高等数学重点总结
- 格式:docx
- 大小:31.40 KB
- 文档页数:4
高数部分知识点总结1 高数部分1.1 高数第一章《函数、极限、连续》求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法0,,0,0,1则,对于型和型的题目直接用洛必达法则,对于、、型0,0,的题目则是先转化为型或型,再使用洛比达法则;3.利用重要极0,1xx1x,1(1,x),e限,包括、、;4.夹逼定理。
(1,),exlimlimlimsinxxx,0,0x,,1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。
对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。
在此只提醒一点:不定积分f(x)dx,F(x),C中的积分常数C 容易被忽略,而考试时如果在答,案中少写这个C会失一分。
所以可以这样建立起二者之间的联系以加f(x)dx深印象:定积分的结果可以写为F(x)+1,1指的就是那一分,,f(x)dx,F(x),C把它折弯后就是中的那个C,漏掉了C也就漏掉了,这1分。
第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下af(x)dx限上做文章:对于型定积分,若f(x)是奇函数则有,,aaaaf(x)dxf(x)dxf(x)dx=0;若f(x)为偶函数则有=2;对于,,,,a,a0,,2t,,xf(x)dx型积分,f(x)一般含三角函数,此时用的代换是常,02用方法。
所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利aaa奇函数,0偶函数,2偶函数用性质、。
大学高等数学复习要点总结第一章1)洛必达法则求极限,最常用,要熟练;2)无穷小代换求极限,在解题中非常有用,几个等价公式要倒背如流;3)求含参数的极限,关键是把握常量变量的关系,求解过程体现你极限计算的基本功;4)1的∞次方的极限是重点,多练几个题;5)函数连续计算中要会对点进行修改定义、补充定义,看看书上怎么写的,给你说句话你体会一下,“连续的概念是逐点概念”,所以问题就是围绕特殊点展开的,这是数学思想了;6)闭区间连续函数性质四定理非常重要,把它们背下来,然后结合例题搞定;7)记住趋向不同,结果就大不一样的极限;8)两个重要极限、两个基本极限把它们的推倒过程多写写,记住;关键还是刚才的要点,一个是用e的抬头法,一个是注意“趋向不同,结果就大不一样的极限”,还有注意ln某的定义域>0;9)要注意存在与任意的关系,存在就是说只要有一个符合就成立,任意是说只要有一个不符合就不成立,你体会体会。
例题:无穷大无穷小有界变量无界变量;10)注意夹逼定理的条件很强,不要漏掉要点;11)“见根号差,用有理化”!!这是思维定势,很管用;第二章1)导数的概念非常重要!!一定会在解答题(主观题)中让你展现出你对它的理解是透彻的,所以这里不要用什么特殊化思想,就是严格按照定义来演算推理;2)导数公式倒背如流的要求不算过分吧呵呵;3)连续可导的要求一个弱一个强,只要改变条件的强弱就会有截然不同的做法,你做题的时候一定要总结一下,回顾一下,看看条件的强弱问题,然后在每个题上标记出来,便于以后再复习;4)由于有些函数求导会出现某在分母上出现,所以要知道:即使不是分段函数,有时也要用定义去求导,而且乘积中一些因子在特定点不可导,但乘积在该点也可能可导;5)中值定理的难点在于构造辅助函数,构造函数是根据题目的要求来的,除了陈文灯等人写的方法外,关键是多看例题,熟练了,自然就会了(我上次给同学们说的是“微分方程法”和“凑”法,这两个掌握了就足够了);6)函数性态部分是基本功,一定要耐心的按照函数作某某某的几大步骤认真做几个题,这样就可以把函数的各种性态串起来了,方法:抄例题,然后背下来,自己默一遍;9)这部分的经济应用题不难,关键是仔细一些,对弹性等概念理解好,你经济学的好的多了,我就不说了:);第三章1)一元函数积分是高等数学中最重要的部分之一,一元函数的积分不学扎实,后面的多元函数的积分就是空中楼阁,要熟练掌握各种积分方法和几种常见的积分类型,如有理函数,三角函数的有理式和简单无理函数的积分;2)一个经验:如果在一个函数或者积分等中的函数,当它是同一个某的函数时,比如f(某)g(某)的形式,可以对其中的任何一个进行放大缩小或者变形,而另一个可以不动,这样的处理往往是需要的,很有用,当你作不下去时,想想我说的这个。
高等数学重点知识总结高等数学是大学阶段数学课程的重要组成部分,它对我们理解和应用各种学科知识具有重要意义。
本文将从微积分、线性代数和概率统计等几个方面对高等数学的重点知识进行总结。
一、微积分微积分是高等数学中最重要的内容之一,它包含了微分和积分两个部分。
微积分的核心思想是函数与其变化率之间的关系。
在微积分中,我们主要学习了以下几个重点知识。
1. 极限与连续:极限是微积分的基础,它描述了函数在某一点上的趋势和性质。
我们需要了解极限的概念、性质和计算方法,并掌握极限运算的一些常用技巧。
连续则是极限的概念的进一步应用,它描述了函数在整个定义域上的性质。
2. 导数与微分:导数是描述函数变化率的重要工具,它在科学和工程领域中被广泛应用。
我们需要了解导数的定义、性质和计算方法,掌握导数的基本公式和导数运算的技巧。
微分则是导数的一种应用,它描述了函数在一点上的变化量。
3. 积分与定积分:积分是导数的逆运算,它是求解曲线下面的面积或曲线长度的重要方法。
我们需要了解积分的定义、性质和计算方法,掌握积分的基本公式和积分运算的技巧。
定积分则是积分的一种应用,它描述了函数在一个区间上的总量。
二、线性代数线性代数是数学的一个重要分支,它研究了向量空间、线性变换和矩阵等数学结构。
线性代数在物理、工程和计算机科学等领域中有着广泛的应用。
在线性代数中,我们主要学习了以下几个重点知识。
1. 向量与矩阵:向量是线性代数的基本概念,它描述了物理量的大小和方向。
我们需要了解向量的定义、性质和运算法则,掌握向量的坐标表示和向量的数量关系。
矩阵则是线性代数的重要工具,它描述了线性变换和方程组等数学问题。
2. 线性空间与线性变换:线性空间是向量空间的一种特殊情况,它描述了向量的集合和运算规则。
我们需要了解线性空间的定义、性质和运算法则,掌握线性空间的子空间和基底等概念。
线性变换则是描述线性空间之间映射关系的工具。
3. 特征值与特征向量:特征值和特征向量是线性代数中的重要概念,它们描述了线性变换对向量的影响。
高等数学知识点总结pdf
高等数学知识点总结
一、函数与极限
1. 函数的定义、连续性与间断点
2. 导数与极值
3. 不定积分与定积分
4. 泰勒展开式与幂级数展开
5. 重要的极限定理:夹逼定理、洛必达法则等
二、微分方程
1. 一阶常微分方程与分离变量法
2. 一阶线性微分方程
3. 高阶线性常系数齐次微分方程
4. 高阶线性常系数非齐次微分方程
5. 欧拉方程与特征方程法
三、多元函数与偏导数
1. 多元函数的定义与性质
2. 偏导数与全微分
3. 隐函数与参数方程
4. 多元函数的极值与条件极值
四、重积分与曲线积分
1. 重积分的概念与性质
2. 极坐标系与二重积分
3. 三重积分与球坐标系
4. 曲线积分的概念与性质
5. 向量场的曲线积分和曲面积分
五、无穷级数与傅里叶级数
1. 数列极限与数列的收敛性
2. 数项级数的概念与性质
3. 正项级数的审敛法与一致收敛性
4. 幂级数与傅里叶级数的展开
六、空间解析几何
1. 点、直线与平面的方程
2. 曲线与曲面的方程
3. 空间中的向量运算
4. 空间曲线的切线与法平面
5. 空间曲面的切平面与法线
七、常微分方程
1. 一阶常微分方程的概念与解法
2. 高阶常微分方程的特征方程法
3. 常系数线性齐次微分方程的解法
4. 变系数线性齐次微分方程的解法
这些是高等数学中的一些重要知识点总结,掌握了这些知识,对于解题和理解高等数学的相关概念非常有帮助。
第一讲: 极限与连续一. 数列函数: 1. 类型:(1)数列: *()n a f n =; *1()n n a f a += (2)初等函数:(3)分段函数: *0102()(),()x x f x F x x x f x ≤⎧=⎨>⎩; *0()(),x x f x F x x x a ≠⎧=⎨=⎩;* (4)复合(含f )函数: (),()y f u u x ϕ== (5)隐式(方程): (,)0F x y =(6)参式(数一,二): ()()x x t y y t =⎧⎨=⎩(7)变限积分函数: ()(,)xaF x f x t dt =⎰(8)级数和函数(数一,三): 0(),nn n S x a xx ∞==∈Ω∑2. 特征(几何):(1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ⇒∀--定号) (2)奇偶性与周期性(应用).3. 反函数与直接函数: 11()()()y f x x f y y f x --=⇔=⇒=二. 极限性质:1. 类型: *lim n n a →∞; *lim ()x f x →∞(含x →±∞); *0lim ()x x f x →(含0x x ±→)2. 无穷小与无穷大(注: 无穷量):3. 未定型:000,,1,,0,0,0∞∞∞-∞⋅∞∞∞4. 性质: *有界性, *保号性, *归并性 三. 常用结论:11n n →, 1(0)1n a a >→, 1()max(,,)nnn na b c a b c ++→, ()00!na a n >→1(0)x x→→∞, 0lim 1xx x +→=, lim 0n x x x e →+∞=, ln lim 0n x x x →+∞=, 0lim ln 0nx x x +→=, 0,xx e x →-∞⎧→⎨+∞→+∞⎩四. 必备公式:1. 等价无穷小: 当()0u x →时, sin ()()u x u x ; tan ()()u x u x ; 211cos ()()2u x u x -; ()1()u x eu x -; ln(1())()u x u x +; (1())1()u x u x αα+-;arcsin ()()u x u x ; arctan ()()u x u x2. 泰勒公式:(1)2211()2!xe x x o x =+++; (2)221ln(1)()2x x x o x +=-+;(3)341sin ()3!x x x o x =-+;(4)24511cos 1()2!4!x x x o x =-++;(5)22(1)(1)1()2!x x x o x αααα-+=+++.五. 常规方法: 前提: (1)准确判断0,,1,0M α∞∞∞(其它如:00,0,0,∞-∞⋅∞∞); (2)变量代换(如:1t x=) 1. 抓大弃小()∞∞, 2. 无穷小与有界量乘积 (M α⋅) (注:1sin1,x x≤→∞) 3. 1∞处理(其它如:00,∞)4. 左右极限(包括x →±∞):(1)1(0)x x→; (2)()xe x →∞; 1(0)x e x →; (3)分段函数: x , []x , max ()f x5. 无穷小等价替换(因式中的无穷小)(注: 非零因子)6. 洛必达法则 (1)先”处理”,后法则(00最后方法); (注意对比: 1ln lim 1x x x x →-与0ln lim 1x x x x→-)(2)幂指型处理: ()()ln ()()v x v x u x u x e=(如: 1111111(1)x x x x xee e e-++-=-)(3)含变限积分;(4)不能用与不便用7. 泰勒公式(皮亚诺余项): 处理和式中的无穷小 8. 极限函数: ()lim (,)n f x F x n →∞=(⇒分段函数)六. 非常手段 1. 收敛准则:(1)()lim ()n x a f n f x →+∞=⇒(2)双边夹: *?n n n b a c ≤≤, *,?n n b c a →(3)单边挤: 1()n n a f a += *21?a a ≥ *?n a M ≤ *'()0?f x >2. 导数定义(洛必达?): 00lim'()x ff x x→=3. 积分和: 10112lim [()()()]()n nf f f f x dx n n n n→∞+++=⎰,4. 中值定理: lim[()()]lim '()x x f x a f x a f ξ→+∞→+∞+-=5. 级数和(数一三):(1)1n n a ∞=∑收敛lim 0n n a →∞⇒=, (如2!lim n n n n n →∞) (2)121lim()n n n n a a a a ∞→∞=+++=∑,(3){}n a 与11()nn n aa ∞-=-∑同敛散七. 常见应用:1. 无穷小比较(等价,阶): *(),(0)?n f x kx x →(1)(1)()(0)'(0)(0)0,(0)n n f f f f a -=====⇔()()!!nn na a f x x x x n n α=+ (2)()xxn f t dtkt dt ⎰⎰2. 渐近线(含斜):(1)()lim,lim[()]x x f x a b f x ax x→∞→∞==-()f x ax b α⇒++(2)()f x ax b α=++,(10x→)3. 连续性: (1)间断点判别(个数); (2)分段函数连续性(附:极限函数, '()f x 连续性) 八. [,]a b 上连续函数性质1. 连通性: ([,])[,]f a b m M = (注:01λ∀<<, “平均”值:0()(1)()()f a f b f x λλ+-=)2. 介值定理: (附: 达布定理)(1)零点存在定理: ()()0f a f b <0()0f x ⇒=(根的个数); (2)()0(())'0xaf x f x dx =⇒=⎰.第二讲:导数及应用(一元)(含中值定理)一. 基本概念:1. 差商与导数: '()f x =0()()limx f x x f x x→+-; 0'()f x =000()()lim x x f x f x x x →--(1)0()(0)'(0)limx f x f f x →-= (注:0()lim (x f x A f x→=连续)(0)0,'(0)f f A ⇒==)(2)左右导: ''00(),()f x f x -+;(3)可导与连续; (在0x =处, x 连续不可导; x x 可导) 2. 微分与导数:()()'()()'()f f x x f x f x x o x df f x dx =+-=+⇒=(1)可微⇔可导; (2)比较,f df ∆与"0"的大小比较(图示); 二. 求导准备:1. 基本初等函数求导公式; (注: (())'f x )2. 法则: (1)四则运算; (2)复合法则; (3)反函数1'dx dy y = 三. 各类求导(方法步骤):1. 定义导: (1)'()f a 与'()x a f x =; (2)分段函数左右导; (3)0()()limh f x h f x h h→+--(注: 0()(),x x F x f x x x a ≠⎧=⎨=⎩, 求:0'(),'()f x f x 及'()f x 的连续性) 2. 初等导(公式加法则):(1)[()]u f g x =, 求:0'()u x (图形题); (2)()()xaF x f t dt =⎰, 求:'()F x (注: ((,))',((,))',(())'x b baaaf x t dt f x t dt f t dt ⎰⎰⎰)(3)0102(),()x x f x y x x f x <⎧=⎨≥⎩,求''00(),()f x f x -+及0'()f x (待定系数)3. 隐式((,)0f x y =)导: 22,dy d y dx dx (1)存在定理;(2)微分法(一阶微分的形式不变性). (3)对数求导法.4. 参式导(数一,二): ()()x x t y y t =⎧⎨=⎩, 求:22,dy d ydx dx5. 高阶导()()n f x 公式:()()ax n n axe a e =; ()11!()()n n n b n a bx a bx +=--; ()(sin )sin()2n n ax a ax n π=+⨯; ()(cos )cos()2n n ax a ax n π=+⨯()()1(1)2(2)()'"n n n n n n uv u v C uv C u v --=+++注: ()(0)n f与泰勒展式: 2012()nn f x a a x a x a x =+++++()(0)!n n f a n ⇒=四. 各类应用:1. 斜率与切线(法线); (区别: ()y f x =上点0M 和过点0M 的切线)2. 物理: (相对)变化率-速度;3. 曲率(数一二):ρ=曲率半径, 曲率中心, 曲率圆)4. 边际与弹性(数三): (附: 需求, 收益, 成本, 利润) 五. 单调性与极值(必求导) 1. 判别(驻点0'()0f x =): (1) '()0()f x f x ≥⇒; '()0()f x f x ≤⇒;(2)分段函数的单调性(3)'()0f x >⇒零点唯一; "()0f x >⇒驻点唯一(必为极值,最值). 2. 极值点:(1)表格('()f x 变号); (由0002'()'()''()lim0,lim 0,lim 00x x x x x x f x f x f x x x x x→→→≠≠≠⇒=的特点) (2)二阶导(0'()0f x =)注(1)f 与',"f f 的匹配('f 图形中包含的信息);(2)实例: 由'()()()()f x x f x g x λ+=确定点“0x x =”的特点. (3)闭域上最值(应用例: 与定积分几何应用相结合, 求最优) 3. 不等式证明(()0f x ≥)(1)区别: *单变量与双变量? *[,]x a b ∈与[,),(,)x a x ∈+∞∈-∞+∞? (2)类型: *'0,()0f f a ≥≥; *'0,()0f f b ≤≥*"0,(),()0f f a f b ≤≥; *00"()0,'()0,()0f x f x f x ≥=≥ (3)注意: 单调性⊕端点值⊕极值⊕凹凸性. (如: max ()()f x M f x M ≤⇔=) 4. 函数的零点个数: 单调⊕介值六. 凹凸与拐点(必求导!): 1. "y ⇒表格; (0"()0f x =)2. 应用: (1)泰勒估计; (2)'f 单调; (3)凹凸. 七. 罗尔定理与辅助函数: (注: 最值点必为驻点) 1. 结论: ()()'()()0F b F a F f ξξ=⇒== 2. 辅助函数构造实例: (1)()f ξ⇒()()xaF x f t dt =⎰(2)'()()()'()0()()()f g f g F x f x g x ξξξξ+=⇒= (3)()'()()()'()0()()f x fg f g F x g x ξξξξ-=⇒= (4)'()()()0f f ξλξξ+=⇒()()()x dxF x e f x λ⎰=;3. ()()0()n ff x ξ=⇔有1n +个零点(1)()n f x -⇔有2个零点4. 特例: 证明()()n fa ξ=的常规方法:令()()()n F x f x P x =-有1n +个零点(()n P x 待定)5. 注: 含12,ξξ时,分家!(柯西定理)6. 附(达布定理): ()f x 在[,]a b 可导,['(),'()]c f a f b ∀∈,[,]a b ξ∃∈,使:'()f c ξ= 八. 拉格朗日中值定理1. 结论: ()()'()()f b f a f b a ξ-=-; (()(),'()0a b ϕϕξϕξ<⇒∃∍>)2. 估计:'()f f x ξ=九. 泰勒公式(连接,',"f f f 之间的桥梁) 1. 结论: 2300000011()()'()()"()()"'()()2!3!f x f x f x x x f x x x f x x ξ=+-+-+-; 2. 应用: 在已知()f a 或()f b 值时进行积分估计十. 积分中值定理(附:广义): [注:有定积分(不含变限)条件时使用]第三讲: 一元积分学一. 基本概念: 1. 原函数()F x :(1)'()()F x f x =; (2)()()f x dx dF x =; (3)()()f x dx F x c =+⎰注(1)()()xaF x f t dt =⎰(连续不一定可导);(2)()()()()xx aax t f t dt f t dt f x -⇒⇒⎰⎰ (()f x 连续)2. 不定积分性质:(1)(())'()f x dx f x =⎰; (())()d f x dx f x dx =⎰(2)'()()f x dx f x c =+⎰; ()()df x f x c =+⎰二. 不定积分常规方法 1. 熟悉基本积分公式2. 基本方法: 拆(线性性)1212(()())()()k f x k g x dx k f x dx k g x dx +=+⎰⎰⎰3. 凑微法(基础): 要求巧,简,活(221sin cos x x =+)如: 211(),,ln ,2dx dx d ax b xdx dx d x a x =+==2=(1ln )(ln )x dx d x x =+=4. 变量代换:(1)常用(三角代换,根式代换,倒代换): 1sin ,,,x t t t t x====(2)作用与引伸(化简): x t =5. 分部积分(巧用):(1)含需求导的被积函数(如ln ,arctan ,()xa x x f t dt ⎰);(2)“反对幂三指”: ,ln ,n axnx edx xxdx ⎰⎰(3)特别:()xf x dx ⎰ (*已知()f x 的原函数为()F x ; *已知'()()f x F x =)6. 特例: (1)11sin cos sin cos a x b x dx a x b x ++⎰; (2)(),()sin kxp x e dx p x axdx ⎰⎰快速法; (3)()()n v x dx u x ⎰三. 定积分: 1. 概念性质:(1)积分和式(可积的必要条件:有界, 充分条件:连续) (2)几何意义(面积,对称性,周期性,积分中值)*20(0)8a a π>=⎰; *()02baa bx dx +-=⎰ (3)附:()()baf x dx M b a ≤-⎰,()()()bbaaf xg x dx M g x dx ≤⎰⎰)(4)定积分与变限积分, 反常积分的区别联系与侧重2: 变限积分()()xax f t dt Φ=⎰的处理(重点)(1)f 可积⇒Φ连续, f 连续⇒Φ可导 (2)(())'xaf t dt ⎰()f x =; (()())'()x xaax t f t dt f t dt -=⎰⎰;()()()xaf x dt x a f x =-⎰(3)由函数()()xaF x f t dt =⎰参与的求导, 极限, 极值, 积分(方程)问题3. N L -公式:()()()baf x dx F b F a =-⎰(()F x 在[,]a b 上必须连续!)注: (1)分段积分, 对称性(奇偶), 周期性 (2)有理式, 三角式, 根式 (3)含()baf t dt ⎰的方程.4. 变量代换: ()(())'()baf x dx f u t u t dt βα=⎰⎰(1)00()()()aa f x dx f a x dx x a t =-=-⎰⎰,(2)()()()[()()]aaaaaf x dx f x dx x t f x f x dx --=-=-=+-⎰⎰⎰ (如:4411sin dx x ππ-+⎰)(3)2201sin n n n n I xdx I nπ--==⎰, (4)2200(sin )(cos )f x dx f x dx ππ=⎰⎰;20(sin )2(sin )f x dx f x dx ππ=⎰⎰,(5)(sin )(sin )2xf x dx f x dx πππ=⎰⎰,5. 分部积分(1)准备时“凑常数” (2)已知'()f x 或()xaf x =⎰时, 求()baf x dx ⎰6. 附: 三角函数系的正交性: 22200sin cos sin cos 0nxdx nxdx nx mxdx πππ===⎰⎰⎰2200sin sin cos cos ()0nx mxdx nx mxdx n m ππ=≠=⎰⎰22220sin cos nxdx nxdx πππ==⎰⎰四. 反常积分: 1. 类型: (1)(),(),()aa f x dx f x dx f x dx +∞+∞-∞-∞⎰⎰⎰(()f x 连续)(2)()baf x dx ⎰: (()f x 在,,()x a x b x c a c b ===<<处为无穷间断)2. 敛散;3. 计算: 积分法⊕N L -公式⊕极限(可换元与分部)4. 特例: (1)11pdx x +∞⎰; (2)101p dx x ⎰五. 应用: (柱体侧面积除外)1. 面积, (1)[()()];baS f x g x dx =-⎰(2)1()dcS f y dy -=⎰;(3)21()2S r d βαθθ=⎰; (4)侧面积:2(b a S f x π=⎰2. 体积: (1)22[()()]bx aV f x g x dx π=-⎰; (2)12[()]2()d by caV f y dy xf x dx ππ-==⎰⎰(3)0x x V =与0y y V =3. 弧长: ds = (1)(),[,]y f x x a b =∈as =⎰(2)12(),[,]()x x t t t t y y t =⎧∈⎨=⎩21t t s =⎰(3)(),[,]r r θθαβ=∈:s βαθ=⎰4. 物理(数一,二)功,引力,水压力,质心,5. 平均值(中值定理):(1)1[,]()baf a b f x dx b a =-⎰; (2)0()[0)limxx f t dt f x→+∞+∞=⎰, (f 以T 为周期:0()Tf t dt fT=⎰)第四讲: 微分方程一. 基本概念1. 常识: 通解, 初值问题与特解(注: 应用题中的隐含条件)2. 变换方程:(1)令()'""x x t y Dy =⇒=(如欧拉方程)(2)令(,)(,)'u u x y y y x u y =⇒=⇒(如伯努利方程) 3. 建立方程(应用题)的能力 二. 一阶方程:1. 形式: (1)'(,)y f x y =; (2)(,)(,)0M x y dx N x y dy +=; (3)()y a b =2. 变量分离型: '()()y f x g y =(1)解法:()()()()dyf x dx G y F x Cg y =⇒=+⎰⎰(2)“偏”微分方程:(,)zf x y x∂=∂; 3. 一阶线性(重点): '()()y p x y q x +=(1)解法(积分因子法): 00()01()[()()]()xx p x dxx x M x e y M x q x dx y M x ⎰=⇒=+⎰(2)变化: '()()x p y x q y +=;(3)推广: 伯努利(数一) '()()y p x y q x y α+= 4. 齐次方程: '()y y x=Φ (1)解法: '(),()ydu dxu u xu u x u u x =⇒+=Φ=Φ-⎰⎰(2)特例:111222a xb yc dy dx a x b y c ++=++ 5. 全微分方程(数一): (,)(,)0M x y dx N x y dy +=且N Mx y∂∂=∂∂ dU Mdx Ndy U C =+⇒=6. 一阶差分方程(数三): 1*()()x x x x x n xx y ca y ay b p x y x Q x b+=⎧-=⇒⎨=⎩三. 二阶降阶方程1. "()y f x =: 12()y F x c x c =++2. "(,')y f x y =: 令'()"(,)dpy p x y f x p dx=⇒== 3. "(,')y f y y =: 令'()"(,)dpy p y y pf y p dy=⇒== 四. 高阶线性方程: ()"()'()()a x y b x y c x y f x ++= 1. 通解结构:(1)齐次解: 01122()()()y x c y x c y x =+(2)非齐次特解: 1122()()()*()y x c y x c y x y x =++ 2. 常系数方程: "'()ay by cy f x ++= (1)特征方程与特征根: 20a b c λλ++=(2)非齐次特解形式确定: 待定系数; (附: ()axf x ke =的算子法) (3)由已知解反求方程.3. 欧拉方程(数一): 2"'()ax y bxy cy f x ++=, 令2"(1),'tx e x y D D y xy Dy =⇒=-= 五. 应用(注意初始条件):1. 几何应用(斜率, 弧长, 曲率, 面积, 体积); 注: 切线和法线的截距2. 积分等式变方程(含变限积分); 可设()(),()0xaf x dx F x F a ==⎰3. 导数定义立方程: 含双变量条件()f x y +=的方程4. 变化率(速度)5. 22dv d x F ma dt dt === 6. 路径无关得方程(数一): Q Px y∂∂=∂∂ 7. 级数与方程:(1)幂级数求和; (2)方程的幂级数解法:201201,(0),'(0)y a a x a x a y a y =+++==8. 弹性问题(数三)第五讲: 多元微分与二重积分一. 二元微分学概念1. 极限, 连续, 单变量连续, 偏导, 全微分, 偏导连续(必要条件与充分条件), (1)000000(,),(,),(,)x y f f x x y y f f x x y f f x y y ∆=++∆=+∆=+(2)lim ,lim ,lim y x x y f ff f f x y∆∆∆==∆∆ (3)22,lim()()x y f df f x f ydf x y ∆-++ (判别可微性)注: (0,0)点处的偏导数与全微分的极限定义: 00(,0)(0,0)(0,)(0,0)(0,0)lim,(0,0)lim x y x y f x f f y f f f x y→→--==2. 特例:(1)22(0,0)(,)0,(0,0)xyx y fx y ⎧≠⎪+=⎨⎪=⎩: (0,0)点处可导不连续;(2)(0,0)(,)0,(0,0)f x y ≠==⎩: (0,0)点处连续可导不可微;二. 偏导数与全微分的计算:1. 显函数一,二阶偏导: (,)z f x y = 注: (1)yx 型; (2)00(,)xx y z ; (3)含变限积分2. 复合函数的一,二阶偏导(重点): [(,),(,)]z f u x y v x y =熟练掌握记号''"""12111222,,,,f f f f f 的准确使用3. 隐函数(由方程或方程组确定): (1)形式: *(,,)0F x y z =; *(,,)0(,,)0F x y zG x y z =⎧⎨=⎩ (存在定理)(2)微分法(熟练掌握一阶微分的形式不变性): 0x y z F dx F dy F dz ++= (要求: 二阶导) (3)注: 00(,)x y 与0z 的及时代入 (4)会变换方程.三. 二元极值(定义?);1. 二元极值(显式或隐式): (1)必要条件(驻点); (2)充分条件(判别)2. 条件极值(拉格朗日乘数法) (注: 应用)(1)目标函数与约束条件: (,)(,)0z f x y x y ϕ=⊕=, (或: 多条件) (2)求解步骤: (,,)(,)(,)L x y f x y x y λλϕ=+, 求驻点即可. 3. 有界闭域上最值(重点).(1)(,){(,)(,)0}z f x y M D x y x y ϕ=⊕∈=≤ (2)实例: 距离问题四. 二重积分计算:1. 概念与性质(“积”前工作): (1)Dd σ⎰⎰,(2)对称性(熟练掌握): *D 域轴对称; *f 奇偶对称; *字母轮换对称; *重心坐标; (3)“分块”积分: *12D D D =; *(,)f x y 分片定义; *(,)f x y 奇偶2. 计算(化二次积分):(1)直角坐标与极坐标选择(转换): 以“D ”为主; (2)交换积分次序(熟练掌握). 3. 极坐标使用(转换): 22()f x y +附: 222:()()D x a y b R -+-≤; 2222:1x y D a b+≤;双纽线222222()()x y a x y +=- :1D x y +≤ 4. 特例:(1)单变量: ()f x 或()f y (2)利用重心求积分: 要求: 题型12()Dk x k y dxdy +⎰⎰, 且已知D 的面积DS与重心(,)x y5. 无界域上的反常二重积分(数三) 五: 一类积分的应用(():;;;;f M d D L σΩ⇒ΩΩΓ∑⎰):1. “尺寸”: (1)D Dd Sσ⇔⎰⎰;(2)曲面面积(除柱体侧面);2. 质量, 重心(形心), 转动惯量;3. 为三重积分, 格林公式, 曲面投影作准备.第六讲: 无穷级数(数一,三)一. 级数概念1. 定义: (1){}n a , (2)12n n S a a a =+++; (3)lim n n S →∞(如1(1)!n nn ∞=+∑)注: (1)lim n n a →∞; (2)n q ∑(或1na ∑); (3)“伸缩”级数:1()n n a a +-∑收敛{}n a ⇔收敛. 2. 性质: (1)收敛的必要条件: lim 0n n a →∞=;(2)加括号后发散, 则原级数必发散(交错级数的讨论); (3)221,0n n n n s s a s s s s +→→⇒→⇒→; 二. 正项级数1. 正项级数: (1)定义: 0n a ≥; (2)特征: nS ; (3)收敛n S M ⇔≤(有界)2. 标准级数: (1)1p n∑, (2)ln k n n α∑, (3)1ln kn n ∑ 3. 审敛方法: (注:222ab a b ≤+,ln ln ba ab =)(1)比较法(原理):np ka n(估计), 如10()n f x dx ⎰; ()()P n Q n ∑(2)比值与根值: *1limn n nu u +→∞*n (应用: 幂级数收敛半径计算)三. 交错级数(含一般项):1(1)n n a +-∑(0n a >)1. “审”前考察: (1)0?n a > (2)0?n a →; (3)绝对(条件)收敛? 注: 若1lim1n n na a ρ+→∞=>,则n u ∑发散2. 标准级数: (1)11(1)n n +-∑; (2)11(1)n p n +-∑; (3)11(1)ln n pn+-∑ 3. 莱布尼兹审敛法(收敛?) (1)前提:na∑发散; (2)条件: ,0nn a a →; (3)结论:1(1)n n a +-∑条件收敛.4. 补充方法:(1)加括号后发散, 则原级数必发散; (2)221,0n n n n s s a s s s s +→→⇒→⇒→. 5. 注意事项: 对比na∑;(1)nna-∑;na∑;2na∑之间的敛散关系四. 幂级数: 1. 常见形式: (1)nna x∑, (2)()nna x x -∑, (3)20()nna x x -∑2. 阿贝尔定理:(1)结论: *x x =敛*0R x x ⇒≥-; *x x =散*0R x x ⇒≤- (2)注: 当*x x =条件收敛时*R x x ⇒=- 3. 收敛半径,区间,收敛域(求和前的准备) 注(1),n nn n a na x x n∑∑与n n a x ∑同收敛半径 (2)nna x∑与20()nna x x -∑之间的转换4. 幂级数展开法:(1)前提: 熟记公式(双向,标明敛域)23111,2!3!xe x x x R =++++Ω= 24111()1,22!4!x x e e x x R -+=+++Ω=35111(),23!5!x x e e x x x R --=+++Ω=3511sin ,3!5!x x x x R =-+-Ω= 2411cos 1,2!4!x x x R =-++Ω=;211,(1,1)1x x x x =+++∈--; 211,(1,1)1x x x x=-+-∈-+2311ln(1),(1,1]23x x x x x +=-+-∈-2311ln(1),[1,1)23x x x x x -=----∈-3511arctan ,[1,1]35x x x x x =-+-∈-(2)分解: ()()()f x g x h x =+(注:中心移动) (特别: 021,x x ax bx c=++)(3)考察导函数: ()'()g x f x 0()()(0)xf xg x dx f ⇒=+⎰(4)考察原函数: 0()()xg x f x dx ⎰()'()f x g x ⇒=5. 幂级数求和法(注: *先求收敛域, *变量替换): (1)(),S x =+∑∑(2)'()S x =,(注意首项变化)(3)()()'S x =∑,(4)()"()"S x S x ⇒的微分方程 (5)应用:()(1)n nn n aa x S x a S ⇒=⇒=∑∑∑.6. 方程的幂级数解法7. 经济应用(数三):(1)复利: (1)nA p +; (2)现值: (1)nA p -+五. 傅里叶级数(数一): (2T π=)1. 傅氏级数(三角级数): 01()cos sin 2n n n a S x a nx b nx ∞==++∑ 2. Dirichlet 充分条件(收敛定理): (1)由()()f x S x ⇒(和函数) (2)1()[()()]2S x f x f x =-++ 3. 系数公式: 01()cos 1(),,1,2,3,1()sin n n a f x nxdx a f x dx n b f x nxdx πππππππππ---⎧=⎪⎪==⎨⎪=⎪⎩⎰⎰⎰4. 题型: (注: ()(),?f x S x x =∈) (1)2T π=且(),(,]f x x ππ=∈-(分段表示)(2)(,]x ππ∈-或[0,2]x π∈ (3)[0,]x π∈正弦或余弦 *(4)[0,]x π∈(T π=) *5. 2T l =6. 附产品: ()f x ⇒01()cos sin 2n n n a S x a nx b nx ∞==++∑ 00001()cos sin 2n n n a S x a nx b nx ∞=⇒=++∑001[()()]2f x f x =-++第七讲: 向量,偏导应用与方向导(数一)一. 向量基本运算1. 12k a k b +; (平行b a λ⇔=)2. a ; (单位向量(方向余弦) 01(cos ,cos ,cos )a a aαβγ=)3. a b ⋅; (投影:()a a b b a⋅=; 垂直:0a b a b ⊥⇔⋅=; 夹角:(,)a b a b a b⋅=)4. a b ⨯; (法向:,n a b a b =⨯⊥; 面积:S a b =⨯) 二. 平面与直线 1.平面∏(1)特征(基本量): 0000(,,)(,,)M x y z n A B C ⊕=(2)方程(点法式): 000:()()()00A x x B y y C z z Ax By Cz D π-+-+-=⇒+++= (3)其它: *截距式1x y za b c++=; *三点式2.直线L(1)特征(基本量): 0000(,,)(,,)M x y z s m n p ⊕= (2)方程(点向式): 000:x x y y z z L m n p---== (3)一般方程(交面式): 111122220A xB yC zD A x B y C z D +++=⎧⎨+++=⎩(4)其它: *二点式; *参数式;(附: 线段AB 的参数表示:121121121()(),[0,1]()x a a a t y b b b t t z c c c t=+-⎧⎪=+-∈⎨⎪=+-⎩)3. 实用方法:(1)平面束方程: 11112222:()0A x B y C z D A x B y C z D πλ+++++++= (2)距离公式: 如点000(,)M x y 到平面的距离d =(3)对称问题;(4)投影问题.三. 曲面与空间曲线(准备) 1. 曲面(1)形式∑: (,,)0F x y z = 或(,)z f x y =; (注: 柱面(,)0f x y =) (2)法向(,,)(cos ,cos ,cos )x y z n F F F αβγ=⇒ (或(,1)x y n z z =--)2. 曲线(1)形式():()()x x t y y t z z t =⎧⎪Γ=⎨⎪=⎩, 或(,,)0(,,)0F x y z G x y z =⎧⎨=⎩;(2)切向: {'(),'(),'()}s x t y t z t = (或12s n n =⨯)3. 应用(1)交线, 投影柱面与投影曲线;(2)旋转面计算: 参式曲线绕坐标轴旋转;(3)锥面计算.四. 常用二次曲面1. 圆柱面: 222x y R += 2. 球面: 2222x y z R ++=变形: 2222x y R z +=-,z =,2222x y z az ++=, 2222000()()()x x y y z z R -+-+-=3. 锥面: z =变形: 222x y z +=,z a = 4. 抛物面: 22z x y =+,变形: 22x y z +=, 22()z a x y =-+ 5. 双曲面: 2221x y z +=± 6. 马鞍面: 22z x y =-, 或z xy =五. 偏导几何应用 1. 曲面(1)法向: (,,)0(,,)x y z F x y z n F F F =⇒=, 注: (,)(,1)x y z f x y n f f =⇒=- (2)切平面与法线:2. 曲线(1)切向: (),(),()(',',')x x t y y t z z t s x y z ===⇒= (2)切线与法平面3. 综合: :Γ00F G =⎧⎨=⎩, 12s n n =⨯六. 方向导与梯度(重点) 1. 方向导(l 方向斜率):(1)定义(条件): (,,)(cos ,cos ,cos )l m n p αβγ=⇒ (2)计算(充分条件:可微):cos cos cos x y z uu u u lαβγ∂=++∂ 附: 0(,),{cos ,sin }z f x y l θθ==cos sin x y zf f lθθ∂⇒=+∂ (3)附: 2222cos 2sin cos sin xx xy yy f f f f lθθθθ∂=++∂2. 梯度(取得最大斜率值的方向) G : (1)计算:()(,)(,)x y a z f x y G gradz f f =⇒==; ()(,,)(,,)x y z b u f x y z G gradu u u u =⇒== (2)结论 ()a ul∂∂0G l =⋅; ()b 取l G =为最大变化率方向; ()c 0()G M 为最大方向导数值.第八讲: 三重积分与线面积分(数一)一. 三重积分(fdV Ω⎰⎰⎰)1. Ω域的特征(不涉及复杂空间域):(1)对称性(重点): 含: 关于坐标面; 关于变量; 关于重心 (2)投影法: 22212{(,)}(,)(,)xy D x y x y R z x y z z x y =+≤⊕≤≤ (3)截面法: 222(){(,)()}D z x y x y R z a z b =+≤⊕≤≤ (4)其它: 长方体, 四面体, 椭球 2. f 的特征:(1)单变量()f z , (2)22()f x y +, (3)222()f x y z ++, (4)f ax by cz d =+++ 3. 选择最适合方法: (1)“积”前: *dv Ω⎰⎰⎰; *利用对称性(重点)(2)截面法(旋转体): ()baD z I dz fdxdy =⎰⎰⎰(细腰或中空, ()f z , 22()f x y +)(3)投影法(直柱体): 21(,)(,)xyz x y z x y D I dxdy fdz =⎰⎰⎰(4)球坐标(球或锥体): 220sin ()RI d d f d παθϕϕρρ=⋅⋅⋅⎰⎰⎰,(5)重心法(f ax by cz d =+++): ()I ax by cz d V Ω=+++ 4. 应用问题:(1)同第一类积分: 质量, 质心, 转动惯量, 引力 (2)Gauss 公式 二. 第一类线积分(Lfds ⎰)1. “积”前准备:(1)Lds L =⎰; (2)对称性; (3)代入“L ”表达式2. 计算公式:()[,]((),(()b aLx x t t a b fds f x t y t y y t =⎧∈⇒=⎨=⎩⎰⎰3. 补充说明: (1)重心法:()()Lax by c ds ax by c L ++=++⎰;(2)与第二类互换:LLA ds A dr τ⋅=⋅⎰⎰4. 应用范围(1)第一类积分(2)柱体侧面积 (),Lz x y ds ⎰三. 第一类面积分(fdS ∑⎰⎰)1. “积”前工作(重点):(1)dS ∑=∑⎰⎰; (代入:(,,)0F x y z ∑=)(2)对称性(如: 字母轮换, 重心)(3)分片2. 计算公式:(1)(,),(,)(,,(,xyxy D z z x y x y D I f x y z x y =∈⇒=⎰⎰(2)与第二类互换: A ndS A d S ∑∑⋅=⋅⎰⎰⎰⎰四: 第二类曲线积分(1): (,)(,)LP x y dx Q x y dy +⎰ (其中L 有向)1. 直接计算: ()()x x t y y t =⎧⎨=⎩,2112:['()'()]t t t t t I Px t Qy t dt →⇒=+⎰ 常见(1)水平线与垂直线; (2)221x y +=2. Green 公式:(1)()L D Q P Pdx Qdy dxdy x y ∂∂+=-∂∂⎰⎰⎰;(2)()L A B →⎰: *P Q y y ∂∂=⇒∂∂换路径; *P Q y y ∂∂≠⇒∂∂围路径(3)L ⎰(x y Q P =但D 内有奇点)*L L =⎰⎰(变形) 3. 推广(路径无关性):PQy y ∂∂=∂∂(1)Pdx Qdy du +=(微分方程)()B A L A B u →⇔=⎰(道路变形原理) (2)(,)(,)L P x y dx Q x y dy +⎰与路径无关(f 待定): 微分方程.4. 应用功(环流量):I F dr Γ=⋅⎰ (Γ有向τ,(,,)F P Q R =,(,,)d r ds dx dy dz τ==)五. 第二类曲面积分:1. 定义:Pdydz Qdzdx Rdxdy ∑++⎰⎰, 或(,,)R x y z dxdy ∑⎰⎰ (其中∑含侧) 2. 计算:(1)定向投影(单项): (,,)R x y z dxdy ∑⎰⎰, 其中:(,)z z x y ∑=(特别:水平面);注: 垂直侧面, 双层分隔(2)合一投影(多项,单层): (,,1)x y n z z =--[()()]x yPdydz Qdzdx Rdxdy P z Q z R dxdy ∑∑⇒++=-+-+⎰⎰⎰⎰ (3)化第一类(∑不投影): (cos ,cos ,cos )n αβγ=(cos cos cos )Pdydz Qdzdx Rdxdy P Q R dS αβγ∑∑⇒++=++⎰⎰⎰⎰3. Gauss 公式及其应用:(1)散度计算: P Q R divA x y z∂∂∂=++∂∂∂ (2)Gauss 公式: ∑封闭外侧, Ω内无奇点Pdydz Qdzdx Rdxdy divAdv ∑Ω++=⎰⎰⎰⎰⎰(3)注: *补充“盖”平面:0∑∑+⎰⎰⎰⎰; *封闭曲面变形∑⎰⎰(含奇点) 4. 通量与积分:A d S ∑Φ=⋅⎰⎰ (∑有向n ,(),,A P Q R =,(,,)d S ndS dydz dzdx dxdy ==)六: 第二类曲线积分(2): (,,)(,,)(,,)P x y z dx Q x y z dy R x y z dz Γ++⎰1. 参数式曲线Γ: 直接计算(代入)注(1)当0rot A =时, 可任选路径; (2)功(环流量):I F dr Γ=⋅⎰2. Stokes 公式: (要求: Γ为交面式(有向), 所张曲面∑含侧)(1)旋度计算: (,,)(,,)R A P Q R x y z∂∂∂=∇⨯=⨯∂∂∂ (2)交面式(一般含平面)封闭曲线: 00F G =⎧⇒⎨=⎩同侧法向{,,}x y z n F F F =或{,,}x y z G G G ; (3)Stokes 公式(选择):()A dr A ndS Γ∑⋅=∇⨯⋅⎰⎰⎰ (a )化为Pdydz Qdzdx Rdxdy ∑++⎰⎰; (b )化为(,,)R x y z dxdy ∑⎰⎰; (c )化为fdS ∑⎰⎰。
(完整版)⾼等数学基础知识点归纳第⼀讲函数,极限,连续性1、集合的概念⼀般地我们把研究对象统称为元素,把⼀些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
⽐如“⾝材较⾼的⼈”不能构成集合,因为它的元素不是确定的。
⑴、全体⾮负整数组成的集合叫做⾮负整数集(或⾃然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集,记作N+。
⑶、全体整数组成的集合叫做整数集,记作Z。
⑷、全体有理数组成的集合叫做有理数集,记作Q。
⑸、全体实数组成的集合叫做实数集,记作R。
集合的表⽰⽅法⑴、列举法:把集合的元素⼀⼀列举出来,并⽤“{}”括起来表⽰集合⑵、描述法:⽤集合所有元素的共同特征来表⽰集合集合间的基本关系⑴、⼦集:⼀般地,对于两个集合A、B,如果集合A 中的任意⼀个元素都是集合B 的元素,我们就说A、B 有包含关系,称集合A 为集合B 的⼦集,记作A ?B。
⑵、相等:如何集合A 是集合B 的⼦集,且集合B 是集合A 的⼦集,此时集合A 中的元素与集合B 中的元素完全⼀样,因此集合A 与集合B 相等,记作A=B。
⑶、真⼦集:如何集合A 是集合B 的⼦集,但存在⼀个元素属于B 但不属于A,我们称集合A 是集合B 的真⼦集,记作A 。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的⼦集。
⑸、由上述集合之间的基本关系,可以得到下⾯的结论:①、任何⼀个集合是它本⾝的⼦集。
②、对于集合A、B、C,如果A 是B 的⼦集,B 是C 的⼦集,则A 是C 的⼦集。
③、我们可以把相等的集合叫做“等集”,这样的话⼦集包括“真⼦集”和“等集”。
集合的基本运算⑴、并集:⼀般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。
记作A∪B。
(在求并集时,它们的公共元素在并集中只能出现⼀次。
)即A∪B={x|x∈A,或x∈B}。
⑵、交集:⼀般地,由所有属于集合A 且属于集合B 的元素组成的集合称为A 与B 的交集。
高等数学重要概念总结归纳高等数学是大学阶段数学课程中的一门重要学科,涉及到许多重要概念和理论。
本文将对高等数学中的一些重要概念进行总结归纳,以便读者更好地理解和掌握这些知识。
一、极限与连续1. 极限的定义与性质:介绍了数列和函数的极限定义,以及相关的性质,如极限唯一性、夹逼定理等。
2. 连续与间断点:讨论了函数的连续性概念,包括连续函数的定义以及间断点的分类和判定方法。
二、导数与微分1. 导数的定义与计算:介绍了导数的定义及其几何意义,以及常见函数的导数计算方法,如常数函数、幂函数、指数函数、对数函数等。
2. 微分与泰勒展开:探讨了微分的概念,以及泰勒展开的原理和应用。
三、不定积分与定积分1. 不定积分的定义与计算:介绍了不定积分的定义,以及常见函数的不定积分计算方法,如幂函数、三角函数、指数函数等。
2. 定积分的定义与计算:讨论了定积分的定义,以及计算定积分的各种方法,如定积分的性质、换元法、分部积分法等。
四、多元函数与偏导数1. 多元函数的概念:介绍了多元函数的定义和性质,以及极值、最值的判定方法。
2. 偏导数与全微分:讨论了偏导数的定义和计算方法,以及全微分的概念和性质。
五、重积分与曲线积分1. 重积分的概念与计算:介绍了重积分的定义和计算方法,如二重积分和三重积分的计算。
2. 曲线积分的概念与计算:探讨了曲线积分的定义及其计算方法,如第一类曲线积分和第二类曲线积分的计算。
六、常微分方程1. 常微分方程的基本概念:介绍了常微分方程的定义、阶数和解的概念。
2. 常微分方程的解法:讨论了一阶常微分方程和二阶常微分方程的解法,如分离变量法、线性方程解法、特征方程解法等。
七、级数1. 级数的基本概念与收敛性:介绍了级数的定义,以及级数收敛的基本判别法则,如比较判别法、比值判别法、根值判别法等。
2. 常见级数的求和:探讨了各种常见级数的求和方法,如几何级数、调和级数等。
总结:高等数学涉及到众多重要概念与理论,本文对极限与连续、导数与微分、不定积分与定积分、多元函数与偏导数、重积分与曲线积分、常微分方程、级数等概念进行了总结归纳。
高数重点总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
3、无穷小:高阶+低阶=低阶 例如:1lim lim020==+→→x xxx x x x 4、两个重要极限:()e x ex xxxx xx x =⎪⎭⎫⎝⎛+=+=∞→→→11lim 1lim )2(1sin lim )1(10 经验公式:当∞→→→)(,0)(,0x g x f x x ,[])()(lim )(0)(1lim x g x f x g x x x x ex f →=+→例如:()33lim 1031lim -⎪⎭⎫ ⎝⎛-→==-→e ex x x xx x5、可导必定连续,连续未必可导。
例如:||x y =连续但不可导。
6、导数的定义:()0000')()(lim)(')()(limx f x x x f x f x f xx f x x f x x x =--=∆-∆+→→∆7、复合函数求导:[][])(')(')(x g x g f dxx g df ∙= 例如:xx x x x x x y x x y ++=++=+=24122211', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx例如:yxdx dy ydy xdx y x y yy x y x -=⇒+-=⇒=+=+22,),2('0'22,),1(122左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若⎩⎨⎧==)()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[])(')('/)('/)/(/22t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f ∙∆=-∆+ 例如:计算 ︒31sin11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:xxy sin =(x=0是函数可去间断点),)sgn(x y =(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:⎪⎭⎫ ⎝⎛=x x f 1sin )((x=0是函数的振荡间断点),xy 1=(x=0是函数的无穷间断点) 12、渐近线:水平渐近线:c x f y x ==∞→)(lim铅直渐近线:.)(lim 是铅直渐近线,则若,a x x f ax =∞=→ 斜渐近线:[]ax x f b xx f a b ax y x x -==+=∞→∞→)(lim ,)(lim,即求设斜渐近线为例如:求函数11223-+++=x x x x y 的渐近线13、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高等数学知识点总结高等数学知识点总结1一、不定积分计算方法1. 凑微分法2. 裂项法3. 变量代换法1) 三角代换2) 根幂代换3) 倒代换4. 配方后积分5. 有理化6. 和差化积法7. 分部积分法(反、对、幂、指、三)8. 降幂法二、定积分的计算方法1. 利用函数奇偶性2. 利用函数周期性3.参考不定积分计算方法三、定积分与极限1. 积和式极限2. 利用积分中值定理或微分中值定理求极限3. 洛必达法则4. 等价无穷小四、定积分的估值及其不等式的应用1. 不计算积分,比较积分值的大小1) 比较定理:若在同一区间[a,b]上,总有f(x)>=g(x),则 >=()dx2) 利用被积函数所满足的不等式比较之 a)b) 当0<x<兀 p="" 兀<<12. 估计具体函数定积分的值积分估值定理:设f(x)在[a,b]上连续,且其最大值为m,最小值为m则m(b-a)<= <=m(b-a)3. 具体函数的定积分不等式证法1) 积分估值定理2) 放缩法3) 柯西积分不等式≤ %4. 抽象函数的定积分不等式的证法1) 拉格朗日中值定理和导数的有界性2) 积分中值定理3) 常数变易法4) 利用泰勒公式展开法五、变限积分的导数方法高等数学知识点总结2a.function函数(1)函数的定义和性质(定义域值域、单调性、奇偶性和周期性等)(2)幂函数(一次函数、二次函数,多项式函数和有理函数)(3)指数和对数(指数和对数的公式运算以及函数性质)(4)三角函数和反三角函数(运算公式和函数性质)(5)复合函数,反函数(6)参数函数,极坐标函数,分段函数(7)函数图像平移和变换b.limit and continuity极限和连续(1)极限的定义和左右极限(2)极限的运算法则和有理函数求极限(3)两个重要的极限(4)极限的应用-求渐近线(5)连续的定义(6)三类不连续点(移点、跳点和无穷点)(7)最值定理、介值定理和零值定理c.derivative导数(1)导数的定义、几何意义和单侧导数(2)极限、连续和可导的关系(3)导数的求导法则(共21个)(4)复合函数求导(5)高阶导数(6)隐函数求导数和高阶导数(7)反函数求导数(8)参数函数求导数和极坐标求导数d.application of derivative导数的应用(1)微分中值定理(d-mvt)(2)几何应用-切线和法线和相对变化率(3)物理应用-求速度和加速度(一维和二维运动)(4)求极值、最值,函数的增减性和凹凸性(5)洛比达法则求极限(6)微分和线性估计,四种估计求近似值(7)欧拉法则求近似值e.indefinite integral不定积分(1)不定积分和导数的关系(2)不定积分的公式(18个)(3)u换元法求不定积分(4)分部积分法求不定积分(5)待定系数法求不定积分f.definite integral 定积分(1)riemann sum(左、右、中和梯形)和定积分的定义和几何意义(2)牛顿-莱布尼茨公式和定积分的.性质(3)accumulation function求导数(4)反常函数求积分h.application of integral定积分的应用(1)积分中值定理(i-mvt)(2)定积分求面积、极坐标求面积(3)定积分求体积,横截面体积(4)求弧长(5)定积分的物理应用i.differential equation微分方程(1)可分离变量的微分方程和逻辑斯特微分方程(2)斜率场j.infinite series无穷级数(1)无穷级数的定义和数列的级数(2)三个审敛法-比值、积分、比较审敛法(3)四种级数-调和级数、几何级数、p级数和交错级数(4)函数的级数-幂级数(收敛半径)、泰勒级数和麦克劳林级数(5)级数的运算和拉格朗日余项、拉格朗日误差注意:(1)问答题主要考察知识点的综合运用,一般每道问答题都有3-4问,可能同时涵盖导数、积分或者微分方程的内容,解出的答案一般都是保留3位小数。
高数知识点总结高等数学是大学必修课程,也是各个理工科专业的基础课程。
在学习高等数学的过程中,我们需要掌握和理解一些重要的知识点。
下面将对一些常见的高数知识点进行总结。
一. 极限与连续1. 极限的定义和性质:极限是函数在某点逼近的结果,可以通过函数的左右极限来判断。
常用的极限性质有极限的唯一性、四则运算法则、夹逼准则等。
2. 连续与不连续:连续是指函数在某点和周围的点都存在极限并且这些极限相等。
常见的不连续点有可去间断点、跳跃间断点和无穷间断点。
二. 导数与微分1. 导数的定义和性质:导数是函数在某点处的变化率,可以描述函数曲线的陡峭程度。
导数的性质包括可导的充分必要条件、导数与函数连续的关系、导数的四则运算法则等。
2. 微分与高阶导数:微分是导数的一种表示形式,通过微分可以求得函数值的近似值。
高阶导数表示导数的导数,可以描述更加复杂的曲线变化。
三. 积分与定积分1. 不定积分和定积分的定义:不定积分是求导的逆运算,可以得到函数的原函数。
定积分是求函数在一定区间上的累积值,可以计算曲线下的面积或弧长。
2. 积分的性质和计算方法:积分的性质包括线性性质、区间可加性等。
计算积分可以通过换元法、分部积分法、定积分的几何应用等方法。
四. 一元函数的应用1. 函数的最值和极值点:函数的最值是函数在定义域上的最大值和最小值,极值点是函数的导数等于零或不存在的点。
通过求函数的导数可以找到函数的极值点。
2. 函数的图像与曲线的特性:函数的图像可以通过绘制函数的曲线来了解其性质。
常见的曲线特性有单调性、凹凸性、拐点等。
五. 多元函数的极限、偏导数与全微分1. 多元函数的极限:多元函数的极限是指在多元空间中某点的邻域内,函数值无限接近于某个值。
可以通过多元极限的定义和性质进行计算和推导。
2. 偏导数和全导数:偏导数是多元函数对于某个自变量的导数,全导数是多元函数所有自变量的偏导数的集合。
可以通过偏导数和全导数来分析多元函数的性质和曲线变化。
高等数学内容归纳总结高等数学是大学阶段的一门重要课程,它作为理工科、经管类等各个专业的基础学科,对于培养学生的分析思维和解决问题的能力具有重要意义。
本文将对高等数学的部分核心内容进行归纳总结,旨在帮助学生深入理解和掌握这些知识点。
1. 极限与连续1.1 极限的概念与性质在高等数学中,极限是一个非常重要的概念,它描述了函数或数列的趋势与趋近行为。
极限的计算方法包括代入法、夹逼准则等。
此外,极限运算具有一些基本性质,如四则运算法则、复合函数的极限等。
1.2 连续的定义与判定连续是指函数在某一区间内无间断点的特性。
学习连续性的时候,我们要掌握函数连续的定义、连续函数的性质以及一些常用函数在特定区间内的连续性判定方法。
2. 导数与微分2.1 导数的定义与性质导数是函数瞬时变化率的描述,它在高等数学中占据了重要地位。
学习导数的时候,我们要理解导数的定义、导数的几何意义以及导数的基本运算法则。
此外,还需要掌握一些常用函数的导数表达式。
2.2 微分学基本定理与应用微分学是导数的应用学科,它研究了函数的变化率与函数本身的关系。
学习微分学的时候,我们要了解微分中值定理、泰勒展开式等基本定理,并学会应用它们解决一些实际问题。
3. 积分与定积分3.1 定积分的概念与性质定积分是高等数学中的重要内容,它计算了函数与坐标轴所围成的曲边梯形的面积或黎曼和。
学习定积分的时候,我们要理解定积分的几何意义与计算方法,并学会利用定积分解决一些几何问题。
3.2 积分学基本定理与应用积分学是定积分的应用学科,它研究了函数的积分与原函数的关系。
学习积分学的时候,我们要了解积分中值定理、换元积分法等基本定理,并学会应用它们解决一些实际问题。
4. 无穷级数与傅里叶级数4.1 数项级数的概念与性质无穷级数是指由无穷多个数相加或者相乘而成的数列。
学习数项级数的时候,我们要理解级数的收敛与发散的概念,以及级数求和的各种准则与方法。
4.2 傅里叶级数与傅里叶变换傅里叶级数是一种将函数表示为三角函数级数的方法,它在信号处理、图像处理等领域有着广泛的应用。
高数总结知识点一、函数与极限函数的概念、性质及其图像。
函数的极限定义、性质及其运算。
无穷小与无穷大的概念及关系。
极限存在准则(夹逼准则、单调有界准则等)。
二、导数与微分导数的定义、性质及几何意义。
导数的计算(包括基本初等函数的导数、复合函数求导法则、隐函数求导、参数方程求导等)。
高阶导数的概念及计算。
微分的定义、性质及运算。
三、微分中值定理与导数的应用微分中值定理(罗尔定理、拉格朗日中值定理、泰勒定理等)。
洛必达法则及其应用。
函数的单调性、极值、最值及凹凸性的判定。
曲线的渐近线、拐点及图形的描绘。
四、不定积分与定积分不定积分的概念、性质及基本积分公式。
不定积分的计算(包括凑微分法、换元积分法、分部积分法等)。
定积分的概念、性质及计算。
定积分的应用(如面积、体积、弧长、功、平均值等的计算)。
五、向量代数与空间解析几何向量的概念、性质及运算。
空间直角坐标系及点的坐标表示。
向量的坐标表示及运算。
平面与直线的方程及其位置关系。
六、多元函数微分学多元函数的概念、性质及极限与连续。
偏导数的定义、计算及几何意义。
全微分的概念及计算。
多元函数的极值与最值问题。
七、多元函数积分学二重积分的概念、性质及计算。
三重积分的概念及计算。
曲线积分与曲面积分的概念及计算。
八、无穷级数常数项级数的概念、性质及收敛判别法。
函数项级数的概念及一致收敛性。
幂级数的概念、性质及运算。
傅里叶级数及其应用。
九、微分方程微分方程的概念及分类。
一阶微分方程的解法(分离变量法、凑微分法等)。
高阶微分方程的解法(降阶法、幂级数解法等)。
微分方程的应用(如物理、化学、生物等领域中的实际问题)。
以上只是高等数学的一些主要知识点,实际上高等数学的内容非常丰富且深入,需要学习者不断地探索和实践。
高等数学知识点总结高等数学是一门基础学科,对于理工科学生来说是必修课程。
它涵盖了多个重要的数学概念和理论,为学生提供了解决实际问题的数学工具。
本文将对高等数学中的一些重要知识点进行总结和概述。
一、极限与连续1. 极限的概念极限是数列或函数在某一点或无穷远处的趋势或趋近的概念。
数列极限和函数极限是高等数学中的基础概念,对于后续的微积分和微分方程等学科具有重要作用。
2. 连续性连续性是函数的一个重要性质,它意味着函数在某一区间内没有跳跃或断裂的点。
连续函数具有许多重要的性质,例如介值定理和最大最小值定理等。
二、微分学1. 导数与微分导数是函数在某一点的变化率,它的几何意义是函数曲线在该点处的切线斜率。
微分是导数的微小变化量,它在微积分中有着重要的应用,例如求解极值问题和描述曲线的几何性质等。
2. 微分中值定理微分中值定理是微分学中的重要定理,它描述了函数在某一区间内必然存在某个点,该点的导数等于函数在该区间的平均变化率。
微分中值定理在求解函数的性质和优化问题中具有重要作用。
三、积分学1. 不定积分不定积分是求解函数原函数的过程,它是微分的逆运算。
不定积分的结果是一个函数族,每个函数都是原函数的一个特解。
不定积分在解决微分方程和计算曲线下的面积等问题中起着重要作用。
2. 定积分定积分是计算曲线下的面积或曲线长度的工具。
定积分的几何意义是曲线与坐标轴之间的面积。
定积分在物理学、经济学和统计学等领域有着广泛的应用。
四、级数1. 数列与级数数列是按照一定规律排列的一组数,级数是数列的和。
级数在数学分析和实际问题中有着广泛的应用,例如无穷级数和幂级数等。
2. 收敛与发散收敛与发散是级数的两种基本性质。
如果级数的部分和有一个有限的极限,那么该级数是收敛的;如果级数的部分和趋向于无穷大,那么该级数是发散的。
五、常微分方程1. 一阶常微分方程一阶常微分方程是关于未知函数及其导数的方程。
通过求解一阶常微分方程,可以得到函数的解析解或数值解,从而描述物理过程和自然现象。
高等数学知识点总结大一大一高等数学知识点总结。
一、函数与极限。
1. 函数。
- 定义:设数集D⊆ R,则称映射f:D→ R为定义在D上的函数,通常记为y = f(x),x∈ D。
- 函数的特性。
- 有界性:若存在M>0,使得对任意x∈ X⊆ D,都有| f(x)|≤ M,则称f(x)在X上有界。
- 单调性:设函数y = f(x)的定义域为D,区间I⊆ D。
如果对于区间I上任意两点x_1及x_2,当x_1 < x_2时,恒有f(x_1)(或f(x_1)>f(x_2)),则称函数y =f(x)在区间I上是单调增加(或单调减少)的。
- 奇偶性:设函数y = f(x)的定义域D关于原点对称,如果对于任意x∈D,有f(-x)=f(x),则称f(x)为偶函数;如果对于任意x∈ D,有f(-x)= - f(x),则称f(x)为奇函数。
- 周期性:设函数y = f(x)的定义域为D,如果存在一个正数T≠0,使得对于任意x∈ D有(x± T)∈ D,且f(x + T)=f(x),则称y = f(x)为周期函数,T称为y = f(x)的周期。
- 复合函数:设函数y = f(u)的定义域为D_1,函数u = g(x)在D上有定义且g(D)⊆ D_1,则由下式确定的函数y = f[g(x)],x∈ D称为由函数u = g(x)与函数y = f(u)构成的复合函数,它的定义域为D,变量u称为中间变量。
- 反函数:设函数y = f(x)的定义域为D,值域为W。
如果对于值域W中的任一y值,从关系式y = f(x)中可确定唯一的一个x值,则称变量x为变量y的函数,记为x = f^-1(y),y∈ W,称x = f^-1(y)为函数y = f(x)的反函数。
习惯上y = f(x)的反函数记为y = f^-1(x)。
2. 极限。
- 极限的定义。
- 数列极限:设{x_n}为一数列,如果存在常数a,对于任意给定的正数varepsilon(不论它多么小),总存在正整数N,使得当n > N时,不等式| x_n - a|都成立,那么就称常数a是数列{x_n}的极限,或者称数列{x_n}收敛于a,记为lim_n→∞x_n=a。
高等数学知识点总结1. 极限与连续性- 极限的定义与性质- 无穷小与无穷大- 极限的运算法则- 连续函数的定义与性质- 闭区间上连续函数的定理(确界存在定理、中值定理、罗尔定理等)2. 导数与微分- 导数的定义与几何意义- 导数的计算方法(基本导数公式、链式法则、乘积法则、商法则、隐函数求导等)- 高阶导数- 微分的定义与应用- 泰勒级数与麦克劳林级数3. 积分学- 不定积分的概念与性质- 基本积分表与积分技巧(换元法、分部积分法等)- 定积分的定义与性质- 定积分的应用(面积、体积、弧长、工作量等)- 微积分基本定理- 积分技巧(特殊技巧、积分表的使用等)4. 多元函数微分学- 多元函数的偏导数与全微分- 多元函数的极值问题与拉格朗日乘数法- 梯度、方向导数与切平面- 多重积分的概念与计算(二重积分、三重积分)5. 向量代数与空间解析几何- 向量的运算与性质- 点、直线与平面的方程- 空间曲线与曲面的方程6. 级数- 级数的基本概念(数项级数、幂级数、函数项级数)- 收敛性判断(柯西准则、比较判别法、比值判别法、根值判别法等)- 幂级数的收敛半径与收敛区间- 傅里叶级数7. 常微分方程- 微分方程的基本概念- 可分离变量的微分方程- 一阶线性微分方程- 二阶常系数线性微分方程- 特殊类型的微分方程(贝塞尔方程、勒让德方程等)8. 复变函数- 复数的基本概念与运算- 解析函数的概念与性质- 复变函数的积分与柯西积分定理- 留数定理与应用9. 泛函分析初步- 赋范线性空间与内积空间- 线性算子与线性泛函- 正交性与谱理论初步10. 概率论与数理统计- 随机事件与概率的定义- 随机变量与分布函数- 多维随机变量及其分布- 大数定律与中心极限定理- 统计量的分布与假设检验以上是高等数学的主要知识点概要。
每个部分都需要深入学习并通过大量的练习来掌握。
这些知识点构成了高等数学的基础,对于理解和应用更高级的数学概念至关重要。
高等数学知识点全总结高等数学是数学学科中的一门重要学科,是一门深入研究数学分析、微积分和代数学等数学分支的学科,其涵盖领域广泛,包括函数、极限、微分、积分、微分方程、级数等诸多方面。
在各大专业中,高等数学作为基础课程,扮演着不可替代的角色。
本篇文章将对高等数学的知识点进行全面总结。
1.函数与极限函数是高等数学的基础,它描述了自变量与因变量之间的关系。
在函数的研究中,极限是一项极其重要的内容。
极限是指当自变量趋近于某个值时,函数的取值趋近于某个值,它是无限逼近的一种数学方法。
极限的研究对于后续微积分等知识点的应用起着至关重要的作用。
2.微积分微积分是高等数学的核心内容之一,它包括微分和积分两部分。
微分研究的是函数在某个点的瞬时变化率,即导数;积分则是在某个区间内的函数取值之和或曲线下面的面积。
微积分的应用极为广泛,包括经济学、物理学、工程学等多个领域。
3.微分方程微分方程是研究未知函数及其导数与偏导数之间的关系的方程,它是数学建模中不可或缺的工具。
微分方程分为常微分方程和偏微分方程两种类型,常微分方程的用途较广泛。
4.级数级数是指一列数按照规定的方式相加或相减,由此形成的无穷数列,是数学中非常重要的一种数列类型。
在级数的研究中,收敛和发散是极其重要的概念,收敛的级数可以求得无限接近于某个值的总和,而发散的级数则无法求和。
5.矩阵与行列式矩阵是一种经典的数学工具,指由数字排成的一个矩形阵列,它是线性代数的核心内容。
在矩阵的研究中,行列式的概念也是非常重要的,在确定矩阵是否可逆、计算矩阵的秩等问题上,行列式都起着决定性的作用。
6.多元函数与多元微积分多元函数指的是拥有多个自变量的函数,它在实际问题中有着广泛的应用。
多元微积分是处理多元函数的微积分,包括偏导数、方向导数、梯度、多元积分等内容。
以上是高等数学中的主要知识点,这些知识点相互独立,但相互联系,从每个部分深入到其他部分,紧密组成了高等数学的理论体系。
高等数学之高中知识点总结一、微积分微积分是高等数学中最基础也是最重要的内容之一。
微积分包括微分学和积分学两部分内容,主要研究函数的变化规律和面积、长度、体积等问题。
1. 函数及其性质函数的基本概念:自变量、因变量、变量域、值域等。
初等函数:常函数、幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数等。
函数的性质:单调性、奇偶性、周期性等。
极限与连续:函数极限的概念、极限性质、无穷小与无穷大、函数连续性及其判别法。
2. 微分学导数的定义及其几何意义:导数的定义、导数的几何意义、导数的性质。
常用函数的导数:常函数、幂函数、指数函数、对数函数、三角函数、反三角函数等的导数。
高阶导数、隐函数与参数方程的导数、导数的运算法则。
微分:微分的概念、微分的性质、高阶微分、微分的应用。
泰勒公式与洛必达法则。
3. 积分学不定积分:不定积分的概念、基本积分、换元积分法、分部积分法、有理分式的积分、反常积分等。
定积分:定积分的概念、定积分的性质、定积分的计算法、变限积分的导数公式和积分公式。
定积分的应用:定积分的几何应用、物理应用、概率统计应用等。
二、线性代数线性代数是研究多维空间中向量、矩阵、线性方程组及其相关概念和理论的数学学科。
1. 线性方程组与矩阵线性方程组:线性方程组的概念、线性方程组的解的判别法、线性方程组的解的结构。
矩阵与矩阵的运算:矩阵的概念、矩阵的运算、矩阵的初等变换、矩阵的秩与逆。
2. 向量空间向量的概念、向量的线性运算和向量空间的性质。
向量空间的基与维数:线性无关组、向量组的秩、向量空间的基、维数。
3. 线性变换与矩阵的相似性线性变换的概念、线性变换的矩阵表示、线性变换与矩阵的相似性。
特征值与特征向量:特征值与特征向量的概念、求特征值与特征向量的方法。
4. 线性空间的结构内积、内积空间、正交向量组。
正交矩阵、正交变换。
三、数学分析数学分析是数学的一个重要分支,主要研究实数系统上的连续函数和变量的极限等问题。
高等数学知识点总结高等数学是大学教育中的重要一门课程,其内容涵盖了微积分、线性代数、数学分析等多个方面。
本文将从绪论、微积分、线性代数和数学分析四个方面进行总结,并列举相关题目进行分析和解答。
一、绪论1. 集合论:集合的概念、包含关系、交集、并集、补集等基本运算。
2. 映射与函数:函数的概念、映射的性质、复合函数、反函数、一一映射等基本概念。
3. 极限与连续:数列极限、函数极限、无穷小与无穷大、连续函数等概念。
4. 导数与微分:导数的定义、求导法则、高阶导数、隐函数及参数方程的导数等。
二、微积分1. 反函数与隐函数:反函数定义、隐函数的导数、求反函数的导数等。
题目:已知函数$f(x)=e^{2x}+x\sin{(\frac{\pi}{2}+x)}$,求其反函数$f^{-1}(x)$的导数表达式。
2. 微分中值定理:拉格朗日中值定理、柯西中值定理、罗尔中值定理等。
题目:判断函数$f(x)=\frac{x^4}{4}-x^3+2x^2-4x$在闭区间[-2,2]上是否满足罗尔中值定理,并给出证明。
3. 泰勒公式与应用:泰勒展开、泰勒公式、常用泰勒公式推导等。
题目:设$f(x)=\ln{(1+\frac{x}{a})}$,求其在$x=0$处的Talor展开式,并写出其带有佩亚诺余项的n阶展开式。
三、线性代数1. 行列式与矩阵:行列式的定义、行列式运算、矩阵的基本运算、逆矩阵、伴随矩阵等。
题目:已知矩阵$A=\begin{pmatrix} 1 & -2 & 1 \\ 2 & 1 & -3 \\3 & 1 & 2 \end{pmatrix}$,求其逆矩阵$A^{-1}$并验证。
2. 线性方程组与矩阵:线性方程组的解、矩阵运算、矩阵的秩、可逆矩阵、特征值与特征向量等。
题目:已知线性方程组$\begin{pmatrix} 2 & 3 \\ 4 & 5\end{pmatrix} \begin{pmatrix} x \\ y\end{pmatrix}=\begin{pmatrix} 1 \\ 3 \end{pmatrix}$,求其解。
高等数学
主要内容有:二重积分、三重积分、曲线积分和曲面积分、无穷级数、常微分方程等。
第十章重积分
教学目标:理解二重积分、三重积分的概念,了解重积分的性质。
掌握二重积分的计算方法(直角坐标、极坐标),了解三重积分的计算方法(直角坐标、柱面坐标、球面坐标)。
会用重积分求解一些几何量(如体积、曲面面积等)。
重点:二重积分、三重积分的概念和思想,二重积分的计算方法(直角坐标、极坐标),三重积分的计算。
难点:二重积分的计算方法,三重积分的计算方法,
CH10重积分
10.1二重积分概念及性质
10.2二重积分计算方法
10.3三重积分的概念及计算
10.4重积分应用
第十一章曲线积分与曲面积分
理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。
会计算两类曲线积分。
掌握格林(Green)公式,会使用平面曲线积分与路径无关的条件。
了解两类曲面积分的概念及高斯(Guass)、斯托克斯(Stokes)公式并会计算两类曲面积分。
重点:两类曲线和曲面积分的概念及计算,格林公式,高斯公式。
难点:格林公式,高斯公式。
CH11曲线积分与曲面积分
11.1对弧长的曲线积分
11.2对坐标的曲线积分
11.3格林公式及其应用
11.4对面积的曲面积分
11.5对坐标的曲面积分
11.6高斯公式
11.7斯托克斯公式(*)
第十二章 无穷级数
教学目标:理解无穷级数收敛、发散以及和的概念,了解无穷级数基本性质及收敛的必要条件。
掌握几何级数和p -级数的收敛性。
了解正项级数的比较审敛法,掌握正项级数的比值审敛法。
了解交错级数的莱布尼兹定理,会估计交错级数的截断误差。
了解无穷级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系。
了解函数项级数的收敛域及和函数的概念。
掌握比较简单的幂级数收敛区间的求法(区间端点的收敛性可不作要求)。
了解幂级数在其收敛区间内的一些基本性质。
了解函数展开为泰勒级数的充分必要条件。
会利用,sin ,cos ,ln(1)x e x x x +和()1x μ+的马克劳林(Maclaurin)展开式将一些简单的函数间接展开成幂级数。
了解幂级数在近似计算上的简单应用。
了解函数展开为傅里叶(Fourier)级数的狄利克雷(Dirichlet)条件,会将定义在(,)ππ-和(,)l l -上的函数展开为傅里叶级数,并会将定义在(0,)l 上的函数展开为正弦或余弦级数。
重点:无穷级数收敛、发散以及和的概念,几何级数和p -级数的收敛性,正项级数的比值审敛法,莱布尼兹判别法,比较简单的幂级数的收敛域和和函数的求法,用间接法展开函数为幂级数。
难点:正项级数的比较审敛法,交错级数的莱布尼兹定理,求幂级数的收敛域及和函数,函数展开为泰勒级数,函数展开为
傅里叶级数。
CH12无穷级数
12.1常数项级数的概念与性质
12.2常数项级数的审敛法
12.3幂级数
12.4函数展成幂级数
12.5函数的幂级数展开式的应用
12.6函数项级数的一致收敛及一致收敛级数的基本性质(*) 12.7傅里叶级数
12.8一般周期函数的傅里叶级数
第7章 常微分方程
教学目标:了解微分方程、解、阶、通解、初始条件和特解等概念。
掌握变量可分离的方程及一阶线性方程的解法。
会解齐次方程,了解用变量代换求方程的思想。
(会用降阶法解下列方程:()(),(,)n y f x y f x y '''==和(,)y f y y '''=。
理解二阶线性微分方程解的结构。
掌握二阶常系数齐次线性微分方程的解法,并了解高阶常系数齐次线性微分方程的解法。
会求自由项形如()x n p x e λ、(cos sin )x e A x B x αββ+的二阶常系数非齐次线性微分方程的特解。
)
重点:可分离变量的微分方程、齐次方程及一阶线性微分方程的解法。
7.1微分方程基本概念
7.2可分离变量微分方程
7.3齐次方程
7.4一阶线性微分方程
7.5可降阶的高阶微分方程(*)
7.6高阶线性方程(*)
7.7二阶常系数齐次线性微分方程(*)
7.8二阶常系数非齐次线性做分方程(*)。