Web挖掘技术
- 格式:ppt
- 大小:243.00 KB
- 文档页数:29
摘要WWW"是个丌放的全球性资源,它是世界上最丰富和最密集的信息来源。
随着WWW上信息的爆炸性增长,在如此海量的数据中发现有用的信息变得越来越困难。
数据挖掘就是从大量的数据中发现隐含的规律性的内容,解决数据的应用质量问题。
充分利用有用的数据,废弃虚伪无用的数据,是数据挖掘技术撮重要的应用。
因此,采用数据挖掘技术从WWW上提取隐含的、未知的、非平凡的及有潜存心用价值的信启、,具有十分重要的现实意义和广泛的应用前景。
本文首先简要论述了WWW发展的基本现状以及当前存在的一些问题。
随后,简要介绍了数据挖掘技术的基本概念、原理,接着,概要的介绍了本文对于Web数据挖掘所用到的技术一Java和XML技术,在此基础上研究了数据挖掘技术在WWWL的应用,针对Web数据内容挖掘进行了详细地论述。
文中通过一个具体的案例详细论述了实现Web数据内容挖掘的一种方法以及对该方法的分析。
最后,对全文进行了总结。
关键词:WWW,Web数据挖掘,XMLAbstractTheWorldWideWebisadistributedglobalinformationresourcecontainingalargeamountofdatarelevanttoessentiallyalldomainsofhumanactivity.GiventhehjghrateofthevolumeofdataavailableontheWWⅥifindingusefulinformationinsuchalargeamountofdatabecomesamoredifficultprocesseveryday.DataMiningisthetermgiventOtheautomateddiscoveryofnon—obvious,potentiallyusefulandpreviouslyunknowninformationfromlargedatasources.SoobtainingvaluableinformationbyDataMiningtechniquesintelligentlyandautomatically,improvingefficiencyoftheWWWhastremendousapplicationvalues.Inthispaper,wefirstgenerallyintroducetheimprovementofWWWandsomeproblemsunsolved.Andthenwedescribethebasicconceptsandtheoriesofdatamining.ThefollowingisdissertatedtheapplicationofdataminingtechniquestotheWoi’ldWideWeb,anddiscussindetailthecontent、characteristic、problemsunsolvedotlwebconteNminingandwebusagemining.Andthen,wegenerallyintroducethetechniquesofuseforDataMininginthepaper勺aVaandxml.Throughaconcretesample,wedescribeindetailoneofthemethodthatrealizeWebDataMining.Finallywemakeaconclusionofthepaper.Keywords:∥烀?彤WebDataMining,XML独创性声明本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。
Web数据挖掘在搜索引擎中的运用摘要:随着互联网技术的不断发展,在网络中数据与信息不断增多的背景下,就需要利用数据搜索引擎的方式来寻找出用户想要查询的信息,进而达到收集信息的目的。
本文主要探讨的是web挖掘技术在搜索引擎中的应用,首先分析了web挖掘的概念及其内容,在此基础上阐述了搜索引擎存在的不足,最后叙述了web挖掘技术在搜索引擎中的应用。
关键词:数据挖掘;互联网;搜索引擎中图分类号:tp391.31 web挖掘的概念及其内容对于web挖掘来说,经过了几年的发展我们并不陌生,但是对于不同人来说web挖掘都有着不同的理解方式,而现阶段的web挖掘内容主要包含着三个方面。
1.1 web内容挖掘web内容挖掘是整个web数据挖掘技术的核心,对互联网中的信息进行分析后我们可以看出,其主要是通过互联网中的各种类型的服务、数据源以及信息源组成的,例如ftp、telnet和www等。
由于web内容挖掘具有很多优势,因此数字图书馆、政府办公和电子商务等都是采用web的方式来对数据库进行访问的。
同时web内容挖掘所涉及的范围也是非常广泛的,除了图像和文本外,还包含了视频、音频以及多媒体等。
1.2 web结构挖掘对于web结构挖掘来说主要是针对web中的文档结构进行分析,从组织之间的结构模式来获取有价值的信息。
web的结构挖掘技术具体来说就是在互联网中的超链接之间的关系和web文档自身的结构综合到一起而推导出的一种超出web以外的信息。
1.3 web行为挖掘所谓web行为挖掘技术,就是通过互联网中的web服务器所包含的日志文件以及互联网中用户的信息进行统计与处理进而获取有用的信息反馈给查询者。
具体的工作模式是在www服务器中用户登录的信息进行后台备份后进行归类并分析,最终达到获取用户行为的目标。
2 现阶段搜索引擎的不足由于在互联网中主要是通过html语言规范来对信息进行描述的,并且对互联网中的信息进行包装、传输以及发布也都是经过web的方式来处理的。
浅谈Web数据挖掘技术作者:李晓玮来源:《电脑知识与技术》2013年第22期摘要:随着网络的快速发展与普及,大量有用的网络信息给人们生活、工作和学习带来了便利。
与此同时网络中还存在着许多无用的信息,如何从浩如烟海的数据海洋中,快速准确的查找数据,成为了当今社会不可忽视的问题。
Web数据挖掘技术,正是解决这一问题的关键。
该文从Web数据挖掘技术的角度,阐述Web数据挖掘的概念、分类、过程及常见的Web数据挖掘算法。
关键词: Web数据挖掘;PageRank算法;网络数据中图分类号:TP311.12 文献标识码:A 文章编号:1009-3044(2013)22-4992-021 概述当前,人们随时随地都在利用网络获取信息,不断利用网络进行着上传和下载的操作,这些信息数据在网络上传播和储存着。
因此,网络就形成了一个庞大的数据存储集散地。
如何从海量的网络数据中快速有效地对数据进行分析和检索,并在其中发觉潜在有用的信息,是当今社会需要解决的问题。
Web数据挖掘技术正是很好的解决了这个问题,以下将探讨一下Web 数据挖掘技术。
2 Web数据挖掘概念2.1数据挖掘Web数据挖掘是数据挖掘的一个分支,首先需要了解什么是数据挖掘。
数据挖掘(Data Mining, DM),是指从大量数据中提取有效的、新颖的、潜在有用的、最终可被理解的知识的过程。
在数据库系统中称其为知识发现(Knowledge Discovery in Database, KDD)。
Web 数据挖掘技术融合了数据库系统、统计学、信息科学、人工智能、机器学习等,是一个新兴的多学科交叉应用领域。
2.2 Web数据挖掘Web数据挖掘是在数据挖掘技术的基础上,针对网络数据主要是Web文档和服务日志文件进行的数据分析、归纳和汇总并在其中发现和提取潜在有用的信息及知识的技术。
3 Web数据挖掘的分类根据 Web 数据挖掘的对象,可将 Web 数据挖掘划分为三种类型。
Web数据挖掘在电子商务的应用1电子商务中的数据挖掘简介电子商务中的数据挖掘即Web挖掘,是利用数据挖掘技术从www的资源(即 Web 文档)和行为(即Web服务)中自动发现并提取感兴趣的、有用的模式和隐含的信息,它是一项综合技术,涉及到Internet技术学、人工智能等多个领域。
当电子商务在企业中得到应用时,企业信息系统将产生大量数据,并且迫切需要将这些数据转换成有用的信息,为企业创造更多潜在的利润,数据挖掘概念就是从这样的商业角度开发出来的。
2Web数据挖掘的流程Web数据挖掘是对商业数据库中的大量业务数据进行抽取、转换、分析和其他模型化处理,从中提取商业决策的关键性数据,可以使企业把数据转化为有用的信息帮助决策,从而在市场竞争中获得优势地位。
在电子商务环境下,Web数据挖掘主要分为以下儿步:(1)数据收集。
首先数据收集主要针对web数据中的服务器数据、用户数据。
其中服务器数据是Web挖掘中的主要对象。
服务器中承载着用户访问时产生的对应的服务数据,其中包括了:日志文件、cookie文件、数据流。
将这些数据进行初步收集,再针对这些数据进行深度分析挖掘。
(2)数据选择和预处理。
通过数据收集将数据进行分类,根据所需的信息主题对收集的数据进行选择,通过选择相关的数据项缩小数据处理的范用,挑选其中的有效数据进行数据预处理。
数据预处理能够提高挖掘效率,为之后的数据分析提供有效的数据。
Web数据中大多数都是半结构或非结构化的,所以对web数据进行直接处理是不可行的。
数据预处理能够把半结构或非结构化的数据处理成标准的数据集方便后期处理。
(3)模式发现。
模式发现是运用各种方法,发现数据中隐藏的模式和规则。
通过模式发现技术对预处理之后的数据进行处理得到相应的事务数据库,利用模式发现对数据进行初步挖掘,将预处理下的事务数据转换成可被挖掘的存储方式,通过数据挖掘模式算法对其中有效的、新奇的、有用的及最终可以理解的信息和知识进行挖掘与总结。
面向Web的数据挖掘技术[摘要] 随着internet的发展,web数据挖掘有着越来越广泛的应用,web数据挖掘是数据挖掘技术在web信息集合上的应用。
本文阐述了web数据挖掘的定义、特点和分类,并对web数据挖掘中使用的技术及应用前景进行了探讨。
[关键词] 数据挖掘web挖掘路径分析电子商务一、引言近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。
数据挖掘是面向发现的数据分析技术,通过对大型的数据集进行探查。
可以发现有用的知识,从而为决策支持提供有力的依据。
web目前已成为信息发布、交互和获取的主要工具,它是一个巨大的、分布广泛的、全球性的信息服务中心。
它涉及新闻、广告、消费信息、金融管理、教育、政府、电子商务和其他许多信息服务。
面向web的数据挖掘就是利用数据挖掘技术从web文档及web服务中自动发现并提取人们感兴趣的、潜在的有用模型或隐藏的信息。
二、概述1.数据挖掘的基本概念数据挖掘是从存放在数据库、数据仓库、电子表格或其他信息库中的大量数据中挖掘有趣知识的过程。
数据挖掘基于的数据库类型主要有: 关系型数据库、面向对象数据库、事务数据库、演绎数据库、时态数据库、多媒体数据库、主动数据库、空间数据库、遗留数据库、异质数据库、文本型、internet 信息库以及新兴的数据仓库等。
2.web数据挖掘web上有少量的数据信息,相对传统的数据库的数据结构性很强,即其中的数据为完全结构化的数据。
web上的数据最大特点就是半结构化。
所谓半结构化是相对于完全结构化的传统数据库的数据而言。
由于web的开放性、动态性与异构性等固有特点,要从这些分散的、异构的、没有统一管理的海量数据中快速、准确地获取信息也成为web挖掘所要解决的一个难点,也使得用于web的挖掘技术不能照搬用于数据库的挖掘技术。
因此,开发新的web挖掘技术以及对web文档进行预处理以得到关于文档的特征表示,便成为web挖掘的重点。
Web数据挖掘技术【摘要】文章主要描述了Web挖掘的原理、分类、数据挖掘的关键技术和数据挖掘的方法。
针对Web数据的复杂性和特殊性,Web的数据挖掘必须对Web 页做必要的数据处理,使之达到结构化数据的挖掘要求,或使用XML技术来构造半结构数据模式再进行数据挖掘。
【关键词】Web挖掘;内容挖掘;结构挖掘;使用挖掘0引言随着Internet/Intranet技术的发展,尤其是Web的全球普及使得Web上信息量无比丰富,Web已经成为人们获取信息的重要途径,但最先进的搜索引擎也只能找到Web网页上面很少的网页,而且无论怎么选择关键词都会返回大量并不需要的结果。
如何从非格式化数据信息中有效地挖掘出有用的信息是对数据挖掘领域的一个新挑战。
Web上的数据信息不同于数据库。
它主要是些大量的、异质的Web信息资源,文档结构性差,其数据多为半结构化或非结构化,信息不能清楚地用数据模型来表示。
因此在Web的数据挖掘需要用到很多不同于单个数据仓库挖掘的技术。
1Web数据挖掘概述1.1 Web数据挖掘概念Web数据挖掘是一项综合技术,是利用数据挖掘技术从WWW数据资源中抽取信息的过程,结合了数据挖掘、信息处理、可视化、数理统计等领域的成熟技术,是对Web数据资源中蕴含的未知的有潜在应用价值的模式的提取。
1.2 Web数据挖掘原理通常Web挖掘过程可以分为以下几个处理阶段:资源发现、数据抽取及数据预处理、数据汇总及模式识别、分折验证。
目标数据集根据用户需求,从Web 数据源中提取的相关数据,Web数据挖掘主要从这些数据通信中进行数据提取;预处理过程从数据中去除明显错误或冗余的数据,并将数据转换成为有效和易于理解的形式;模式分析对发现的模式进行解释和评估;最后将发现的知识以用户能理解的方式提供给用户。
1.3 Web数据挖掘分类根据挖掘对象的不同,Web挖掘可以分为三类,Web内容挖掘(WCM)、Web结构挖掘(WSM)和Web使用挖掘(WUM)。