值问题的两种常用解法【必备方法】1.函数法:利用等差数列前n 项和的函数表达式bn an S n +=2,通过配方或借助图象求二次函数最值的方法求解,一定注意n 是正整数。
2.邻项变号法:①0,01<>d a 时,满足⎩⎨⎧≤≥+001n n a a 的项数m 使得n S 取得最大值为m S ; ②当0,01><d a 时,满足⎩⎨⎧≥≤+001n n a a 的项数m 使得n S 取得最小值为m S . 【典例示范】例1、等差数列}{n a 前n 项和为n S ,已知1131,13S S a ==,当n S 最大时,n 的值是( )(A)5 (B)6 (C)7 (D)8解:方法一:由113S S =得01154=+++a a a ,根据等差数列性质可得087=+a a ,根据首项等于13可推知这个数列递减,从而得到0,087<>a a ,故n=7 时,n S 最大.方法二:由113S S =可得d a d a 55113311+=+,把131=a 代入得2-=d ,故n n n n n S n 14)1(132+-=--=,根据二次函数性质,当n=7时,n S 最大. 方法三:根据131=a ,113S S =,知这个数列的公差不等于零.由于113S S =说明这个数列的和先是单调递增的然后又单调递减.根据公差不为零的等差数列的前n 项和是关于n 的二次函数,以及二次函数图象的对称性,当113S S =时,只有72113=+=n 时,n S 取得最大值. 答案:C练习:1.已知在等差数列}{n a 中,311=a ,n S 是它的前n 项的和,2210S S =.(1)求n S ;(2)这个数列前多少项的和最大,并求出这个最大值. 解析:(1)∵102110a a a S ++= ,222122a a a S ++= ,又2210S S =, ∴0221211=++a a a ,则031212211=+=+d a a a ,又311=a ,2-=∴d ,∴21322)1(n n d n n na S n -=-+=。
等差数列前n项和最值问题Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT等差数列前n 项和的最值问题问题引入:已知数列{},n a 的前n 项和212n S n n =+,求这个数列的通项公式.数列是等差数列吗如果是,它的首项与公差分别是什么 解:当n>1时:1122n n n a s s n -=-==-当n=1时:211131122a s ==+⨯= 综上:122na n =-,其中:132a =,2d = 探究1:一般地,如果一个数列{}n a 的前n 项和为:2,n s pn qn r =++≠0,那么这个数列一定是等差数列吗如果是,它的首项和公差分别是什么结论:当r=0时为等差,当r ≠0时不是一、 应用二次函数图象求解最值 例1:等差数列{}n a 中, 1490,a S S >=,则n 的取值为多少时n S 最大分析:等差数列的前n 项和n S 是关于n 的二次函数,因此可从二次函数的图象的角度来求解。
解析:由条件1490,a S S >=可知,d<0,且211(1)()222n n n d dS na d n a n -=+=+-, 其图象是开口向下的抛物线,所以在对称轴处取得最大值,且对称轴为496.52n +==,而n N *∈,且介于6与7的中点,从而6n =或7n =时n S 最大。
1.已知等差数列{n a }中1a =13且3S =11S ,那么n 取何值时,n S 取最大值.解析:设公差为d ,由3S =11S 得:3×13+3×2d/2=11×13+11×10d/2 d= -2, n a =13-2(n-1), n a =15-2n,由⎩⎨⎧≤≥+0a 0a 1n n 即⎩⎨⎧≤+-≥-0)1n (2150n 215得:≤n ≤,所以n=7时,n S 取最大值.2.已知a n 是各项不为零的等差数列,其中a 1>0,公差d <0,若S 10=0,求数列a n 前 5 项和取得最大值.结合二次函数的图象,得到二次函数图象的开口向下,根据图象关于对称轴对称的特点,得到函数在对称轴处取到最大值,,注意对称轴对应的自变量应该是整数或离对称轴最近的整数.a n 是各项不为零的等差数列,其中a 1>0,公差d <0,S 10=0,根据二次函数的图象特点得到图象开口向下,且在n==5时,数列a n 前5项和取得最大值.二、转化为求二次函数求最值例2、在等差数列{n a }中, 4a =-14, 公差d =3, 求数列{n a }的前n 项和n S 的最小值 分析:利用条件转化为二次函数,通过配方写成顶点式易求解。
姓名,年级:时间:求等差数列前n项和S n最值的两种方法(1)函数法:等差数列前n项和的函数表达式S n=an2+bn=a错误!2-错误!,求“二次函数”最值. (2)邻项变号法①当a1>0,d<0时,满足错误!的项数m使得S n取得最大值为S m②当a1<0,d>0时,满足错误!的项数m使得S n取得最小值为S m.例题:1。
等差数列{a n}中,已知a6+a11=0,且公差d〉0,则其前n项和取最小值时的n的值为( )A.6 B.7 C.8 D.9解析解法一:因为a6+a11=0,所以a1+5d+a1+10d=0,解得a1=-152 d,所以S n=na1+错误!d=错误!·n+错误!d=错误!(n2-16n)=错误![(n-8)2-64].因为d>0,所以当n=8时,其前n项和取最小值.解法二:由等差数列的性质可得a8+a9=a6+a11=0.由公差d〉0得等差数列{a n}是递增数列,所以a8<0,a9〉0,故当1≤n≤8时,a n〈0;n≥9时,a n>0,所以当n=8时,其前n项和取最小值.2.在等差数列{a n}中,a1=29,S10=S20,则数列{a n}的前n项和S n的最大值为( )A.S15 B.S16 C.S15或S16 D.S17解法一:∵a1=29,S10=S20,∴10a1+错误!d=20a1+错误!d,解得d=-2,∴S n=29n+错误!×(-2)=-n2+30n=-(n-15)2+225.∴当n=15时,S n取得最大值.解法二:S10=S20,∴a11+a12+⋯a20=0a11+a20×10=0,即a11+a20=0,∴a15+a16=02又因为a1=29,可知等差数列{a n}为递减数列,则a15> 0,a16<0∴当n=15时,S n取得最大值.拓展:(2016·全国卷Ⅰ)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为________.解析:解法一:等比数列{a n}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=错误!。
第2课时 等差数列前n 项和的性质及应用学习目标 1.进一步熟练掌握等差数列的通项公式和前n 项和公式,了解等差数列前n 项和的一些性质.2.掌握等差数列前n 项和的最值问题.知识点一 等差数列前n 项和的性质1.若数列{a n }是公差为d 的等差数列,则数列{S n n }也是等差数列,且公差为d2.2.设等差数列{a n }的公差为d ,S n 为其前n 项和,则S m ,S 2m -S m ,S 3m -S 2m ,…仍构成等差数列,且公差为m 2d .3.若等差数列{a n }的项数为2n ,则S 2n =n (a n +a n +1),S 偶-S 奇=nd ,S 偶S 奇=a n +1a n.4.若等差数列{a n }的项数为2n +1,则S 2n +1=(2n +1)·a n +1,S 偶-S 奇=-a n +1,S 偶S 奇=n n +1.思考 在性质3中,a n 和a n +1分别是哪两项?在性质4中,a n +1是哪一项?答案 中间两项,中间项.知识点二 等差数列{a n }的前n 项和公式的函数特征1.公式S n =na 1+n (n -1)d2可化成关于n 的表达式:S n =d 2n 2+(a 1-d 2)n .当d ≠0时,S n 关于n的表达式是一个常数项为零的二次函数式,即点(n ,S n )在其相应的二次函数的图象上,这就是说等差数列的前n 项和公式是关于n 的二次函数,它的图象是抛物线y =d 2x 2+(a 1-d 2)x 上横坐标为正整数的一系列孤立的点.2.等差数列前n 项和的最值(1)在等差数列{a n }中,当a 1>0,d <0时,S n 有最大值,使S n 取得最值的n 可由不等式组Error!确定;当a 1<0,d >0时,S n 有最小值,使S n 取到最值的n 可由不等式组Error!确定.(2)S n =d 2n 2+(a 1-d 2)n ,若d ≠0,则从二次函数的角度看:当d >0时,S n 有最小值;当d <0时,S n 有最大值.当n 取最接近对称轴的正整数时,S n 取到最值.1.在等差数列{a n }中,若a 1+a 2=2,a 3+a 4=4,则a 7+a 8等于( )A .7 B .8 C .9 D .10答案 B解析 ∵a 1+a 2=2,a 3+a 4=4,由等差数列的性质得a 5+a 6=6,a 7+a 8=8.2.已知数列{a n }为等差数列,a 2=0,a 4=-2,则其前n 项和S n 的最大值为( )A.98 B.94C .1 D .0答案 C解析 由a 4=a 2+(4-2)d ,得-2=0+2d ,故d =-1,a 1=1,故S n =n +n (n -1)2·(-1)=-n 22+3n2=-12(n -32)2+98.所以当n =1或2时,S n 的最大值为1.3.(多选)已知数列{a n }的通项公式是a n =2n -48,则S n 取得最小值时,n 为( )A .22 B .23 C .24 D .25答案 BC解析 由a n ≤0即2n -48≤0得n ≤24.∴所有负项的和最小,即n =23或24.4.已知S n 是等差数列{a n }的前n 项和,若a 1=-2 018,S 2 0192 019-S 2 0132 013=6,则S 2 020=________.答案 2 020解析 由等差数列的性质可得{S n n}也为等差数列,设其公差为d ,则S 2 0192 019-S 2 0132 013=6d =6,∴d =1,∴S nn =S 11+(n -1)d =n -2 019.故S 2 0202 020=2 020-2 019=1,∴S 2 020=2 020.一、等差数列前n 项和的性质例1 (1)在等差数列{a n }中,S 10=120,且在这10项中,S 奇S 偶=1113,则公差d =________.答案 2解析 由Error!得Error!所以S 偶-S 奇=5d =10,所以d =2.(2)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m .解 方法一 在等差数列中,∵S m ,S 2m -S m ,S 3m -S 2m 成等差数列,∴30,70,S 3m -100成等差数列.∴2×70=30+(S 3m -100),∴S 3m =210.方法二 在等差数列中,S m m ,S 2m 2m ,S 3m3m 成等差数列,∴2S 2m2m =S mm +S 3m3m.即S 3m =3(S 2m -S m )=3×(100-30)=210.反思感悟 利用等差数列前n 项和的性质简化计算(1)在解决等差数列问题时,先利用已知求出a 1,d ,再求所求,是基本解法,有时运算量大些;(2) 等差数列前n 项和S n 的有关性质在解题过程中,如果运用得当可以达到化繁为简、化难为易、事半功倍的效果.(3)设而不求,整体代换也是很好的解题方法.跟踪训练1 (1)已知数列{a n }是项数为偶数的等差数列,它的奇数项的和是50,偶数项的和为34,若它的末项比首项小28,则该数列的公差是________.答案 -4解析 设等差数列{a n }的项数为2m ,∵末项与首项的差为-28,∴a 2m -a 1=(2m -1)d =-28,①∵S 奇=50,S 偶=34,∴S 偶-S 奇=34-50=-16=md ,②由①②得d =-4.(2)已知一个等差数列的前10项和为100,前100项和为10,求前110项之和.解 S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100成等差数列.设其公差为d ,前10项和为10S 10+10×92d =S 100=10,解得d =-22,∴S 110-S 100=S 10+(11-1)d =100+10×(-22)=-120,∴S 110=-120+S 100=-110.二、等差数列前n 项和的最值问题例2 在等差数列{a n }中,a 1=25,S 8=S 18,求前n 项和S n 的最大值.解 方法一 因为S 8=S 18,a 1=25,所以8×25+8×(8-1)2d =18×25+18×(18-1)2d ,解得d =-2.所以S n =25n +n (n -1)2×(-2)=-n 2+26n =-(n -13)2+169.所以当n =13时,S n 有最大值为169.方法二 同方法一,求出公差d =-2.所以a n =25+(n -1)×(-2)=-2n +27.因为a 1=25>0,由Error!得Error!又因为n ∈N *,所以当n =13时,S n 有最大值为169.方法三 因为S 8=S 18,所以a 9+a 10+…+a 18=0.由等差数列的性质得a 13+a 14=0.因为a 1>0,所以d <0.所以a 13>0,a 14<0.所以当n =13时,S n 有最大值.由a 13+a 14=0,得a 1+12d +a 1+13d =0,解得d =-2,所以S 13=13×25+13×122×(-2)=169,所以S n 的最大值为169.方法四 设S n =An 2+Bn .因为S 8=S 18,a 1=25,所以二次函数图象的对称轴为x =8+182=13,且开口方向向下,所以当n=13时,S n取得最大值.由题意得Error!解得Error!所以S n=-n2+26n,所以S13=169,即S n的最大值为169.反思感悟 (1)等差数列前n项和S n最大(小)值的情形①若a1>0,d<0,则S n存在最大值,即所有非负项之和.②若a1<0,d>0,则S n存在最小值,即所有非正项之和.(2)求等差数列前n项和S n最值的方法①寻找正、负项的分界点,可利用等差数列性质或利用Error!或Error!来寻找.②运用二次函数求最值.跟踪训练2 在等差数列{a n}中,a10=18,前5项的和S5=-15.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和的最小值,并指出何时取最小值.解 (1)设等差数列的公差为d,因为在等差数列{a n}中,a10=18,S5=-15,所以Error!解得a1=-9,d=3,所以a n=3n-12,n∈N*.(2)因为a1=-9,d=3,a n=3n-12,所以S n=n(a1+a n)2=12(3n2-21n)=32(n-7 2)2-1478,所以当n=3或4时,前n项的和S n取得最小值S3=S4=-18.三、求数列{|a n|}的前n项和例3 数列{a n}的前n项和S n=100n-n2(n∈N*).(1)判断{a n}是不是等差数列,若是,求其首项、公差;(2)设b n=|a n|,求数列{b n}的前n项和.解 (1)当n≥2时,a n=S n-S n-1=(100n-n2)-[100(n-1)-(n-1)2]=101-2n.∵a1=S1=100×1-12=99,适合上式,∴a n =101-2n (n ∈N *).又a n +1-a n =-2为常数,∴数列{a n }是首项为99,公差为-2的等差数列.(2)令a n =101-2n ≥0,得n ≤50.5,∵n ∈N *,∴n ≤50(n ∈N *).①当1≤n ≤50时,a n >0,此时b n =|a n |=a n ,∴数列{b n }的前n 项和S n ′=100n -n 2.②当n ≥51时,a n <0,此时b n =|a n |=-a n ,由b 51+b 52+…+b n =-(a 51+a 52+…+a n )=-(S n -S 50)=S 50-S n ,得数列{b n }的前n 项和S n ′=S 50+(S 50-S n )=2S 50-S n =2×2 500-(100n -n 2)=5 000-100n +n 2.由①②得数列{b n }的前n 项和为S n ′=Error!n ∈N *.反思感悟 已知等差数列{a n },求绝对值数列{|a n |}的有关问题是一种常见的题型,解决此类问题的核心便是去掉绝对值,此时应从其通项公式入手,分析哪些项是正的,哪些项是负的,即找出正、负项的“分界点”.跟踪训练3 在等差数列{a n }中,a 10=23,a 25=-22.(1)数列{a n }前多少项和最大?(2)求{|a n |}的前n 项和S n .解 (1)由Error!得Error!∴a n =a 1+(n -1)d =-3n +53.令a n >0,得n <533,∴当n ≤17,n ∈N *时,a n >0;当n ≥18,n ∈N *时,a n <0,∴数列{a n }的前17项和最大.(2)当n ≤17,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+n (n -1)2d =-32n 2+1032n .当n ≥18,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 17-a 18-a 19-…-a n =2(a 1+a 2+…+a 17)-(a 1+a 2+…+a n )=2(-32×172+1032×17)-(-32n 2+1032n)=32n 2-1032n +884.∴S n =Error!等差数列前n 项和公式的实际应用典例 某单位用分期付款的方式为职工购买40套住房,共需1 150万元,购买当天先付150万元,按约定以后每月的这一天都交付50万元,并加付所有欠款利息,月利率为1%,若交付150万元后的一个月开始算分期付款的第一个月,问分期付款的第10个月应付多少钱?全部付清后,买这40套住房实际花了多少钱?解 因购房时付150万元,则欠款1 000万元,依题意分20次付款,则每次付款的数额依次构成数列{a n },则a 1=50+1 000×1%=60,a 2=50+(1 000-50)×1%=59.5,a 3=50+(1 000-50×2)×1%=59,a 4=50+(1 000-50×3)×1%=58.5,所以a n =50+[1 000-50(n -1)]×1%=60-12(n -1)(1≤n ≤20,n ∈N *).所以{a n }是以60为首项,-12为公差的等差数列.所以a 10=60-9×12=55.5,a 20=60-19×12=50.5.所以S 20=12×(a 1+a 20)×20=10×(60+50.5)=1 105.所以实际共付1 105+150=1 255(万元).[素养提升] (1)本题属于与等差数列前n 项和有关的应用题,其关键在于构造合适的等差数列.(2)遇到与正整数有关的应用题时,可以考虑与数列知识联系,抽象出数列的模型,并用有关知识解决相关的问题,是数学建模的核心素养的体观.1.已知数列{a n}满足a n=26-2n,则使其前n项和S n取最大值的n的值为( ) A.11或12 B.12C.13 D.12或13答案 D解析 ∵a n=26-2n,∴a n-a n-1=-2(n≥2,n∈N*),∴数列{a n}为等差数列.又a1=24,d=-2,∴S n=24n+n(n-1)2×(-2)=-n2+25n=-(n-252)2+6254.∵n∈N*,∴当n=12或13时,S n最大.2.一个等差数列共有10项,其偶数项之和是15,奇数项之和是12.5,则它的首项与公差分别是( )A.0.5,0.5 B.0.5,1C.0.5,2 D.1,0.5答案 A解析 由于项数为10,故S偶-S奇=15-12.5=5d,∴d=0.5,由15+12.5=10a1+10×92×0.5,得a1=0.5.3.(多选)设{a n}是等差数列,S n为其前n项和,且S5<S6=S7>S8,则下列结论正确的是( ) A.d<0B.a7=0C.S9>S5D.S6与S7均为S n的最大值答案 ABD解析 ∵S5<S6=S7>S8,∴a6>0,a7=0,a8<0.∴d<0.∴S6与S7均为S n的最大值.S9-S5=a6+a7+a8+a9=2(a7+a8)<0.∴S9<S5,故C错.4.已知在等差数列{a n}中,|a5|=|a9|,公差d>0,则使得其前n项和S n取得最小值的正整数n 的值是________.答案 6或7解析 ∵公差d>0,|a5|=|a9|,∴-a5=a9,即a5+a9=0.由等差数列的性质,得2a7=a5+a9=0,解得a7=0.故数列的前6项均为负数,第7项为0,从第8项开始为正.∴S n 取得最小值时的n 为6或7.5.已知等差数列的前12项和为354,前12项中偶数项和与奇数项和之比为32∶27,则公差d =________.答案 5解析 由题意得Error!故S 偶=192,S 奇=162,所以6d =S 偶-S 奇=30,故d =5.1.知识清单:(1)等差数列前n 项和的一般性质.(2)等差数列前n 项和的函数性质.2.方法归纳:整体思想、函数思想、分类讨论思想.3.常见误区:求数列{|a n |}的前n 项和时不讨论,最后不用分段函数表示.1.在等差数列{a n }中,a 1=1,其前n 项和为S n ,若S 88-S 66=2,则S 10等于( )A .10B .100C .110D .120答案 B解析 ∵{a n }是等差数列,a 1=1,∴{S n n }也是等差数列且首项为S 11=1.又S 88-S 66=2,∴{S n n }的公差是1,∴S 1010=1+(10-1)×1=10,∴S 10=100.2.若等差数列{a n }的前m 项的和S m 为20,前3m 项的和S 3m 为90,则它的前2m 项的和S 2m 为( )A .30B .70C .50D .60答案 C解析 ∵等差数列{a n }中,S m ,S 2m -S m ,S 3m -S 2m 也成等差数列,∴2(S 2m -S m )=S m +S 3m -S 2m ,∴2(S 2m -20)=20+90-S 2m ,∴S 2m =50.3.已知数列{2n -19},那么这个数列的前n 项和S n ( )A .有最大值且是整数 B .有最小值且是整数C .有最大值且是分数 D .无最大值和最小值答案 B解析 易知数列{2n -19}的通项a n =2n -19,∴a 1=-17,d =2.∴该数列是递增等差数列.令a n =0,得n =912.∴a 1<a 2<a 3<…<a 9<0<a 10<….∴该数列前n 项和有最小值,为S 9=9a 1+9×82d =-81.4.(多选)已知S n 是等差数列{a n }的前n 项和,且S 6>S 7>S 5,下列判断正确的是( )A .d <0B .S 11>0C .S 12<0D .数列{S n }中的最大项为S 11答案 AB 解析 ∵S 6>S 7,∴a 7<0,∵S 7>S 5,∴a 6+a 7>0,∴a 6>0,∴d <0,A 正确;又S 11=112(a 1+a 11)=11a 6>0,B 正确;S 12=122(a 1+a 12)=6(a 6+a 7)>0,C 不正确;数列{S n }中最大项为S 6,D 不正确.故正确的选项是AB.5.在等差数列{a n }中,S n 是其前n 项和,且S 2 011=S 2 018,S k =S 2 009,则正整数k 为( )A .2 017 B .2 018 C .2 019 D .2 020答案 D解析 因为等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数的对称性及S2 011=S2 018,S k=S2 009,可得2 011+2 0182=2 009+k2,解得k=2 020.6.已知在等差数列{a n}中,公差d=1,且前100项和为148,则前100项中的所有偶数项的和为________.答案 99解析 由题意,得S奇+S偶=148,S偶-S奇=50d=50,解得S偶=99.7.已知在等差数列{a n}中,S n为其前n项和,已知S3=9,a4+a5+a6=7,则S9-S6=________.答案 5解析 ∵S3,S6-S3,S9-S6成等差数列,而S3=9,S6-S3=a4+a5+a6=7,∴S9-S6=5.8.已知等差数列{a n}的前n项和为S n,7a5+5a9=0,且a9>a5,则S n取得最小值时n的值为________.答案 6解析 由7a5+5a9=0,得a1d=-173.又a9>a5,所以d>0,a1<0.因为函数y=d2x2+(a1-d2)x的图象的对称轴为x=12-a1d=12+173=376,取最接近的整数6,故S n取得最小值时n的值为6.9.已知在等差数列{a n}中,a1=9,a4+a7=0.(1)求数列{a n}的通项公式;(2)当n为何值时,数列{a n}的前n项和取得最大值?解 (1)由a1=9,a4+a7=0,得a1+3d+a1+6d=0,解得d=-2,∴a n=a1+(n-1)·d=11-2n.(2)方法一 a1=9,d=-2,S n=9n+n(n-1)2·(-2)=-n2+10n=-(n-5)2+25,∴当n=5时,S n取得最大值.方法二 由(1)知a1=9,d=-2<0,∴{a n}是递减数列.令a n≥0,则11-2n≥0,解得n≤11 2 .∵n∈N*,∴当n≤5时,a n>0;当n≥6时,a n<0.∴当n=5时,S n取得最大值.10.在数列{a n}中,a1=8,a4=2,且满足a n+2-2a n+1+a n=0(n∈N*).(1)求数列{a n}的通项公式;(2)设T n=|a1|+|a2|+…+|a n|,求T n.解 (1)∵a n+2-2a n+1+a n=0,∴a n+2-a n+1=a n+1-a n,∴{a n}是等差数列,又∵a1=8,a4=2,∴d=-2,a n=a1+(n-1)d=10-2n,n∈N*.(2)设数列{a n}的前n项和为S n,则S n=8n+n(n-1)2×(-2)=9n-n2.∵a n=10-2n,令a n=0,得n=5.当n>5时,a n<0;当n=5时,a n=0;当n<5时,a n>0.∴当n≤5时,T n=|a1|+|a2|+…+|a n|=a1+a2+…+a n=9n-n2.当n>5时,T n=|a1|+|a2|+…+|a n|=a1+a2+…+a5-(a6+a7+…+a n)=S5-(S n-S5)=2S5-S n=2×(9×5-25)-9n+n2=n2-9n+40,∴T n=Error!11.若数列{a n}的前n项和是S n=n2-4n+2,则|a1|+|a2|+…+|a10|等于( ) A.15 B.35 C.66 D.100答案 C解析 易得a n =Error!|a 1|=1,|a 2|=1,|a 3|=1,令a n >0,则2n -5>0,∴n ≥3.∴|a 1|+|a 2|+…+|a 10|=1+1+a 3+…+a 10=2+(S 10-S 2)=2+[(102-4×10+2)-(22-4×2+2)]=66.12.已知等差数列{a n }的前n 项和为S n ,a 2=11,S 1515-S 77=-8,则S n 取最大值时的n 为( )A .6B .7C .8D .9答案 B解析 设数列{a n }是公差为d 的等差数列,则{S n n }是公差为d2的等差数列.因为S 1515-S 77=-8,故可得8×d2=-8,解得d =-2;则a 1=a 2-d =13,则S n =-n 2+14n =-(n -7)2+49,故当n =7时,S n 取得最大值.13.已知S n ,T n 分别是等差数列{a n },{b n }的前n 项和,且S n T n =2n +14n -2(n ∈N *),则a 10b 3+b 18+a 11b 6+b 15=________.答案 4178解析 因为b 3+b 18=b 6+b 15=b 10+b 11,所以a 10b 3+b 18+a 11b 6+b 15=a 10+a 11b 10+b 11=10(a 10+a 11)10(b 10+b 11)=S 20T 20=2×20+14×20-2=4178.14.已知等差数列{a n }的前n 项和为S n ,且S 4S 8=13,那么S 8S 16=________.答案 310解析 设S4=k,S8=3k,由等差数列的性质得S4,S8-S4,S12-S8,S16-S12构成等差数列.所以S8-S4=2k,S12-S8=3k,S16-S12=4k.所以S12=6k,S16=10k.S8S16=3 10.15.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.答案 11 7解析 设等差数列{a n}的项数为2n+1(n∈N*),S奇=a1+a3+…+a2n+1=(n+1)(a1+a2n+1)2=(n+1)a n+1,S偶=a2+a4+a6+…+a2n=n(a2+a2n)2=na n+1,所以S奇S偶=n+1n=4433,解得n=3,所以项数2n+1=7,S奇-S偶=a n+1,即a4=44-33=11,为所求的中间项.16.已知数列{a n}的前n项和为S n,a n>0,a1<2,6S n=(a n+1)(a n+2).(1)求证:{a n}是等差数列;(2)令b n=3a n a n+1,数列{b n}的前n项和为T n,求证:T n<1.证明 (1)因为6S n=(a n+1)(a n+2),所以当n≥2时,6S n-1=(a n-1+1)(a n-1+2),两式相减,得到6a n=(a2n+3a n+2)-(a2n-1+3a n-1+2),整理得(a n-a n-1)(a n+a n-1)=3(a n+a n-1),又因为a n>0,所以a n-a n-1=3,所以数列{a n}是公差为3的等差数列.(2)当n=1时,6S1=(a1+1)(a1+2),解得a1=1或a1=2,因为a1<2,所以a1=1,由(1)可知a n-a n-1=3,即公差d=3,所以a n=a1+(n-1)d=1+(n-1)×3=3n-2,所以b n=3a n a n+1=3(3n-2)(3n+1)=13n-2-13n+1,所以T n=1-14+14-17+…+13n-2-13n+1=1-13n+1<1.。
因为扇形的半径为1,所以|O Pң|=1.又O PʅO B,故O Pң O Bң=0.因为øA O B=2π3,所以øA O P=π6,于是P Mң P Nң=(P Oң+O Mң) (P Oң+O Nң)=P Oң2+P Oң O Nң+O Mң P Oң+O Mң O Nң=1+0+|O M|c o s5π6+|O M| |O N|c o s2π3ɤ1+0ˑ(-32)+0ˑ(-12)=1.综上,P Mң P Nң的最大值为1.如果两个向量的夹角是钝角,那么它们的数量积是负值,所以本例中要使P Mң P Nң值最大,只需M,N两点与O重合.2 3㊀数量积定值问题例5㊀已知线段A B是半径为r(r>0)的圆O的一条弦,且A B=2,试问A Oң A Bң是定值(与r的大小无关)吗?请探究.先将问题特殊化:容易求得,当弦A B为直径时,有A Oң A Bң=2;当әA O B为正三角形时,也有A Oң A Bң=2,于是可以大胆猜想A Oң A Bң为定值2,那么这个论断正确吗?下面加以严格证明.如图5所示,过点O作O HʅA B于点H,则A Oң A Bң=|A Oң||A Bң|c o søO A B=(|O Aң| c o søO A B) |A Bң|=|AHң||A Bң|=12|A Bң|2=2.图5对于动中有定问题,通常可以从特殊值或运动的特殊位置入手,先找到 疑似定值 ,然后讨论一般情形并证明.解答本题还需注意向量的投影在圆中的运用,即A Oң A Bң的大小仅取决于弦A B的长短.从以上五个例题可以看出,无论是静态还是动态问题,平面向量数量积问题都离不开数量积定义式的应用,同时要注意图形特征,善于将欲求向量转化为已知向量.这类问题虽然背景比较新颖,但除去背景的 外包装 ,其实就是极为普通的平面向量数量积运算问题.(作者单位:甘肃省张掖市实验中学)Җ㊀山东㊀袁海艳㊀㊀在等差数列中,经常会碰到有关最值的问题,主要是等差数列前n项和的最值问题.通过题目中给出的相关信息,结合数列的相关性质,确定前n项和中的最值问题,是函数性质的一种特殊表现.1㊀邻项变号法(不等式法)等差数列中求前n项和S n的最大(小)值,其思路是找出某一项,使这项及它前面的项皆取正(负)值或零,而它后面的各项皆取负(正)值,则从第1项起到该项的各项的和为最大(小).例1㊀若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=时,{a n}的前n项和最大.根据等差数列的性质有a7+a8+a9=3a8>0,可得a8>0.又a7+a10=a8+a9<0,则a9<0,所以当n=8时,等差数列{a n}的前n项和最大.本题根据等差数列的相关性质,利用邻项变号法,结合题意的相关知识和对应的要求加以分析求解等差数列的前n项和的最值.2㊀配方法把等差数列前n项和S n表示成关于n的二次函数,利用配方法,运用二次函数的知识求解等差数列前n项和的最值问题,要注意项数n的取值为正整数.例2㊀数列{a n}的前n项和S n=33n-n2,问n为何值时,S n有最大值?由于S n=33n-n2=-(n-332)2+10894,所以当n=16或n=17时,S n有最大值272.本题直接进行配方,利用二次函数的知识求解等差数列前n项和的最值,要注意项数n的取值为正整数.3㊀图象法根据等差数列的性质,往往把等差数列前n项和61S n 表示成关于n 的二次函数,利用二次函数所对应的图象与性质确定相应的最值.例3㊀设等差数列{a n }的前n 项和为S n ,已知a 1>0,S 12>0,S 13<0,指出S 1,S 2, ,S 12中哪一个值最大,并说明理由.如图1所示,因为{a n }是等差数列,所以S n =d 2n 2+(a 1-d2)n ,因为S 12>0,S 13<0,所以a 13=S 13-S 12<0,因为a 1>0,a 13<0,所以d <0,所以点(n ,S n )分布在开口方向向下的抛物线y =d 2x2+(a 1-d2)x 的图象上.设二次函数y =d 2x 2+(a 1-d2)x 的对称轴为x =n 0,则2n 0是二次函数的一个零点,因为S 12>0,S 13<0,所以12<2n 0<13,所以6<n 0<6 5.易知n =6对应的点A (6,S 6)到对称轴的距离比n =7对应的点B (7,S 7)到对称轴的距离更小,所以点A 为最高点,S 6最大.图1本题通过把求和公式转化为相应的二次函数的解析式,利用二次函数的图象与性质来确定S n 的最值.4㊀数列性质法等差数列的单调性㊁首末两项等距的相加性等性质在解决等差数列的最值问题中经常采用,体现了函数思维㊁整体代换思维的应用.数列性质法能简化运算,优化解题过程.例4㊀在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值.由于a 1=20,S 10=S 15,则10ˑ20+10ˑ92d =15ˑ20+15ˑ142d ,解得d =-53,由S 10=S 15,可得a 11+a 12+a 13+a 14+a 15=0,结合等差数列的性质可得5a 13=0,即a 13=0.综上,当n =12或13时,S n 有最大值,且最大值为S 12=S 13=12ˑ20+12ˑ112ˑ(-53)=130.求解此类问题方法众多,可以采用邻项变号法㊁配方法等,而结合题目条件,利用等差数列的性质法来处理显得更为简单巧妙.利用数列性质法来求解最值问题时,要注意题目中的条件与数列性质的转化.5㊀转化法在解决一些特别数列的最值问题时,往往通过转化,把问题转化为有关等差数列的单调性㊁相关项的正负或大小关系问题,进而根据求和问题加以判断与应用.例5㊀若数列{a n }是等差数列,数列{b n }满足b n =a n a n +1 a n +2(n ɪN ∗),{b n }的前n 项和为S n ,若{a n }中满足3a 5=8a 12>0,试问n 为何值时,S n 取得最大值?证明你的结论.由于3a 5=8a 12>0,则3a 5=8(a 5+7d )>0,解得a 5=-565d >0,即d <0,而a 5=-565d =a 1+4d >0,所以a 1=-765d >0,即数列{a n }是首项为正数的递减数列.由a n ȡ0,a n +1ɤ0,{得-765d +(n -1)d ȡ0,-765d +n d ɤ0,ìîíïïïï解得1515ɤn ɤ1615,故n =16,即a 16>0,a 17<0,此时a 1>a 2> >a 16>0>a 17>a 18> ,根据b n =a n a n +1 a n +2(n ɪN ∗),可得b 1>b 2> >b 14>0>b 17>b 18> ,而b 15=a 15 a 16 a 17<0,b 16=a 16 a 17a 18>0,所以S 14>S 13> >S 1,S 14>S 15<S 16,又a 15=a 1+14d =-65d >0,a 18=a 1+17d =95d <0,所以a 15<|a 18|,即|b 15|<b 16,也即b 15+b 16>0,所以S 16>S 14,即n =16时,S n 取得最大值.转化与化归思想在解决数列的最值问题中经常碰到,往往是通过数列的项㊁求和公式㊁数列性质等的转化,把比较繁杂的问题转化为比较常见且方便求解分析的问题.在研究等差数列的最值问题中,以上五种方法可以灵活应用,当然有时对于同一个题目,五种方法都适用,关键是根据题目条件选择最适当的方法加以分析.通过不同方法的比较与渗透,能提高学生的知识应用能力与问题解决能力.(作者单位:山东省青岛市城阳第一高级中学)71。