分数与除法的关系(一)
- 格式:doc
- 大小:34.50 KB
- 文档页数:5
5、分数与除法的关系:
分数的分子相当于除法中的被除数,分母相当于除法中的除数,分数线相当于除法中的除号,分数值相当于除法中的商。
分数是一种数,可以表示两个数相除。
除法是一种运算。
6、把假分数化成带分数的方法是:用分数的分子除以分母,商是带分数的整数部分,余数是分子,分母不变。
如果没有余数,商就是要化成的整数。
7、把带分数化成假分数或整数的方法是:用整数乘分子的积加上原来的分子做分子,分母不变。
8、分数与除法的关系式是:被除数÷除数。
分数应用题知识点总结第1篇分数与除法【知识点】:理解分数与除法的关系:被除数除数=(除数不为0)。
分数的分母不能是0。
因为在除法中,0不能做除数,因此根据分数与除法的关系,分数中的分母相当于除法中的除数,所以分母也不能是0。
运用分数与除法的关系解决实际问题。
用分数来表示两数相除的商。
根据分数与除法的关系把假分数化成带分数的方法。
用分子除以分母,把所得的商写在带分数的整数位置上,余数写在分数部分的分子上,仍用原来的分母作分母。
把带分数化成假分数的方法。
(两种)把带分数分成整数与真分数的和的形式,把整数化成用真分数的分母作分母的假分数,再加上原来的真分数,就可以把带分数转化成假分数。
将整数与分母相乘的积加上分子作分子,分母不变。
分数基本性质【知识点】:理解分数的基本性质。
分数的分子和分母都乘或除以相同的数(0除外),分数的大小不变。
联系分数与除法的关系以及商不变的规律,来理解分数的基本性质。
分子相当于被除数,分母相当于除数,被除数和除数同时乘或除以相同的数(0除外),商不变。
因此分数的分子和分母都乘或除以相同的数(0除外),分数的大小也是不变的。
运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
找最大公因数【知识点】:理解公因数和最大公因数的意义。
两数公有的因数是它们的公因数,其中最大的一个是它们的最大公因数。
找两个数的公因数和最大公因数的方法。
运用找因数的方法先分别找到两个数各自的因数,再找出两个数的因数中相同的因数,这些数就是两个数的公因数;再看看公因数中最大的是几,这个数就是两个数的最大公因数。
会找分子和分母的最大公因数。
补充【知识点】:其他找最大公因数的方法。
找两个数的公因数和最大公因数,可以先找出两个数中较小的数的因数,再看看这些因数中有哪些也是较大的数的因数,那么这些数就是这两个数的公因数。
其中最大的就是这两个数的最大公因数。
例如:找15和50的公因数和最大公因数:可以先找出15的因数:1,3,5,15。
《分数与除法的关系》教案范文一、教学目标:知识与技能:1. 学生能够理解分数与除法之间的关系。
2. 学生能够将除法问题转化为分数问题,并进行解答。
3. 学生能够运用分数与除法的关系解决实际问题。
过程与方法:1. 学生通过观察、分析、归纳等活动,探索分数与除法的关系。
2. 学生通过实际操作,提高解决问题的能力。
情感态度价值观:1. 学生培养对数学的兴趣,感受数学与生活的联系。
2. 学生在解决问题过程中,培养合作、交流的能力。
二、教学重点与难点:重点:1. 分数与除法之间的关系。
2. 运用分数与除法的关系解决实际问题。
难点:1. 分数与除法关系的灵活运用。
2. 解决实际问题中的分数与除法运算。
三、教学方法:情境教学法、引导发现法、合作学习法。
四、教学准备:教师准备PPT、教学卡片、实物模型等教学资源。
学生准备笔记本、笔、计算器等学习工具。
五、教学过程:1. 导入:教师通过一个实际问题引入课题,如:“小明有3个苹果,他想把苹果平均分给他的3个朋友,每个人能分到几个苹果?”引导学生思考除法与分数的关系。
2. 新课导入:教师引导学生观察、分析分数与除法之间的关系,如:分数的分子相当于除法的被除数,分数线相当于除法的除号,分母相当于除法的除数。
3. 实例讲解:教师通过具体实例,讲解分数与除法的关系,如:8 ÷4 = 2,可以表示为8/4 = 2。
引导学生理解分数与除法之间的等价关系。
4. 练习巩固:教师给出一些练习题,让学生运用分数与除法的关系进行解答,如:计算12 ÷6,将其表示为分数形式。
5. 拓展与应用:教师引导学生运用分数与除法的关系解决实际问题,如:一个长方形的长是宽的两倍,求长方形的面积。
6. 课堂小结:教师带领学生总结本节课所学内容,强调分数与除法之间的关系,以及如何在实际问题中运用。
7. 布置作业:教师布置一些课后作业,让学生巩固所学知识,如:运用分数与除法的关系解决实际问题。
《分数与除法的关系》教学反思《分数与除法的关系》教学反思1本节课在学习分数的意义基础上进行教学的。
分数的意义是从部分与整体的关系揭示的。
分数与除法可以表示两个整数相除(除数不能为0)的商揭示分数的另一方面的意义,以加深和扩展学生对分数意义的理解,同时为学习假分数以及把假分数化为整数或带分数作准备。
成功之处:夯实分数的意义的第二种情况。
在教学例1时,将除法的'意义与分数的意义联系起来。
实际上把1个蛋糕平均分给3人,求每人分得几个,就是应用整数除法的意义来列算式,只不过结果是依据分数的意义得出来的。
而在例2的教学中,首先通过学生把3块饼平均分给4个小朋友,每个小朋友分几块,也是应用平均分的除法意义列出算式,然后让学生实际分一分,学生通过动手操作得出三种不同的分法:一是把第1个饼平均分成4份,每个小朋友分得1/4块,再把第2、3个饼同样均分,最后每人分得3个1/4块,把它们拼在一起,得到1个饼的3/4;第二种是把3个饼摞在一起,平均分成4份,每个小朋友分得3个饼的1/4,拼在一起就是1个饼的3/4;第三种是把每个饼平均分成4份,一共分了12份,把12份平均分给4个小朋友,每个小朋友分3份,也就是3个1/4份,即3/4块。
通过两个例题的教学,明确列式与整数除法的意义相同,在计算时依据被除数÷除数=被除数/除数,不足之处:学生在求一个数是另一个数的几分之几时,列式总是出错,被除数和除数容易颠倒。
改进措施:1.加强求一个数是另一个数的几分之几的列式训练。
2.在教学中还要加强分数意义的两种情况的对比,让学生明确分数不仅表示部分与整体之间的关系,还表示实际数量。
《分数与除法的关系》教学反思2分数与除法的关系的理解与掌握,不但可以加深对分数意义的理解,而且为后面学习假分数、带分数、分数的基本性质以及比、百分数打下基础,所以,分数与除法的关系在整个教材中起到承上启下的重要作用。
新课标指出:“学生的教学学习内容应当是现实的,有意义的,富有挑战性的,这些内容要有利于学生主动地进行观察,猜测,验证,推测与交流等教学活动.”这说明创设有效的学习情境,可以引导学生开展“自主,探索,合作”的学习活动,促进学生主动的参与。
《分数与除法的关系》数学教案《分数与除法的关系》数学教案(精选7篇)作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
那么什么样的教案才是好的呢?以下是小编为大家整理的《分数与除法的关系》数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。
《分数与除法的关系》数学教案篇1教学目标(1)使学生理解分数与除法的关系,掌握两个自然数相除,可用分数表示。
(2)运用分数与除法的关系,学会把低级单位的名数聚成高级单位的名数。
教学重点、难点重点、难点:理解分数与除法的关系。
教学过程一、复习铺垫1、口述下列分数的意义:1/44/57/92、口答列式计算。
(1)植树节有120名少先队员栽树,平均分成12个小组。
每个小组有多少名少先队员?120÷12=10(人)(2)把12米长的钢管平均截成6段,每段长多少米?12÷6=2(米)归纳:这两题都是将一个数平均分成若干份,求每一份是多少的应用题。
用除法计算。
如果把(2)题的12米改成1米,如何列式?1÷6它的商不能用整数表示,怎么办?这就是我们这节课要学习解决的问题。
出示课题“分数与除法的关系”。
二、教学新知1、教学例2。
把1米长的钢管,平均截成6段,每段长多少米?(1)边作图边讲解。
“1÷6”是把1平均分成6份,求其中1份是多少,根据题意也就是把1米长的钢管看作单位“1”,平均分成6份,表示这样1份的数是1/6,就是每段钢管的长。
所以1÷6=1/6(米)(2)如果把1米长的钢管平均分成4段、5段、7段,每段各是多少米?(口答)2、教学例3。
把3只月饼平均分成4份,每份是多少?教学过程备注(1)读题后指名学生列式:3÷4(2)边讲解边出示图式(3)引导学生说出第一种方法是把3只饼平均分成4份,先把每只饼都平均分成4份,取出其中的1份是1/4只,3块饼有3个1/4就是3/4只。
小学五年级《分数与除法一》教案教学目标:使学生理解、掌握分数与除法的关系,并能用分数表示两个整数相除的商。
1、运用分数与除法的关系,探索假分数与带分数的互化方法。
2、培养学生动手操作、观察、比较和归纳的能力。
3、培养学生团结合作、关心他人、先人后己等优良品质。
教学重点:理解、掌握分数与除法的关系。
教学难点:理解分数商a/b(b≠0)的意义。
教学具准备:教学课件及3张完全相同的圆和剪刀。
教学过程:一、设置疑问,揭示课题1、请同学们计算下面各题,你能把商分为哪几类?36÷6=64÷5=0.880÷5=163÷7=5÷10=0.54÷9=然后引导学生归纳分类:36÷6=6和80÷5=16的商为整数;4÷5=0.8和5÷10=0.5的商为有限小数;3÷7=和4÷9=的商为循环小数。
2、师指出:两个自然数相除,不能整除的时候,它们的商可以用分数来表示。
今天我们就来学习这部分内容:分数与除法(板书:分数与除法)二、创设情境,引导探索1、创设情境,引入关系师:“六一”儿童节就要到了,今年的儿童节,学校要组织全校师生开展野游活动,到了野外,还要以班级为单位开展联欢活动,前几天我同班主任刘老师对想要买的食品做了一些粗略的计划,知道买哪些东西了,具体怎么分还没有计算,大家愿意和老师一起做一下详细的计划吗?生:愿意!师:好!那我们大家就一起来吧!师:请看我们班级为这次活动准备的食品:食品名称食品数量班级人数平均每人分的数量苹果40个4740÷47饮料39瓶4739÷47花生8千克478÷47上面表格里的商都不能用整数的商来表示,除了可以用小数来表示,能否用其它的形式,比如分数来表示呢?等我们学完了这节课,同学们自然会找到答案的。
分数与除法的关系(一)
教学课题:分数与除法的关系
教学目标:
1、使学生正确理解和掌握分数与除法的关系,会用分数表示两个数相除的商。
2、培养学生的逻辑推理能力。
3、渗透辩证思想,激发学生学习兴趣。
教学重、难点:理解和掌握分数与除法的关系。
教学用具:投影片(教材第65页的饼图)
教学课时:(本课时为第一课时)
教学过程:
一、创设情境
1.填空。
(1)1/2表示()。
(2)5/6的分数单位是(),它有()个这样的分数单位。
2.计算。
(1)5÷8 (2)4÷9
二、揭示课题
我们知道,在计算整数除法时经常遇到除不尽或得不到整数商,有了分数,就可以解决这个问题。
这节课我们就来学习怎样用分数表示除法的商,认识“分数与除法的关系”。
(板书课题)
三、探索研究
1.教学例1
(1)读题后,指导学生根据整数除法的意义列出算式。
板书: 1÷3=
(2)讨论:1 除以3结果是多少?你是怎样想的?
(3)教师画出示意图,帮助学生理解。
通过讨论使学生明白:把1块蛋糕平均分成3份,其中一份应是1块蛋糕的(),就是()块。
(3)写出答语。
2.教学例2。
(1)读题后,引导学生列出算式:3÷4。
(2)指导学生动手操作:拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。
(3)请几名学生口述分法及每份分得的结果,教师总结几种不同的分法。
(4)归纳。
从上面的操作可以知道,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的(),即3个()块,把3个块拼合起来就是1个饼的(),块。
因此,3÷4=()块。
由此可见,不仅可以理解为把1块饼(单位“1”)平均分成4份,表示这样的3
份的数,也可以看作把3块饼组成的整体(单位“1”)平均分成4份,表示这样一份的数。
3、认识分数与除法的关系。
(1)引导学生观察1÷3=、3÷4=这两道算式,想一想:
①两个自然数相除,在不能得到整数商的情况下,还可以用什么数表示?
②用分数表示商时,除式里的被除数、除数分别是分数里的什么?
③分数与除法的关系是怎样的?
(2)教师总结,学生发言,归纳出以下三点:
①分数可以表示整数除法的商;
②在表示整数除法的商时,要用除数作分母、被除数作分子;
③除法里的被除数相当于分数里的分子,除数相当于分数里的分母。
(强调“相当于”一词)
分数与除法的关系可以表示成下面的形式:
(3)如果用a表示被除数,b表示除数,那么分数与除法的关系可以怎样表示?
板书:a÷b=()(b≠0)
(4)想一想:这里的b能为0吗?为什么?
启发学生说出在整数除法里,除数不能是零,在分数中分母也不能是零,所以这里b≠0。
(5)再想一想:分数与除法有区别吗?区别在哪里?
着重强调:分数是一种数,但也可以看作两个数相除。
除法是一种运算。
4、学生阅读教材,质疑问难。
课堂练习
课堂小结
板书设计
教学反思。