(完整版)高数知识点总结
- 格式:doc
- 大小:166.05 KB
- 文档页数:3
高数部分知识点总结1 高数部分1.1 高数第一章《函数、极限、连续》求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法0,,0,0,1则,对于型和型的题目直接用洛必达法则,对于、、型0,0,的题目则是先转化为型或型,再使用洛比达法则;3.利用重要极0,1xx1x,1(1,x),e限,包括、、;4.夹逼定理。
(1,),exlimlimlimsinxxx,0,0x,,1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。
对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。
在此只提醒一点:不定积分f(x)dx,F(x),C中的积分常数C 容易被忽略,而考试时如果在答,案中少写这个C会失一分。
所以可以这样建立起二者之间的联系以加f(x)dx深印象:定积分的结果可以写为F(x)+1,1指的就是那一分,,f(x)dx,F(x),C把它折弯后就是中的那个C,漏掉了C也就漏掉了,这1分。
第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下af(x)dx限上做文章:对于型定积分,若f(x)是奇函数则有,,aaaaf(x)dxf(x)dxf(x)dx=0;若f(x)为偶函数则有=2;对于,,,,a,a0,,2t,,xf(x)dx型积分,f(x)一般含三角函数,此时用的代换是常,02用方法。
所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利aaa奇函数,0偶函数,2偶函数用性质、。
高数知识点总结电子版一、极限与连续1. 函数的极限(1) 函数极限的定义(2) 函数极限的性质(3) 无穷小量与无穷大量(4) 夹逼准则2. 连续与间断(1) 连续的定义(2) 连续函数的性质(3) 间断点的分类(4) 间断函数的构造二、导数与微分1. 导数的定义(1) 导数的几何意义(2) 导数的计算方法(3) 导数的性质(4) 高阶导数2. 微分的定义(1) 微分的几何意义(2) 微分的计算方法(3) 微分的性质(4) 隐函数求导三、微分中值定理与泰勒公式1. 罗尔中值定理(1) 罗尔中值定理的条件(2) 罗尔中值定理的应用2. 拉格朗日中值定理(1) 拉格朗日中值定理的条件(2) 拉格朗日中值定理的应用3. 柯西中值定理(1) 柯西中值定理的条件(2) 柯西中值定理的应用4. 泰勒公式(1) 泰勒公式的表述(2) 泰勒公式的应用四、不定积分与定积分1. 不定积分(1) 不定积分的概念(2) 不定积分的计算方法(3) 不定积分的性质(4) 不定积分的换元法2. 定积分(1) 定积分的概念(2) 定积分的计算方法(3) 定积分的性质(4) 定积分的应用五、微分方程1. 微分方程的基本概念(1) 微分方程的定义(2) 微分方程的类型(3) 微分方程的解的存在唯一性定理2. 一阶常微分方程(1) 可分离变量的微分方程(2) 齐次微分方程(3) 一阶线性微分方程3. 高阶常微分方程(1) 高阶线性微分方程(2) 常系数齐次线性微分方程六、多元函数微分学1. 多元函数的极限(1) 多元函数极限的定义(2) 多元函数极限的性质(3) 重要极限的计算2. 偏导数(1) 偏导数的定义(2) 偏导数的计算方法(3) 高阶偏导数3. 方向导数(1) 方向导数的定义(2) 方向导数的计算方法(3) 梯度4. 多元函数的微分(1) 多元函数的全微分(2) 多元函数的微分近似七、多元函数积分学1. 二重积分(1) 二重积分的定义(2) 二重积分的计算方法(3) 二重积分的性质(4) 二重积分的应用2. 三重积分(1) 三重积分的定义(2) 三重积分的计算方法(3) 三重积分的性质(4) 三重积分的应用3. 曲线积分与曲面积分(1) 曲线积分的定义(2) 曲线积分的计算方法(3) 曲面积分的定义(4) 曲面积分的计算方法八、向量分析1. 向量及其运算(1) 向量的基本概念(2) 向量的线性运算(3) 向量的数量积与叉积2. 曲线与曲面的方程(1) 曲线的参数方程(2) 曲线的一般方程(3) 曲面的参数方程(4) 曲面的一般方程3. 向量场与散度(1) 向量场的定义与性质(2) 散度的概念与计算(3) 散度的物理意义4. 向量场与旋度(1) 旋度的概念与计算(2) 旋度的物理意义(3) 欧拉公式以上就是高等数学的知识点总结,希望对你的学习有所帮助。
高等数学知识点总结•相关推荐高等数学知识点总结在我们平凡无奇的学生时代,大家最熟悉的就是知识点吧?知识点就是学习的重点。
那么,都有哪些知识点呢?下面是小编整理的高等数学的知识点总结,希望对大家有所帮助。
高等数学的知识点总结篇1第一章:函数与极限1.理解函数的概念,掌握函数的表示方法。
2.会建立简单应用问题中的函数关系式。
3.了解函数的奇偶性、单调性、周期性、和有界性。
4.掌握基本初等函数的性质及图形。
5.理解复合函数及分段函数的有关概念,了解反函数及隐函数的概念。
6.理解函数连续性的概念(含左连续和右连续)会判别函数间断点的类型。
7.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左右极限间的关系。
8.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
9.掌握极限性质及四则运算法则。
10.理解无穷孝无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
第二章:导数与微分1.理解导数与微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描写一些物理量,理解函数的可导性与连续性之间的关系。
2.掌握导数的四则运算法则和复合函数的求导法则,掌握初等函数的求导公式,了解微分的.四则运算法则和一阶微分形式的不变性,会求初等函数的微分。
3.会求隐函数和参数方程所确定的函数以及反函数的导数。
4.会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。
第三章:微分中值定理与导数的应用1.熟练运用微分中值定理证明简单命题。
2.熟练运用罗比达法则和泰勒公式求极限和证明命题。
3.了解函数图形的作图步骤。
了解方程求近似解的两种方法:二分法、切线法。
4.会求函数单调区间、凸凹区间、极值、拐点以及渐进线、曲率。
第四章:不定积分1.理解原函数和不定积分的概念,掌握不定积分的基本公式和性质。
2.会求有理函数、三角函数、有理式和简单无理函数的不定积分3.掌握不定积分的分步积分法。
(完整版)高等数学基础知识点归纳-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一讲函数,极限,连续性1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集,记作N。
⑶、全体整数组成的集合叫做整数集,记作Z。
⑷、全体有理数组成的集合叫做有理数集,记作Q。
⑸、全体实数组成的集合叫做实数集,记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A 中的任意一个元素都是集合B 的元素,我们就说A、B 有包含关系,称集合A 为集合B 的子集,记作A ?B。
⑵、相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中的元素完全一样,因此集合A 与集合B 相等,记作A=B。
⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A,我们称集合A 是集合B 的真子集,记作A??。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
②、对于集合A、B、C,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。
记作A∪B。
(在求并集时,它们的公共元素在并集中只能出现一次。
(完整版)高等数学笔记第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1。
函数的定义: y=f(x ), x ∈D定义域: D(f ), 值域: Z(f )。
2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y3。
隐函数: F(x,y )= 04。
反函数: y=f (x) → x=φ(y )=f —1(y )y=f -1(x)定理:如果函数: y=f (x), D (f )=X , Z (f )=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f —1(x), D (f —1)=Y, Z (f —1)=X 且也是严格单调增加(或减少)的。
㈡ 函数的几何特性1。
函数的单调性: y=f (x ),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x )在D 内单调增加( );若f (x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f (x 2),则称f (x)在D 内严格单调增加( );若f(x 1)>f (x 2),则称f(x)在D 内严格单调减少( ).2。
函数的奇偶性:D(f )关于原点对称 偶函数:f(—x )=f (x) 奇函数:f (-x )=-f (x ) 3.函数的周期性:周期函数:f(x+T)=f(x ), x ∈(-∞,+∞) 周期:T-—最小的正数4。
函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数1。
常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5。
三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6。
反三角函数:y=arcsin x, y=arccon x y=arctan x , y=arccot x ㈣ 复合函数和初等函数1。
高等数学基本知识点大全一、导数和微分在高等数学中,导数和微分是重要的基本概念。
导数描述了函数在某一点的变化率,可以帮助我们求解函数的最值、刻画曲线形状等问题。
微分则是导数的一种运算形式,表示函数在给定点附近的局部线性逼近。
1. 导数的定义和性质:- 导数定义:函数f(x)在点x=a处的导数定义为f'(a) =lim┬(h→0)〖(f(a+h)-f(a))/h〗。
- 导数的几何意义:导数表示曲线在某一点的切线斜率。
- 导数的性质:求导法则包括常数法则、幂函数法则、指数函数和对数函数法则等。
2. 微分的定义和性质:- 微分的定义:设y=f(x)为定义在区间I上的函数,若存在常数dy 使得Δy=f'(x)Δx+dy,其中Δx是x的增量,则称dy为函数f(x)在区间I 上的微分。
- 微分的性质:微分是线性近似,具有微分的小量运算法则。
3. 一阶导数和高阶导数:- 一阶导数:如果函数f(x)在点x处的导数存在,则称f(x)在该点可导,其导数为一阶导数,记作f'(x)或dy/dx。
- 高阶导数:若函数f(x)的导数f'(x)也存在导数,则称导数f'(x)为函数f(x)的二阶导数,记作f''(x)或d²y/dx²。
二、积分和定积分积分和定积分是数学中的重要工具,可以用来求解曲线下的面积、求解定量累计、求解方程等问题。
它们是导数的逆运算。
1. 定积分的定义和性质:- 定积分的定义:设函数f(x)在闭区间[a,b]上有定义,则称函数f(x)在区间[a,b]上的积分为定积分,记作∫_a^b▒f(x)dx。
- 定积分的性质:定积分具有线性性、加法性、估值性等。
2. 积分基本公式和换元积分法:- 积分基本公式:包括常数乘法法则、分步积分法则和换元积分法则等。
- 换元积分法:利用换元积分法可以将一些复杂的积分问题转化为简单的积分形式。
3. 不定积分和定积分的关系:- 不定积分:函数F(x)是f(x)的一个原函数,即F'(x)=f(x),则称F(x)为f(x)的不定积分,记作∫f(x)dx=F(x)+C,其中C为常数。
完整版高数一知识点一、导数与微分高等数学中,导数是一种表示函数变化率的工具。
它是研究函数在某一点上的局部性质和变化趋势的基本概念。
导数可以通过极限的概念进行定义,表示函数在某一点上的瞬时变化率。
导函数的计算方法包括:1. 基本函数的导数公式:常数函数、幂函数、指数函数、对数函数、三角函数等的导数公式。
2. 四则运算法则:求导的四则运算法则包括加法法则、减法法则、乘法法则和除法法则。
3. 复合函数的求导:使用链式法则求解复合函数的导数。
微分是导数的应用之一,用于研究函数的近似变化。
微分的计算方法包括:1. 微分的定义:微分可以通过导数来进行计算,表示函数在某一点上的变化量。
2. 微分的近似计算:使用微分近似计算可以帮助我们在没有具体数值的情况下估计函数的变化。
二、不定积分与定积分不定积分是求解函数原函数的过程,也被称为反导数。
不定积分可以表示函数的面积、函数的平均值等。
计算不定积分的方法包括:1. 基本积分公式:根据一些基本函数的导数公式,可以得到相应的不定积分公式。
2. 积分的线性性质:积分具有线性性质,即函数的线性组合的积分等于各组成函数的积分之和。
3. 特殊函数的积分:对于一些特殊的函数,可以通过一些特殊的方法进行积分。
定积分是求解函数在某一区间上的面积的过程,也被称为积分。
定积分可以表示弧长、质量、体积等物理量。
计算定积分的方法包括:1. 定积分的定义:定积分可以通过分割区间,计算分割点上函数值与区间长度的乘积之和来进行计算。
2. 积分的性质:定积分具有一些性质,例如积分的线性性质、积分的区间可加性等。
3. 牛顿-莱布尼茨公式:牛顿-莱布尼茨公式给出了定积分与不定积分之间的关系。
三、常微分方程常微分方程是研究函数的导数与自变量之间关系的方程。
它是高等数学中一个重要的分支,应用广泛。
常微分方程的求解方法包括:1. 可分离变量法:对于可分离变量的常微分方程,可以通过分离变量并积分的方法进行求解。
高数重要知识点汇总第一章 函数与极限一. 函数的概念1 两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim (1)l = 0,称f (x )是比g (x )高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x )与g (x )是同阶无穷小。
(3)l = 1,称f (x )与g (x )是等价无穷小,记以f (x ) ~ g (x )2 常见的等价无穷小当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二 求极限的方法1.两个准则准则1高数重要知识点汇总准则2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 放缩求极限若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→xx x 公式2e x x x =+→/10)1(lim 3.高数重要知识点汇总4.★用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o nx x x x x +-++-=++ )(!))1()...(1( (2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.)()(lim )()(lim 00x F x f x F x f x x x x ''=→→例1计算极限0e 1lim x x x→-. 解 该极限属于“00”型不定式,于是由洛必达法则,得 0e 1lim x x x→-0e lim 11xx →==. 例2计算极限0sin lim sin x ax bx→. 解 该极限属于“00”型不定式,于是由洛必达法则,得 00sin cos lim lim sin cos x x ax a ax a bx b bx b→→==. 注 若(),()f x g x ''仍满足定理的条件,则可以继续应用洛必达法则,即()()()lim lim lim ()()()x a x a x a f x f x f x g x g x g x →→→'''==='''二、∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.例3计算极限lim (0)n x x x n e→+∞>. 解 所求问题是∞∞型未定式,连续n 次施行洛必达法则,有 lim e n x x x →+∞1lim e n x x nx -→+∞=2(1)lim e n xx n n x -→+∞-= !lim 0e x x n →+∞===. 使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; (2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.7.利用导数定义求极限)()(lim )()(lim 00x F x f x F x f x x x x ''=→→基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在) 8.利用定积分定义求极限基本格式⎰∑==∞→101)()(1lim dx x f n k f n n k n (如果存在) 三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。
高数知识点总结1.函数定义:x 经过对应法则f 唯一确定y三要素:定义域、值域和对应法则基本性质:单调性、奇偶性、周期性、有界性基本初等函数:反对幂指三复合函数:函数套函数y =f(g (x ))(注意复合次序及取值范围) 初等函数:由常数和基本的初等函数经过有限次的四则运算和有限次的复合步骤形成的一个式子的函数2.极限(1)定义:当自变量在某个变化的过程中,函数无限的接近某一个常数A ,则收敛,lim x→?f (x )=A (2)左右极限:左右极限存在且相等,则极限存在。
(3)求极限的方法:①四则运算(直接代入)②C 0或C ∞型:利用无穷大与无穷小的关系C 0=∞,C ∞=0 ③00型:去零因子(因式分解或有理化)、洛必达法则(上下求导) ④∞∞型:看最高次项、洛必达法则 ⑤无穷小的性质(有界变量与无穷小量的乘积是无穷小量) ⑥等价无穷小替换(只能乘积因子)0~sin ~arcsin ~tan ~arctan ~ln(1)~1x x x x x x x x e →+-当时,,211cos ~.2x x -⑦两个重要极限:lim x→0sinx x=1(适用于含三角函数的00) lim x→∞(1+1x)x =e (1∞ 型的幂指函数) 3.函数的连续性(1)定义:0lim 0x y ∆→∆=,极限值=函数值 (2)单侧连续:左连续且右连续⇔连续(3)间断点:①第一类间断点:左右极限都存在可去间断点(左右相等但不等于此处函数值)、 跳跃间断点(左右不相等)②第二类间断点:(左右极限至少有一个不存在) 无穷间断点、振荡间断点4.导数(变化率问题):(1)定义:增量比值取极限,极限存在即可导lim △x→0△y △x =A几何意义:切线的斜率单侧导数:左导右导存在且相等,则可导(2)常用导数公式(基本的初等函数求导) 复合函数求导: x u x y y u '''=⋅(外导*内导)隐函数求导: 参数方程求导:''d ()=d ()t t y y t x t x ψϕ'='5.导数的应用(1)单调性:()0f x '>单增,()0f x '<单减(2)极值:(驻点和不可导点为可能极值点) 法一:f ′(x )左负右正取极小,f ′(x )左正右负取极大 法二:f ′′(x 0)<0时, f(x)在x 0处取得极大值;f ′′(x 0)>0时, f(x)在x 0处取得极小值(3)最值:比较端点值和极值出最值(4)凹凸性:()0f x ">,则在[],a b 上为凹的;()0f x "<,则在[],a b 上为凸的. 拐点:其横坐标是()0f x "=的点或()f x 二导不存在的点. 微分:00|()()x x dy f x x f x dx =''=∆=6.不定积分:(1)定义:原函数的全体()d ()f x x F x C =+⎰几何意义:积分曲线族(2)不定积分的计算:①直接积分法②换元积分法:第一类还原法(凑微分法)()()(())()d (())d ()()d ()(())u x g x dx f x x x f x x f u u F u C F x Cϕϕϕϕϕϕ='====+=+⎰⎰⎰⎰第二类还原法 1()()d (())()d t x f x x f t t tψψψ-='=⎰⎰(根式代换、三角代换、倒数代换)③分部积分法: d d u v uv v u =-⎰⎰(反对幂指三,谁在前谁设为u )7.定积分:(1)定义:分割、近似、求和、取极限,极限存在即可积01()d lim ()nb i i a i I f x x f x λξ→===∆∑⎰ 几何意义:曲边梯形的面积(2)性质:线性性、依区间可加性:()d ()d ()d b c ba a c f x x f x x f x x =+⎰⎰⎰ 几何度量性:∫cdx =c(b −a)ba保号性、保序性、积分绝对值不等式、估值定理:()()d ()b a m b a f x x M b a -≤≤-⎰ 积分中值定理:至少存在一点[,]a b ξ∈,使得 ()d ()()ba f x x fb a ξ=-⎰.(3)定积分的计算:(求原函数,算增量)直接积分法、换元积分法、分部积分法+微积分基本公式 ()()|()()bba a f x dx F x Fb F a ==-⎰。
高数重点知识总结
1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c)
2、分段函数不是初等函数。
3、无穷小:高阶+低阶=低阶 例如:1lim lim
020==+→→x x
x
x x x x 4、两个重要极限:()e x e
x x
x
x
x x
x x =⎪⎭
⎫
⎝⎛+=+=∞
→→→11lim 1lim )2(1
sin lim )1(1
0 经验公式:当∞→→→)(,0)(,0x g x f x x ,[]
)
()(lim )
(0
)(1lim x g x f x g x x x x e
x f →=+→
例如:()33lim 10
031lim -⎪⎭
⎫ ⎝⎛-→==-→e e
x x x x
x x
5、可导必定连续,连续未必可导。
例如:||x y =连续但不可导。
6、导数的定义:()00
00
')
()(lim
)
(')
()(lim
x f x x x f x f x f x
x f x x f x x x =--=∆-∆+→→∆
7、复合函数求导:
[][])(')(')(x g x g f dx
x g df •= 例如:x
x x x x x x y x x y ++=++
=
+=2412221
1', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx
例如:y
x
dx dy ydy xdx y x
y yy x y x -
=⇒+-=⇒=+=+22,),2('0'22,),1(1
22左右两边同时微分法左右两边同时求导
解:法 9、由参数方程所确定的函数求导:若⎩⎨
⎧==)
()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[]
)
(')('/)('/)/(/22
t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f •∆=-∆+ 例如:计算 ︒31sin
11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:x
x
y sin =
(x=0是函数可去间断点),)sgn(x y =(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:⎪⎭
⎫ ⎝⎛=x x f 1sin )((x=0是函数的振荡间断点),x
y 1
=(x=0是函数的无穷间断点) 12、渐近线:
水平渐近线:c x f y x ==∞
→)(lim
铅直渐近线:.)(lim 是铅直渐近线,则若,a x x f a
x =∞=→
斜渐近线:[]ax x f b x
x f a b ax y x x -==+=∞→∞
→)(lim ,)
(lim
,即求设斜渐近线为
例如:求函数1
1
223-+++=x x x x y 的渐近线
13、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
14、极值点:令函数y=f(x),给定x0的一个小邻域u(x0,δ),对于任意x ∈u(x0,δ),都有f(x)≥f(x0),称x0是f(x)的极小值点;否则,称x0是f(x)的极大值点。
极小值点与极大值点统称极值点。
15、拐点:连续曲线弧上的上凹弧与下凹弧的分界点,称为曲线弧的拐点。
16、拐点的判定定理:令函数y=f(x),若f"(x0)=0,且x<x0,f"(x)>0;x>x0时,f"(x)<0或x<x0,f"(x)<0;x>x0时,f"(x)>0,称点(x0,f(x0))为f(x)的拐点。
17、极值点的必要条件:令函数y=f(x),在点x0处可导,且x0是极值点,则f'(x0)=0。
18、改变单调性的点:0)('0=x f ,)('0x f 不存在,间断点(换句话说,极值点可能是驻点,也可能是不可导点)
19、改变凹凸性的点:0)("0=x f ,)(''0x f 不存在(换句话说,拐点可能是二阶导数等于零的点,也可能是二阶导数不存在的点)
20、可导函数f(x)的极值点必定是驻点,但函数的驻点不一定是极值点。
21、中值定理:
(1)罗尔定理:)(x f 在[a,b]上连续,(a,b)内可导,则至少存在一点ξ,使得0)('=ξf (2)拉格朗日中值定理:)(x f 在[a,b]上连续,(a,b)内可导,则至少存在一点ξ,使得
)(')()()(ξf a b a f b f -=-
(3)积分中值定理:)(x f 在区间[a,b]上可积,至少存在一点ξ,使得
)()()(ξf a b dx x f b
a
-=⎰
22、常用的等价无穷小代换:
3
332
3
1
~tan ,61~sin ,21~sin tan 21
~cos 1)
1ln(~)11(2~1~tan ~arctan ~arcsin ~sin ~x x x x x x x x x x x x x e x x x x x x ----+-+- 23、对数求导法:例如,x x y =,()1ln '1ln '1
ln ln +=⇒+=⇒
=x x y x y y
x x y x 解: 24、洛必达法则:适用于“
00”型,“∞
∞”型,“∞•0”型等。
当∞→∞→→/0)(,/0)(,0x g x f x x ,)('),('x g x f 皆存在,且0)('≠x g ,则
)
(')
('lim
)()(lim
00
x g x f x g x f x x x x →→= 例如,
2
12sin lim 002cos lim 001sin lim 0020=+---→→→x e x x e x x e x x x x x x 25、无穷大:高阶+低阶=高阶 例如, ()()()422lim 2321lim 53
25
3
2==+++∞→+∞
→x
x x x x x x x 26、不定积分的求法
(1)公式法
(2)第一类换元法(凑微分法)
(3)第二类换元法:哪里复杂换哪里,常用的换元:1)三角换元:22x a -,可令
t a x sin =;22a x +,可令t a x tan =;22a x -,可令t a x sec = 2)当有理分式函
数中分母的阶较高时,常采用倒代换t
x 1
=
27、分部积分法:⎰
⎰-=vdu uv udv ,选取u 的规则“反对幂指三”,剩下的作v 。
分部积分出现循环形式的情况,例如:dx x xdx e x ⎰
⎰3sec ,cos。