数据挖掘在Web中的应用案例分析
- 格式:doc
- 大小:33.50 KB
- 文档页数:3
数据挖掘在Web中的应用研究摘要:web中的数据挖掘技术是一种新型的技术,web自身的特点,决定了web数据挖掘技术具有更多的特点,而且应用也非常广泛,不仅能够提取页面的信息,进行站点设计分析,而且在电子商务方面也具有非常广阔的应用前景。
本文对数据挖掘技术在web中的应用进行分析。
关键词:数据挖掘技术;web应用;网络技术中图分类号:tp352 文献标识码:a 文章编号:1007-9599 (2012)18-0000-02随着网络技术的快速发展,网络上数据资源的越来越丰富,人们迫切需要将这些数据转换成有用的信息和知识,进而促生了数据挖掘(data mining,dm)和知识发现(knowledge discovery,kd)领域。
信息技术的发展,对web应用提出更高了要求,为了能够满足人们对信息获取的要求,研究基于web的数据挖掘技术,以便人们能够更加智能、更加自动地抽取数据以及信息中的知识。
1 数据挖掘技术相关概述1.1 基本概念数据挖掘技术主要是指寻找隐藏在大量数据中有价值的信息,从中寻找其规律,揭示出隐含的、具有潜在价值的知识,从而为决策支持提供有力依据的过程。
数据挖掘的目标主要包括特征、趋势以及相关性等多个方面的信息。
随着网络应用的普及,网络中信息量迅速增加,传统的知识发现(kdd:knowledge discovery indatabases)技术和方法已经不能满足人们从web中获取信息的需要,基于网络技术提供对各类数据的深层次实时分析,提供决策支持服务,就使得基于web的数据挖掘技术应运而生,这种技术将传统的数据挖掘和web应用技术相互结合起来,实现高度自动化的分析和归纳性的推理。
图1为web数据挖掘原理流程:2.3 在购物网站的应用web数据技术采用web-dms系统可以构建一个基于web 的挖掘的购物网站和交易环境,还能够充分利用站点上积累的信息,从而更好地服务于企业和客户。
在购物网站中采用web 数据挖掘技术不仅能够通过了解购物者的行为习惯,选择提供最佳的服务方式、消费习惯,还能够分析购物者的个人爱好[3],从而提供更加贴切的商品推介。
[数据挖掘在Web中的应用]在竞争日益激烈的网络经济中,只有赢得用户才能最终赢得竞争的优势。
作为一个网站,你知道用户都在你的网站上干什么吗?你知道你的网站哪些部分最为用户喜爱、哪些让用户感到厌烦?什么地方出了安全漏洞?什么样的改动带来了显著的用户满意度提高、什么样的改动反而丢失了用户?你怎样评价你的网站广告条的效率、你知道什么样的广告条点击率最高吗?“知己知彼,才能百战不殆",你真的了解自己吗?挑战的背后机会仍存,所有客户行为的电子化(Click Stream),使得大量收集每个用户的每一个行为数据、深入研究客户行为成为可能.如何利用这个机会,从这些“无意义”的繁琐数据中得到大家都看得懂的、有价值的信息和知识是我们面临的问题。
[问题]:1.根据你所学的知识,思考从网站中所获取的大量数据中,我们能做哪些有意义的数据分析?基于WEB 使用的挖掘,也称为WEB 日志挖掘(Web Log Mining)。
与前两种挖掘方式以网上的原始数据为挖掘对象不同,基于WEB 使用的挖掘面对的是在用户和网络交互的过程中抽取出来的第二手数据。
这些数据包括:网络服务器访问记录、代理服务器日志记录、用户注册信息以及用户访问网站时的行为动作等等。
WEB 使用挖掘将这些数据一一纪录到日志文件中,然后对积累起来的日志文件进行挖掘,从而了解用户的网络行为数据所具有的意义。
我们前面所举的例子正属于这一种类型。
基于WEB 内容的挖掘:非结构化半结构化\文本文档超文本文档\Bag of words n—grams 词短语概念或实体关系型数据\TFIDF 和变体机器学习统计学(包括自然语言处理)\归类聚类发掘抽取规则发掘文本模式建立模式。
基于WEB 结构的挖掘:半结构化数据库形式的网站链接结构\超文本文档链接\边界标志图OEM 关系型数据图形\Proprietary 算法ILP (修改后)的关联规则\发掘高频的子结构发掘网站体系结构归类聚类。
摘要本文首先讨论了基于WEB 的智能教学系统,它以学生为中心,探寻教师的教与学生的学的特征及模式,改变了传统的教学模式,其次研究了数据挖掘技术和人工智能教学系统的关系,为教师和学生建立起一个智能化、个性化的远程教育环境,最后对于基于数据挖掘和WEB 的智能教学系统的未来做出展望。
关键词数据挖掘知识平台Application of Data Mining in the WEB-based Intelligent Teaching System //Tian ZhuoAbstract First of all,this paper discusses the WEB-based intel-ligent teaching system,which focuses on students,explores the characteristics and patterns of teaching and student learning,and changes the traditional teaching model.Secondly,the relationship between data mining technology and artificial intelligence teach-ing system is studied,and an intelligent and individualized dis-tance education environment is established for teachers and stu-dents.Finally,the future of intelligent teaching system based on data mining and WEB is forecasted.Key words data mining;knowledge;platform智能教学系统是教育科学与人工智能算法等技术和计算机网络应用系统的结合,通过计算机来模拟人的大脑思考,搜索老师和学生之间的教学方式,让学生有选择性和针对性地学习需要的知识。
面向Web的数据挖掘技术[摘要] 随着internet的发展,web数据挖掘有着越来越广泛的应用,web数据挖掘是数据挖掘技术在web信息集合上的应用。
本文阐述了web数据挖掘的定义、特点和分类,并对web数据挖掘中使用的技术及应用前景进行了探讨。
[关键词] 数据挖掘web挖掘路径分析电子商务一、引言近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。
数据挖掘是面向发现的数据分析技术,通过对大型的数据集进行探查。
可以发现有用的知识,从而为决策支持提供有力的依据。
web目前已成为信息发布、交互和获取的主要工具,它是一个巨大的、分布广泛的、全球性的信息服务中心。
它涉及新闻、广告、消费信息、金融管理、教育、政府、电子商务和其他许多信息服务。
面向web的数据挖掘就是利用数据挖掘技术从web文档及web服务中自动发现并提取人们感兴趣的、潜在的有用模型或隐藏的信息。
二、概述1.数据挖掘的基本概念数据挖掘是从存放在数据库、数据仓库、电子表格或其他信息库中的大量数据中挖掘有趣知识的过程。
数据挖掘基于的数据库类型主要有: 关系型数据库、面向对象数据库、事务数据库、演绎数据库、时态数据库、多媒体数据库、主动数据库、空间数据库、遗留数据库、异质数据库、文本型、internet 信息库以及新兴的数据仓库等。
2.web数据挖掘web上有少量的数据信息,相对传统的数据库的数据结构性很强,即其中的数据为完全结构化的数据。
web上的数据最大特点就是半结构化。
所谓半结构化是相对于完全结构化的传统数据库的数据而言。
由于web的开放性、动态性与异构性等固有特点,要从这些分散的、异构的、没有统一管理的海量数据中快速、准确地获取信息也成为web挖掘所要解决的一个难点,也使得用于web的挖掘技术不能照搬用于数据库的挖掘技术。
因此,开发新的web挖掘技术以及对web文档进行预处理以得到关于文档的特征表示,便成为web挖掘的重点。
基于Web的数据挖掘及其应用作者:李毅来源:《计算机光盘软件与应用》2012年第19期摘要:Web数据挖掘,就是利用数据挖掘技术自动地从网络文档以及服务中发现和抽取信息的过程。
本文笔者首先对Web数据挖掘的涵义、产生原因、特点以及其特殊的要求做了具体的介绍,然后以其在网络教育和电子商务中的应用重点阐述Web数据挖掘的应用价值。
关键词:Web数据挖掘;信息;网络教育;电子商务中图分类号:TP274 文献标识码:A 文章编号:1007-9599 (2012) 19-0000-021 引言数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机数数据中提取隐含在其中的、人们事先不知道的但又是潜在有用的信息和知识的过程。
包括存储和处理数据,选择处理大数据集的算法、解释结果、使结果可视化。
数据挖掘是一种新的商业信息处理技术,其主要特点是对商业数据库中的大量业务数据进行抽取、转换、分析和其他模型化处理,从中提取辅助商业决策的关键性数据。
利用功能强大的数据挖掘技术,可以使企业把数据转化为有用的信息帮助决策,从而在市场竞争中获得优势地位。
随着信息技术的飞速发展,网络信息搜集的需求与收集结果低效性的矛盾迫切需要对网络资源的整序与检索。
所以传统数据挖掘掘技术不断完善和应用。
Web挖掘就是时代发展的典型产物。
Web数据挖掘采用数据挖掘等信息处理技术,从Web信息资源及Web使用记录中发掘对特定用户感兴趣的、有用的信息或知识的过程,其结果可以为用户决策所使用。
这里所讲的Web信息,从广义上讲,包括Web文本,Web图片,Web动画(如Flash广告,视频信息)等。
换言之,基于Web数据挖掘,就是利用数据挖掘技术自动地从网络文档以及服务中发现和抽取信息的过程。
有学者认为其是在大量已知数据样本的基础上得到数据对象间的内在特性,并以此为依据在Web中进行有目的的信息提取过程。
同时,也有学者将网络环境下的数据挖掘归入网络信息检索与网络信息内容的开发等等。
[数据挖掘在Web中的应用]在竞争日益激烈的网络经济中,只有赢得用户才能最终赢得竞争的优势。
作为一个网站,你知道用户都在你的网站上干什么吗?你知道你的网站哪些部分最为用户喜爱、哪些让用户感到厌烦?什么地方出了安全漏洞?什么样的改动带来了显著的用户满意度提高、什么样的改动反而丢失了用户?你怎样评价你的网站广告条的效率、你知道什么样的广告条点击率最高吗?“知己知彼,才能百战不殆”,你真的了解自己吗?挑战的背后机会仍存,所有客户行为的电子化(Click Stream),使得大量收集每个用户的每一个行为数据、深入研究客户行为成为可能。
如何利用这个机会,从这些“无意义”的繁琐数据中得到大家都看得懂的、有价值的信息和知识是我们面临的问题。
[问题]:1.根据你所学的知识,思考从网站中所获取的大量数据中,我们能做哪些有意义的数据分析?基于WEB 使用的挖掘,也称为WEB 日志挖掘(Web Log Mining)。
与前两种挖掘方式以网上的原始数据为挖掘对象不同,基于WEB 使用的挖掘面对的是在用户和网络交互的过程中抽取出来的第二手数据。
这些数据包括:网络服务器访问记录、代理服务器日志记录、用户注册信息以及用户访问网站时的行为动作等等。
WEB 使用挖掘将这些数据一一纪录到日志文件中,然后对积累起来的日志文件进行挖掘,从而了解用户的网络行为数据所具有的意义。
我们前面所举的例子正属于这一种类型。
基于WEB 内容的挖掘:非结构化半结构化\文本文档超文本文档\Bag of words n-grams 词短语概念或实体关系型数据\TFIDF 和变体机器学习统计学(包括自然语言处理)\归类聚类发掘抽取规则发掘文本模式建立模式.基于WEB 结构的挖掘:半结构化数据库形式的网站链接结构\超文本文档链接\边界标志图OEM 关系型数据图形\Proprietary 算法ILP (修改后)的关联规则\发掘高频的子结构发掘网站体系结构归类聚类.基于WEB 使用的挖掘:交互形式\服务器日志记录浏览器日志记录\关系型表图形\Proprietary 算法机器学习统计学(修改后的)关联规则\站点建设改进与管理销建立用户模式.2.根据你所学的数据挖掘知识,谈谈哪些数据挖掘技术可以应用于Web中,以这些数据挖掘技术可以完成哪些功能?Web Mining 技术已经应用于解决多方面的问题,比如基于WEB 内容和结构的挖掘极大的帮助了我们从浩瀚的网络资源中更加快速而准确的获取所需要的资料,而基于使用的数据挖掘之威力,更是在商业运作上发挥的淋漓尽致,具体表现在:(1)对网站的修改能有目的有依据稳步的提高用户满意度发现系统性能瓶颈,找到安全漏洞,查看网站流量模式,找到网站最重要的部分,发现用户的需要和兴趣,对需求强烈的地方提供优化,根据用户访问模式修改网页之间的连接,把用户想要的东西以更快且有效的方式提供给用户,在正确的地方正确的时间把正确的信息提供给正确的人。
数据挖掘技术在Web预取中的应用研究作者:王双显来源:《数字化用户》2013年第14期【摘要】随着网络使用者的数量与日俱增,使得网络在使用过程中受到的限制和数据传输迟缓性加剧,网络服务质量受到了很大的影响,针对这种情况就需要对技术进行不断研发,数据挖掘技术在未来将会占有广阔的市场。
数据挖掘技术主要对不同的用户进行分析和归类,对Web中的数据进行预读,提高网络使用速度。
本文主要介绍了数据挖掘技术在Web预取中的使用规则和使用方法。
【关键词】数据挖掘 Web预取应用随着网络技术的不断发展,越来越多的行业和领域开始利用网络这一平台来进行自我发展。
互联网的使用使得人们的生活方式更加趋于多样性。
其中WWW以其自身的传输方式和较好的交互性能使得其获得了广泛的应用。
虽然在近些年的发展中,网络速度大大提高,但由于使用人数众多,为网络质量带来了较大的影响。
WWW采用请求和数据服务的方式运行,但由于其中存在的协议没有固定的状态,使得网络服务器不能够为用户提供有效的服务。
在现有的浏览器中使用缓冲机制,控制用户发送的请求频率,减少远程服务器的发送频率。
利用Web 预取技术能够根据用户发出的访问请求进行未来请求的预测,在用户进行网页浏览时对预测的内容进行保存,这样就有力的减少了访问过程中产生的缓冲和延迟。
预取技术的使用有效地缩短了用户的数据获得时间。
一、以Agent技术为基础的智能数据挖掘系统在现有的数据挖掘系统中,存在各种不同的数据挖掘方式,这些系统有着各自不同的特点,但由于其智能性尚不够完善,因此在使用过程中受到了一定的影响。
在Agent技术的基础上进行数据挖掘,是将Agent本身使用到数据挖掘过程中,能够将其本身具有的特点使用到数据挖掘过程中,赋予了数据挖掘系统自治性、自动反应性以及对于环境的适应特点,在整体的结构中包括:数据源、数据预处理、数据挖掘、决策,最后是人机界面,供操作者进行使用。
在进行数据与处理的过程中Agent主要对执行的任务进行确定,根据数据建立起相应的模型,对数据进行进一步的分析和数据的处理以及数据的变换。
数据挖掘在WEB中的应用
唐一之
【期刊名称】《湖南理工学院学报(自然科学版)》
【年(卷),期】2008(21)2
【摘要】网络技术的飞速发展带来了"数据爆炸",要从大量信息中获得所需知识就需要运用知识发现和数据挖掘方法.本文从WEB数据挖掘的对象、方法、过程三个方面进行了探讨,分析了数据挖掘在电子商务中的应用.
【总页数】4页(P33-36)
【作者】唐一之
【作者单位】北京交通大学交通运输学院,北京,100044
【正文语种】中文
【中图分类】TP39
【相关文献】
1.数据挖掘技术在Web中的应用——以基于Apriori算法的Web日志挖掘为例[J], 杨永超
2.WEB数据挖掘技术在电子商务中的应用 [J], 杨亚萍;郑广成
3.数据挖掘技术在Web预取中的应用研究 [J], 任仲晟
4.数据挖掘技术在Web预取中的应用研究 [J], 宋文彬
5.Web数据挖掘技术在信息管理中的应用 [J], 苗雷
因版权原因,仅展示原文概要,查看原文内容请购买。
[数据挖掘在Web中的应用]
在竞争日益激烈的网络经济中,只有赢得用户才能最终赢得竞争的优势。
作为一个网站,你知道用户都在你的网站上干什么吗?你知道你的网站哪些部分最为用户喜爱、哪些让用户感到厌烦?什么地方出了安全漏洞?什么样的改动带来了显著的用户满意度提高、什么样的改动反而丢失了用户?你怎样评价你的网站广告条的效率、你知道什么样的广告条点击率最高吗?“知己知彼,才能百战不殆”,你真的了解自己吗?挑战的背后机会仍存,所有客户行为的电子化(Click Stream),使得大量收集每个用户的每一个行为数据、深入研究客户行为成为可能。
如何利用这个机会,从这些“无意义”的繁琐数据中得到大家都看得懂的、有价值的信息和知识是我们面临的问题。
[问题]:
1.根据你所学的知识,思考从网站中所获取的大量数据中,我们能做哪些有意义的数据分
析?
基于WEB 使用的挖掘,也称为WEB 日志挖掘(Web Log Mining)。
与前两种挖掘方式以网上的原始数据为挖掘对象不同,基于WEB 使用的挖掘面对的是在用户和网络交互的过程中抽取出来的第二手数据。
这些数据包括:网络服务器访问记录、代理服务器日志记录、用户注册信息以及用户访问网站时的行为动作等等。
WEB 使用挖掘将这些数据一一纪录到日志文件中,然后对积累起来的日志文件进行挖掘,从而了解用户的网络行为数据所具有的意义。
我们前面所举的例子正属于这一种类型。
基于WEB 内容的挖掘:非结构化半结构化\文本文档超文本文档\Bag of words n-grams 词短语概念或实体关系型数据\TFIDF 和变体机器学习统计学(包括自然语言处理)\归类聚类发掘抽取规则发掘文本模式建立模式.
基于WEB 结构的挖掘:半结构化数据库形式的网站链接结构\超文本文档链接\边界标志图OEM 关系型数据图形\Proprietary 算法ILP (修改后)的关联规则\发掘高频的子结构发掘网站体系结构归类聚类.
基于WEB 使用的挖掘:交互形式\服务器日志记录浏览器日志记录\关系型表图形\Proprietary 算法机器学习统计学(修改后的)关联规则\站点建设改进与管理销建立用户模式.
2.根据你所学的数据挖掘知识,谈谈哪些数据挖掘技术可以应用于Web中,以这些数据挖
掘技术可以完成哪些功能?
Web Mining 技术已经应用于解决多方面的问题,比如基于WEB 内容和结构的挖掘极大的帮助了我们从浩瀚的网络资源中更加快速而准确的获取所需要的资料,而基于使用的数据挖掘之威力,更是在商业运作上发挥的淋漓尽致,具体表现在:
(1)对网站的修改能有目的有依据稳步的提高用户满意度
发现系统性能瓶颈,找到安全漏洞,查看网站流量模式,找到网站最重要的部分,发现用户的需要和兴趣,对需求强烈的地方提供优化,根据用户访问模式修改网页之间的连接,把用户想要的东西以更快且有效的方式提供给用户,在正确的地方正确的时间把正确的信息提供给正确的人。
(2)测定投资回报率
测定广告和促销计划的成功度
找到最有价值的ISP 和搜索引擎
测定合作和结盟网站对自身的价值
(3)提供个性化网站
对大多数WEB 应用来说,让用户感到真个网站是完全为他自己定制的个性化网站,是WEB 站点成功的秘诀。
针对不同的用户完全按照其个人的兴趣和爱好(数据挖掘算法得到的用户访问模式)向用户动态的提供要浏览的建议自动提供个性化的网站。
3.通过对问题(1)和(2)的回答,你认为用户和网站经营者分别可以得到什么好处?
Web数据挖掘在电子商务方面的应用Web挖掘这方面的应用可以为企业更有效的确认目标市场、改进决策获得更大的竞争优势提供帮助,从中可得到商家用于特定消费群体或个体进行定向营销的决策信息。
电子商务方面的Web挖掘功能主要是如下几个方面:首先,客户分类和客户聚类。
对Web的客户访问信息进行挖掘。
对客户进行分类分析。
应用聚类分析对客户进行分组,并且分析组中客户的共同特征,这样就可以让商家更好了解自己的客户,向客户提供更有针对性的服务。
其次是找到潜在的客户。
在对Web的客户访问信息的挖掘中,利用分类技术可在因特网上找到未来的潜在客户。
最后保留客户的驻留时间。
对于客户而言,在网上每个销售商对于客户来说都是样的,如何尽量使客户在自己的网上驻留更长的时间,这样对于商家才能有更多客户和更大的利润空间。
Web数据挖掘在网络教育中的应用
教育网络化的趋势不仅为学生提供了便利的学习方式和广泛的选择,也为学校提供了更加深入了解学生需求信息和学生行为特征的可能性。
由于受教育对象个体之间存在着极大的差异性,网络教学也必<优麦电子商务论文>须是一种适应个别化学习需求的个性化教学。
这种个性化教学的提供。
是通过将传统的数据挖掘M Web结合起来。
进行Web数据挖掘,即从Web文档和Web活动中抽取学生感兴趣的潜在的有用模式和隐藏的信息,作为对学生提供个性化教学服务的依据,协助管理者优化站点结构。
提高站点效率,更好地为网络教育服务。
在网站设计中的应用
在网站设计方面中的应用,主要是通过对网站内容的挖掘。
特别是对文本内容的挖掘,可以有效地组织网站信息。
如采用自动归类技术实现网站信息的层次性组织;通过对用户访问日志记录信息的挖掘,把握用户感兴趣的信息。
从而有助于开展网站信息推送服务以及个人信息的定制服务,吸引更多的用户。
附:Web数据挖掘中常用的技术:数据挖掘领域常用的分类聚类技术、关联
规则技术序列模式技术和Web特有的路径分析技术等。
分类聚类技术
数据分类技术可以通过挖掘数据中的某些共同特性从而对数据项进行分类。
在Web数据挖掘中,分类技术可以根据捕获的Web访问用户的个人信息或共同的访问模式得出访问某一服务器文件的用户特征。
常用的数据分类技术有:判定树归纳、贝叶斯分类和贝叶斯网络、神经网络、基于案例的推理、遗传算法、粗糙集方法和模糊集方法。
聚类是一个将物理或者抽象对象的集合分组成由类似的对象组成的多个类或簇的过程。
聚类分析技术能用于对Web上的文档进行分类,已发现信息。
聚类分析能作为一个独立的工具来获得数据分布的情况,观察每个簇的特点,集中对某些簇做进一步的分析。
常用的聚
类算法大体上可以划分为几类:划分方法、层次方法、基于密度的方法、基于网格的方法和基于模型的方法。
关联规则挖掘技术
关联规则挖掘技术主要用于从用户访问序列数据库的序列项中挖掘出相关的规则。
在Web挖掘中,关联规则挖掘就是要挖掘出用户在一个访问会话期间从服务器上访问的页面或文件之间的联系,这些页面之间可能并不存在直接的引用关系。
最常用的算法是Aprior 算法,它从事务数据库中挖掘出最大频繁访问项集,这个项集就是关联规则挖掘出来的用户访问模式。
时间序列模式挖掘技术
时间序列模式数据挖掘就是要挖掘出交易集之间的有时间序列的模式。
在网站服务器日志里,用户的访问是以一段时间为单位记载的。
经过数据净化和事件交易确认得到一个间断的时间序列,这些序列所反映的用户行为有助于帮助商家印证其产品所处的生命周期阶段。
路径分析技术
用路径分析技术进行Web数据挖掘时,最常用的是图。
因为Web可以用一个有向图来表示,G=(V,E),V是页面的集合,E是页面之间的超链接集合。
页面抽象为图中的顶点,而页面之间的超链接抽象为图中的有向边。
顶点V的入边表示对V的引用,出边表示V引用了其它的页面。