高数总结
- 格式:docx
- 大小:20.08 KB
- 文档页数:4
大一高数知识点总结全一、导数与微分1. 函数极限和连续性1.1 函数极限的定义和性质1.2 无穷大与无穷小1.3 函数的连续性与间断点2. 导数与微分2.1 导数的定义与性质2.2 常见函数的导数2.3 高阶导数与隐函数求导二、微分中值定理与高阶导数应用1. 中值定理1.1 罗尔定理1.2 拉格朗日中值定理1.3 柯西中值定理2. 泰勒公式与函数的局部性质2.1 泰勒公式及余项2.2 函数的单调性与极值2.3 函数的凹凸性与拐点3. 高阶导数的应用3.1 曲率与曲线的切线与法线3.2 凸函数与凹函数的判定三、定积分与不定积分1. 定积分的意义与性质1.1 定积分的定义1.2 定积分的性质与运算法则1.3 可积条件与Newton-Leibniz公式2. 不定积分2.1 不定积分的定义与基本公式2.2 基本不定积分的计算方法2.3 图形与面积的应用四、微分方程1. 常微分方程基本概念1.1 微分方程的定义与基本概念1.2 一阶线性微分方程1.3 可分离变量的微分方程2. 常系数线性微分方程2.1 齐次线性微分方程2.2 非齐次线性微分方程2.3 变量变换与常系数线性微分方程3. 高阶线性微分方程3.1 n阶齐次与非齐次线性微分方程3.2 常系数线性齐次微分方程的特征方程 3.3 可降阶的线性非齐次微分方程五、多元函数微分学1. 二元函数的极限与连续性1.1 二元函数的极限定义1.2 二元函数的连续性1.3 多元函数的极限与连续性2. 偏导数与全微分2.1 偏导数的定义与计算方法2.2 高阶偏导数与混合偏导数2.3 全微分与微分近似3. 隐函数与参数方程求导3.1 隐函数与参数方程的基本概念3.2 隐函数求导与相关性质3.3 参数方程求导与相关性质以上是大一高数的知识点总结,通过学习这些内容,能够掌握基本的导数与微分、定积分与不定积分、微分方程以及多元函数微分学的知识。
希望这份总结对你的学习有所帮助。
高数部分知识点总结1 高数部分1.1 高数第一章《函数、极限、连续》求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法0,,0,0,1则,对于型和型的题目直接用洛必达法则,对于、、型0,0,的题目则是先转化为型或型,再使用洛比达法则;3.利用重要极0,1xx1x,1(1,x),e限,包括、、;4.夹逼定理。
(1,),exlimlimlimsinxxx,0,0x,,1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。
对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。
在此只提醒一点:不定积分f(x)dx,F(x),C中的积分常数C 容易被忽略,而考试时如果在答,案中少写这个C会失一分。
所以可以这样建立起二者之间的联系以加f(x)dx深印象:定积分的结果可以写为F(x)+1,1指的就是那一分,,f(x)dx,F(x),C把它折弯后就是中的那个C,漏掉了C也就漏掉了,这1分。
第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下af(x)dx限上做文章:对于型定积分,若f(x)是奇函数则有,,aaaaf(x)dxf(x)dxf(x)dx=0;若f(x)为偶函数则有=2;对于,,,,a,a0,,2t,,xf(x)dx型积分,f(x)一般含三角函数,此时用的代换是常,02用方法。
所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利aaa奇函数,0偶函数,2偶函数用性质、。
高数知识点总结公式1.极限相关公式:(1)λ-δ定义:对于任意正实数ε,其中λ和δ为常数,如果当0<|x-a| <δ时,|f(x)-L|<ε,则称函数f(x)在x趋于a时以L为极限,记为limx→af(x)=L。
(其中ε、δ、λ具有一定联系)(2)夹逼准则:设f(x)≤g(x)≤h(x) (a<x<a+δ),且limx→af(x) = limx→ah(x) = L,则有limx→ag(x)=L。
(3)左右极限定义:右极限limx→+0f(x)=L:对任意ε>0,存在δ>0,当0<x<a时,有|f(x)-L|<ε。
左极限limx→-0f(x)=L:对任意ε>0,存在δ>0,当a<x<0时,有|f(x)-L|<ε。
(4)无穷大定义:对于任意M>0,都存在δ>0,使得当0<|x-a|<δ时,有f(x)>M或f(x)<-M,称f(x)当x趋于a时趋于正无穷或负无穷,记为limx→af(x)=+∞或-∞。
(5)无穷小定义:如果在x→a 的极限过程中,函数f(x)的值变化趋向于0,则称函数f(x)为x→a时的无穷小,记作f(x)=o(1)或limx→af(x)=0,其中o(1)是第一个震荡频率。
(6)洛必达法则:设函数f(x),g(x)具有一阶导函数,且存在limx→a f(x)=limx→ag(x)=0,当x→a时,g'(x)≠0,则limx→af(x) / g(x) = limx→a f'(x) / g'(x)。
2.微分相关公式(1)导数的定义:函数y=f(x)在点x处的导数是指当x沿着x轴正方向变动一个无穷小量Δx时,函数值f(x)所发生的变化量Δy与Δx的比值,即:f' (x) = limΔx→0 (f (x+Δx)−f (x)) / Δx。
(2)常见函数的导数:sin x的导数是cos xcos x的导数是-sin xtan x的导数是sec^2 xcot x的导数是-csc^2 xln x的导数是1 / xe^x的导数是e^x(3)导数的运算法则和法则:(u+v)'=u'+v'差法则:(u-v)'=u'-v'乘法法则:(uv)'=u'v+uv'除法法则:(u/v)'=(u'v-uv') / v^2复合函数求导:设y=f(u),u=g(x),则y=f[g(x)]的导数为dy / dx = dy / du * du / dx(4)高阶导数的定义:如果函数y=f(x)在某点x0的邻域内存在导数y',则f(x)在x0处有一阶导数;如果f(x)在x0的某邻域内存在一阶导数y',且y'在x0处也有导数,则称f(x)在x0处存在二阶导数,记为y''),y''=(y')';一般地,如果f(x)的n-1阶导数f^(n-1)(x)在x0的邻域内存在,且f^(n-1)(x)可导,则称f(x)在x0处存在n阶导数,记为fn(x0),f^(n)(x0)或(dn / dx^n)f(x0)。
高数知识点总结电子版一、极限与连续1. 函数的极限(1) 函数极限的定义(2) 函数极限的性质(3) 无穷小量与无穷大量(4) 夹逼准则2. 连续与间断(1) 连续的定义(2) 连续函数的性质(3) 间断点的分类(4) 间断函数的构造二、导数与微分1. 导数的定义(1) 导数的几何意义(2) 导数的计算方法(3) 导数的性质(4) 高阶导数2. 微分的定义(1) 微分的几何意义(2) 微分的计算方法(3) 微分的性质(4) 隐函数求导三、微分中值定理与泰勒公式1. 罗尔中值定理(1) 罗尔中值定理的条件(2) 罗尔中值定理的应用2. 拉格朗日中值定理(1) 拉格朗日中值定理的条件(2) 拉格朗日中值定理的应用3. 柯西中值定理(1) 柯西中值定理的条件(2) 柯西中值定理的应用4. 泰勒公式(1) 泰勒公式的表述(2) 泰勒公式的应用四、不定积分与定积分1. 不定积分(1) 不定积分的概念(2) 不定积分的计算方法(3) 不定积分的性质(4) 不定积分的换元法2. 定积分(1) 定积分的概念(2) 定积分的计算方法(3) 定积分的性质(4) 定积分的应用五、微分方程1. 微分方程的基本概念(1) 微分方程的定义(2) 微分方程的类型(3) 微分方程的解的存在唯一性定理2. 一阶常微分方程(1) 可分离变量的微分方程(2) 齐次微分方程(3) 一阶线性微分方程3. 高阶常微分方程(1) 高阶线性微分方程(2) 常系数齐次线性微分方程六、多元函数微分学1. 多元函数的极限(1) 多元函数极限的定义(2) 多元函数极限的性质(3) 重要极限的计算2. 偏导数(1) 偏导数的定义(2) 偏导数的计算方法(3) 高阶偏导数3. 方向导数(1) 方向导数的定义(2) 方向导数的计算方法(3) 梯度4. 多元函数的微分(1) 多元函数的全微分(2) 多元函数的微分近似七、多元函数积分学1. 二重积分(1) 二重积分的定义(2) 二重积分的计算方法(3) 二重积分的性质(4) 二重积分的应用2. 三重积分(1) 三重积分的定义(2) 三重积分的计算方法(3) 三重积分的性质(4) 三重积分的应用3. 曲线积分与曲面积分(1) 曲线积分的定义(2) 曲线积分的计算方法(3) 曲面积分的定义(4) 曲面积分的计算方法八、向量分析1. 向量及其运算(1) 向量的基本概念(2) 向量的线性运算(3) 向量的数量积与叉积2. 曲线与曲面的方程(1) 曲线的参数方程(2) 曲线的一般方程(3) 曲面的参数方程(4) 曲面的一般方程3. 向量场与散度(1) 向量场的定义与性质(2) 散度的概念与计算(3) 散度的物理意义4. 向量场与旋度(1) 旋度的概念与计算(2) 旋度的物理意义(3) 欧拉公式以上就是高等数学的知识点总结,希望对你的学习有所帮助。
高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
3、无穷小:高阶+低阶=低阶 例如:1lim lim020==+→→x xxx x x x 4、两个重要极限:()e x ex xxxx xx x =⎪⎭⎫⎝⎛+=+=∞→→→11lim 1lim )2(1sin lim )1(10 经验公式:当∞→→→)(,0)(,0x g x f x x ,[])()(lim )(0)(1lim x g x f x g x x x x ex f →=+→例如:()33lim 10031lim -⎪⎭⎫ ⎝⎛-→==-→e ex x x xx x5、可导必定连续,连续未必可导。
例如:||x y =连续但不可导。
6、导数的定义:()0000')()(lim)(')()(limx f x x x f x f x f xx f x x f x x x =--=∆-∆+→→∆7、复合函数求导:[][])(')(')(x g x g f dxx g df •= 例如:xx x x x x x y x x y ++=++=+=24122211', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx例如:yxdx dy ydy xdx y xy yy x y x -=⇒+-=⇒=+=+22,),2('0'22,),1(122左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若⎩⎨⎧==)()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[])(')('/)('/)/(/22t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f •∆=-∆+ 例如:计算 ︒31sin11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:xxy sin =(x=0是函数可去间断点),)sgn(x y =(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:⎪⎭⎫ ⎝⎛=x x f 1sin )((x=0是函数的振荡间断点),xy 1=(x=0是函数的无穷间断点) 12、渐近线:水平渐近线:c x f y x ==∞→)(lim铅直渐近线:.)(lim 是铅直渐近线,则若,a x x f ax =∞=→斜渐近线:[]ax x f b xx f a b ax y x x -==+=∞→∞→)(lim ,)(lim,即求设斜渐近线为例如:求函数11223-+++=x x x x y 的渐近线13、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高数基础知识的简明总结与归纳
高数,作为数学的一个分支,是许多学科的基础。
本文将简要概述和总结高数中的一些基本概念和定理,以帮助读者更好地理解和掌握这一学科。
一、极限论
极限论是高等数学的基础,它涉及到函数的变化趋势和无穷小量的概念。
极限的定义是:对于任意给定的正数ε,总存在一个正数δ,使得当x满足|x-a|<δ时,|f(x)-A|<ε成立,其中a是x的某一取值,A是f(x)在a处的极限。
二、导数与微分
导数是函数在某一点的切线的斜率,表示函数在该点的变化率。
微分则是函数值变化的近似值。
导数在几何上可以表示曲线在某一点处的切线,也可以用于求解函数的极值。
微分法则提供了计算近似值的方法,例如计算函数的增减性、极值等。
三、积分学
积分学包括不定积分和定积分。
不定积分是求函数的原函数的过程,而定积分则是计算曲线与x轴所夹的面积。
定积分的应用非常广泛,例如计算物体的重心、求解变速直线运动的位移等。
四、多元函数微积分
多元函数微积分是高数的又一重要分支,它涉及到多个变量的函数及其极限、连续、可微、可积等概念。
其中,方向导数和梯度表示
函数在多维空间中的变化率,而多元函数的积分则涉及到重积分、曲线积分和曲面积分等。
五、无穷级数与幂级数
无穷级数是无穷多个数相加的结果,它可以用来表示数学中的一些公式和定理。
幂级数是无穷级数的一种特殊形式,它可以用来近似表示一些复杂的函数。
幂级数的收敛性和函数性质是研究幂级数的重要内容。
高数重要知识点汇总第一章 函数与极限一. 函数的概念1 两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim (1)l = 0,称f (x )是比g (x )高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x )与g (x )是同阶无穷小。
(3)l = 1,称f (x )与g (x )是等价无穷小,记以f (x ) ~ g (x )2 常见的等价无穷小当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二 求极限的方法1.两个准则准则1高数重要知识点汇总准则2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 放缩求极限若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→xx x 公式2e x x x =+→/10)1(lim 3.高数重要知识点汇总4.★用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o nx x x x x +-++-=++ )(!))1()...(1( (2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.)()(lim )()(lim 00x F x f x F x f x x x x ''=→→例1计算极限0e 1lim x x x→-. 解 该极限属于“00”型不定式,于是由洛必达法则,得 0e 1lim x x x→-0e lim 11xx →==. 例2计算极限0sin lim sin x ax bx→. 解 该极限属于“00”型不定式,于是由洛必达法则,得 00sin cos lim lim sin cos x x ax a ax a bx b bx b→→==. 注 若(),()f x g x ''仍满足定理的条件,则可以继续应用洛必达法则,即()()()lim lim lim ()()()x a x a x a f x f x f x g x g x g x →→→'''==='''二、∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.例3计算极限lim (0)n x x x n e→+∞>. 解 所求问题是∞∞型未定式,连续n 次施行洛必达法则,有 lim e n x x x →+∞1lim e n x x nx -→+∞=2(1)lim e n xx n n x -→+∞-= !lim 0e x x n →+∞===. 使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; (2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.7.利用导数定义求极限)()(lim )()(lim 00x F x f x F x f x x x x ''=→→基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在) 8.利用定积分定义求极限基本格式⎰∑==∞→101)()(1lim dx x f n k f n n k n (如果存在) 三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。
高数题总结第1篇a x 2 +b x +c = 0 ax^2+bx+c=0 ax2+bx+c=0 △ = b 2 − 4 a c △=b^2-4ac △=b2−4ac △ > 0 x 1 , 2 = − b ± b 2 − 4 a c 2 a △>0\quad x_{1,2}=\frac{-b±\sqrt{b^2-4ac}}{2a} △>0x1,2=2a−b±b2−4ac△ = 0 x 1 = x 2 △=0\quad x_1=x_2 △=0x1=x2重根△ < 0 △<0\quad△<0两个负根例如: i 2 = − 1 − 9 = ± 3 i i^2=-1\quad \sqrt{-9}=±3i i2=−1−9=±3i根与系数关系: x 1 + x 2 = − b a , x 1 × x 2 = c a x_1+x_2=-\frac{b}{a},x_1×x_2=\frac{c}{a} x1+x2=−ab,x1×x2=ac例:求解 4 y ′ ′ + 4 y ′ + 5 y = 0 4y''+4y'+5y=0 4y′′+4y′+5y=0 解: 4 λ 2 + 4 λ + 5 = 04λ^2+4λ+5=0 4λ2+4λ+5=0 △ = b 2 − 4 a c = 16 − 4 × 5 = 16 − 80 < 0 △=b^2-4ac=16-4×5=16-80<0 △=b2−4ac=16−4×5=16−80<0 λ 1 , 2 = − 4 ± − 64 2 × 4 = − 4 ± i 8 8 = − 1 2 ± i = α ± β i λ_{1,2}=\frac{-4±\sqrt{-64}}{2×4}=\frac{-4±i8}{8}=-\frac{1}{2}±i=α±βi λ1,2=2×4−4±−64=8−4±i8=−21±i=α±βi 即 α = − 1 2 , β = 1 α=-\frac{1}{2},β=1 α=−21,β=1 综上,通解为 y = e α x ( C 1 c o s β x + C 2 s i n β x ) y=e^{αx}(C_1cosβx+C_2sinβx)y=eαx(C1cosβx+C2sinβx) = e − 1 2 x ( C 1 c o s x + C 2 s i n x ) =e^{-\frac{1}{2}x}(C_1cosx+C_2sinx) =e−21x(C1cosx+C2sinx)高数题总结第2篇高数题总结第3篇斯托克斯公式是xxx公式的推广:xxx公式: 平面图形的面积<==>平面曲线斯托克丝公式: 空间曲面的面积<==>空间曲线微分:求导,求变化率积分:求微分(或称导数)的原函数, 分为定积分和不定积分微分与积分,是相反的一对运算,求加速度,就用微分对速度求导数(就是求速度的变化率).求路程,就用对速度在某一段时间内进行积分级数有什么作用:对数,三角函数,三角对数等等,都是通过级数计算而来.常用的pi,e等,也是用级数计算出多少位的近似值. 再如波形分析,如振动, 声学,电学等,通常都是将波形分解成傅立叶级数,再进行计算.二重积分:求平面图形面积,求空间曲面面积, 求曲面柱的体积三重积分:求空间物体体积,求质量,求质心...(经常要化为二重积分求解)曲线积分与曲面积分:经常要化为重积分来计算.线性插值:双线性插值,三线性插值多项式插值:拉格朗日插值:一阶拉格朗日插值,二阶拉格朗日插值...分段拉格朗日插值(其中有基函数的概念)等, 要构造拉格朗日多项式xxx插值:求xxx多项式xxx插值:差商埃尔米特插值:样条插值:在每个间隔使用低阶多项式(而不是线性函数):三次样条,B 样条分段插值:最近邻插值:找到最近的值,并分配相同的值.这里面最常使用的有:线性插值, 拉格朗日插值,xxx插值,_条插值,最近邻插值(其他的插值法了解一下就好).高数题总结第4篇微积分定理:———若函数f(x)在[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且b(上限)∫a(下限)f(x)dx=F(b)—F(a)这即为xxx—莱布尼茨公式。
高数基础知识总结:掌握高数的核心要点
一、引言
高等数学(高数)是数学的一个重要分支,它涉及到更加抽象和深入的数学概念。
对于许多学生来说,高数是他们学术生涯中的一个挑战。
然而,只要掌握了高数的核心要点,学习高数也可以变得相对容易。
本文将总结高数的核心要点,帮助读者更好地理解和掌握这一学科。
二、高数的核心概念
1. 极限:极限是高数的基石,它描述了函数在某个点或无穷远处的行为。
理解极限的概念对于理解高数的其他概念至关重要。
2. 导数:导数是函数的局部变化率,它描述了函数值随自变量变化的速率。
导数的计算和应用在高数中非常广泛。
3. 积分:积分是微分的逆运算,它用来计算曲线与x轴之间的面积。
积分在高数中也有着重要的应用。
4. 微分方程:微分方程描述了函数随时间变化的规律,是解决实际问题的重要工具。
5. 多元函数:多元函数涉及到多个变量的函数,其导数和积分等概念也更加复杂。
三、如何掌握高数的核心要点
1. 理解概念:对于每个高数概念,都要深入理解其定义和性质,以及其在解决实际问题中的应用。
2. 练习计算:高数的概念比较抽象,需要通过大量的练习来熟悉和掌握。
3. 建立知识体系:高数的知识点是相互联系的,需要建立起知识体系,以便更好地理解和记忆。
4. 学习方法:好的学习方法可以提高学习效率,例如采用归纳总结、类比学习等学习方法。
四、结论
高数虽然是一门比较难的学科,但是只要掌握了其核心要点,就可以轻松地理解和应用高数的知识。
希望本文对读者掌握高数的核心要点有所帮助。
考研高数知识点总结一、导数与微分导数是研究函数局部性质的重要工具,是高数中一个极其重要的概念。
导数的定义是函数的变化率,它反映了函数在某一点的局部性质。
导数的大小表示函数在某一点的斜率,而导数的正负则表示函数在某一点的单调性。
导数的计算包括求导公式、复合函数的导数、隐函数的导数等。
微分是导数的线性近似,它在近似计算中有重要作用。
微分的定义是函数改变量的线性部分,它反映了函数在某一点的局部变化率。
微分的大小表示函数在某一点的斜率的变化率,而微分的正负则表示函数在某一点的单调性的变化。
微分的计算也包括求微分公式、复合函数的微分、隐函数的微分等。
二、中值定理与不定积分中值定理是微分学中的基本定理,它表明在闭区间上的连续函数至少有一个值等于其最大值和最小值之间的某个值。
这个定理有许多重要的推论,例如拉格朗日中值定理和柯西中值定理。
不定积分是微积分的一个重要部分,它是求一个函数的原函数或反导数的过程。
不定积分的结果是一个函数族,这些函数的导数等于被积函数。
不定积分的计算包括运用积分公式、换元积分法、分部积分法等方法。
三、定积分与定积分的几何意义定积分是微积分的一个重要部分,它是求一个函数在某个区间上的总值的过程。
定积分的几何意义是求一个曲线与坐标轴围成的图形的面积。
定积分的计算包括运用积分公式、换元积分法、分部积分法等方法。
四、级数与反常积分级数是无穷序列的和,它可以分为收敛级数和发散级数。
收敛级数的和是一个有限的数,而发散级数的和是无穷大。
级数的计算包括求和公式、幂级数展开等。
反常积分是瑕积分和反常积分的总称,它们是处理不连续函数或具有奇点的函数的重要工具。
反常积分的计算包括运用积分公式、换元积分法等方法。
以上是考研高数知识点的大致总结。
高数是一门非常深奥的学科,需要我们在学习的过程中不断深入理解并多加练习。
希望这篇文章能对大家的学习有所帮助。
高数知识点总结高等数学是大学数学教育的基础课程,对于很多理工科专业来说,它的重要性不言而喻。
一、数列与数学归纳法1、等差数列等差数列是指数列中任意两项之差相等的数列,通项公式为An=a1+(n-1)d,其中a1为首项,d为公差,n为项数。
等差数列的前n项和公式为Sn=n/2(2a1+(n-1)d)。
2、等比数列等比数列是指数列中任意两项之比相等的数列,通项公式为An=a1*q^(n-1),其中a1为首项,q为公比,n为项数。
等比数列的前n项和公式为Sn=a1*(q^n-1)/(q-1)。
3、数学归纳法数学归纳法是数学中一种重要的证明方法,其基本思想是:证明当n=k时命题成立,再证明当n=k+1时命题也成立,由此可得当n为任意正整数时命题均成立。
4、常用数列斐波那契数列、调和数列等。
二、函数与极限1、函数的概念与性质函数是一种映射关系,通常用f(x)表示。
函数的奇偶性、周期性、单调性等都是函数的性质。
2、初等函数包括幂函数、指数函数、对数函数、三角函数、反三角函数等。
3、极限概念当自变量趋于某个值时,函数的取值趋于某个值,这个趋于的过程即为极限。
常见的极限包括左极限、右极限、无穷极限等。
4、极限性质极限的四则运算、极限存在准则等。
5、极限计算利用极限性质,可以计算各种复杂函数的极限。
1、导数的概念导数是函数在某一点处的变化率,通常用f'(x)表示。
其计算公式为f'(x)=lim(h->0)(f(x+h)-f(x))/h。
2、导数的运算法则导数的四则运算、乘积法则、商法则、复合函数求导法则等。
3、高阶导数如果函数f(x)的导函数也可导,那么导函数f'(x)的导函数叫做函数f(x)的二阶导函数,用记作f''(x)或者(d^2y)/(dx^2)。
4、微分微分是导数的几何意义,也是微分学的基本方法。
函数f(x)在点x0处可微的充分必要条件是函数f(x)在点x0处可微,即在充分接近x0处,可适当选取数Δx(Δx是无穷小量)而有近似等式f(x0+Δx)-f(x0) ≈ f'(x0)Δx5、微分近似计算利用微分的几何意义,可以估算函数在某一点处的微小变化量。
高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(y =a x ),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
x 2+x x=lim =13、无穷小:高阶+低阶=低阶例如:lim x →0x →0xx sin x4、两个重要极限:(1)lim =1x →0x (2)lim (1+x )=ex →01x⎛1⎫lim 1+⎪=ex →∞⎝x ⎭g (x )x经验公式:当x →x 0,f (x )→0,g (x )→∞,lim [1+f (x )]x →x 0=e x →x 0lim f (x )g (x )例如:lim (1-3x )=e x →01x⎛3x ⎫lim -⎪x →0⎝x ⎭=e -35、可导必定连续,连续未必可导。
例如:y =|x |连续但不可导。
6、导数的定义:lim∆x →0f (x +∆x )-f (x )=f '(x )∆x x →x 0limf (x )-f (x 0)=f '(x 0)x -x 07、复合函数求导:df [g (x )]=f '[g (x )]•g '(x )dx例如:y =x +x ,y '=2x =2x +12x +x 4x 2+x x1+18、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dxx 2+y 2=1,2x +2yy '=0⇒y '=-例如:解:法(1),左右两边同时求导xy dy x法(2),左右两边同时微分,2xdx +2ydy ⇒=-dx y9、由参数方程所确定的函数求导:若⎨⎧y =g (t )dy dy /dt g '(t )==,则,其二阶导数:dx dx /dt h '(t )⎩x =h (t )d (dy /dx )d [g '(t )/h '(t )]d y d (dy /dx )dt dt ===2dx dx dx /dt h '(t )210、微分的近似计算:f (x 0+∆x )-f (x 0)=∆x •f '(x 0)例如:计算sin 31︒11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:y =sin x(x=0x是函数可去间断点),y =sgn(x )(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:f (x )=sin ⎪(x=0是函数的振荡间断点),y =数的无穷间断点)12、渐近线:水平渐近线:y =lim f (x )=cx →∞⎛1⎫⎝x ⎭1(x=0是函x 铅直渐近线:若,lim f (x )=∞,则x =a 是铅直渐近线.x →a斜渐近线:设斜渐近线为y =ax +b ,即求a =lim x →∞f (x ),b =lim [f (x )-ax ]x →∞x x 3+x 2+x +1例如:求函数y =的渐近线x 2-113、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高数公式总结一、高中预备(1)诱导公式:)2sin(x k y ±±=π或)2cos(x ky ±±=π,化简口诀:奇变偶不变、符号看象限。
即若k 为奇数,则cos 变成sin ,或者sin 变成cos ,若k 为偶数则不变;将x 看成第一象限角,观察)2sin(x k ±±π或)2cos(x k±±π的符号并将之加入化简后的公式前方。
例如x x cos )2sin(=-π,因为1=k 所以sin 变成cos ,若x 第一象限角,x -2π也为第一象限角,sin 值为正,所以结果是正号。
例如x x cos )cos(-=+π,因为2=k 所以cos 不变,若x 第一象限角,x +π则为第三象限角,cos 值为负,所以结果是负号。
(2)和差化积2cos2sin2sin sin βαβαβα-+=+2sin 2cos 2sin sin βαβαβα-+=-2cos 2cos 2cos cos βαβαβα-+=+2sin 2sin 2cos cos βαβαβα-+-=-在高数中,一般很少用到。
(3)积化和差)]sin()[sin(21cos sin βαβαβα-++=)]sin()[sin(21sin cos βαβαβα--+=)]cos()[cos(21cos cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--+-=一般地,在积分和求高阶导数需要使用积化和差公式。
(4)三角函数之间的关系:cossin cottansec csc1(1)对角线关系是倒数关系(2)相隔一个的两个三角函数之积等于中间一个(3)形如 上面两角的平方和等于下面角的平方所以有:x x tan 1cot =,x x sec 1cos =,x x csc 1sin = xxx cos sin tan =, 1cos sin 22=+x x ,x x 22sec 1tan =+,x x 22csc 1cot =+在后面我们可以发现,)sec ,(tan x x 和)csc ,cot (x x -关系密不可分,有关导数、积分都有联系。
高数高数学习心得(优秀6篇)高等数学在考研数学中占有举足轻重的地位,数一、数三有82分,数二有116分,需要用心复习。
一些学生反映,教材看了好几遍,习题做了好几本,做题依然无从下手。
类似情况的原因是重点把握不到位,做题的方法和技巧掌握不牢固。
问渠那得清如许,为有源头活水来,以下是编辑给大家整理的6篇高数学习心得,希望能够帮助到大家。
高数学习心得篇一回顾大一的高数学习历程,感慨颇多。
高数在整个大学的学习课程中占据这着非常重要的地位。
其一,高数的学分是所有科目中较高的。
一学期5学分,第二学期6学分。
其二,高数在考研数学中将近80%的比例。
而考研数学的成绩会很大程度上决定考研的较终成绩。
其三,高数是学习其他的课程的基础。
比如我们大二上学期学的大学物理,还有其他学院的线性代数等等。
对于大一同学来说,高数就是一道须迈过坎。
作为一个过来人,今天我就说说关于高数的点滴想法。
谨以此与大家分享。
学习任何东西都需要工具,学习数学更是要多种工具并进。
首先,你要有足够的课外参考书来供自己参考。
没有参考书,只有课本是根本不行的。
你可以去学校的图书馆借阅相应的书籍。
网络是所谓的公开式大学,有电脑的同学可以从网上查阅相关的资料,不会就找“度娘”。
既可以提高自己搜索信息的能力,又节省了时间。
概念定理永远是数学的灵魂。
我在学习高数过程中非常重视概念的理解,定理的推导,知识点间的联系。
例如:极限的概念及其证明,导数与极限的关系,连续与可微的`关系函数极限连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、无穷级数、常微分方程。
很多同学会说“我也知道概念很重要,可我就是理解不了啊!”类似这种情况的同学不在少数。
我给的建议是:逐字逐句阅读。
不会不懂就要借助以上所说的工具来学习。
概念理解了,很多东西就迎刃而解了。
当时我对概念理解很是郁闷,没得办法,只能一字一句的解析,一点一点的抠。
慢工出细活嘛,时间长了就理解了。
相信:功到自然成。
高数大一上下知识点总结高数是大一学生必修的一门重要课程,它是数学的基础,对于后续学习其他学科具有重要的作用。
下面是对高数大一上下的知识点进行总结:1. 微积分基础1.1 导数与微分在微积分中,导数是一种衡量函数变化率的工具,使用符号f'(x)表示。
导数的概念主要以极限的形式进行定义。
微分是导数的一种应用,通过微分可以求得函数在某一点上的线性近似值,并用于解决实际问题。
1.2 积分与不定积分积分是导数的逆运算,通过积分可以求得函数在一个区间上的面积或曲线的长度。
不定积分是指对函数进行积分,得到的结果是一个含有常数C的表达式。
2. 函数与极限2.1 函数极限函数极限是指当自变量趋近某一点时,函数的取值趋近于某个常数的过程。
使用极限的方法可以求解函数在某一点处的特定值。
2.2 极限运算法则极限运算法则是一些求极限的基本规则,如常数倍法则、和差法则、乘积法则、商法则等,可以简化极限的计算过程。
3. 降幂与导数3.1 降幂法降幂法是求解高阶导数的一种常用方法,通过将多项式的幂逐次降低,然后求导来简化计算过程。
3.2 高阶导数在微积分中,高阶导数是指对函数进行多次求导得到的导数,用符号f^(n)(x)表示。
高阶导数在函数的图像分析中起到重要作用。
4. 微分中值定理4.1 介值定理介值定理是微分中值定理的基本形式之一,它指出在一个闭区间上,连续函数会取到区间内的每一个值。
4.2 罗尔定理罗尔定理是微分中值定理的特例,它指出在一个闭区间上,如果函数在两个端点处取相同的值,并且在开区间上连续可导,那么存在至少一个点,使得该点的导数等于零。
4.3 拉格朗日中值定理拉格朗日中值定理是微分中值定理的重要应用,它用于求函数在一个区间上的某一点处的导数值。
5. 函数的应用5.1 极值与最值极值是函数在某一区间上取得的最大值或最小值,可以通过求导数来确定。
5.2 函数的图像函数的图像是可视化函数的一种方式,通过图像可以更直观地理解函数的性质与特点。
高等数学学习心得(精选7篇)从某件事情上得到收获以后,就十分有必须要写一篇心得体会,这样可以丰富我们自身,那我们该如何去编写心得呢?以下是给大家收集的高等数学学习心得,希望能够帮到您。
高等数学学习心得篇1通过一年的高数学习,我学到了很多知识,也交到了很多新同学,对于这门学也有一些心得和体会。
很多人学数学没什么用,特别是高等数学,学那么多稀奇古怪的东西也用不上,只要会用基本的加减乘除就好了。
其实不然,高等数学在一些领域内的作用十分重要,作为一名计算机类专业学生,更是深以为然。
比如语音识别和目前大热的机器学习、人工智能就用到了相当多的高数知识。
同样的也用到了线性代数、组合数学和数论的重要知识。
其实,学号高数并不难,但大家需要注意一点,到了大学,你仍然不能放松,你心里还是需要绷紧一根弦。
可能之前会听到家长或者老师会说,到了大学就可以好好玩了。
不错,但一切都应该有个度,所有的玩都必须建立在学习上没有问题的前提下,同学们万万不能因为玩而耽误了学业。
而且,大学其实并不比高中轻松在学习方面,我有几点建议:第一是课前预习和课后复习,在大学学习过程中,老师讲课十分的快,而且不像中学学习过程会给你翻来覆去的讲解一个知识点,也没有大量的练习给你去训练,所以就得依靠自己认真做好学习工作。
第二,要好好利用课堂时间,对于预习中不明白的问题一定不要积压,要及时向老师或同学请教解决,而且题目是老师出的,多问问就有可能得到老师的提醒,容易得到好的成绩。
第三,做题,对于学校的期末考试而言,只要我们把课本上的习题和老师上课讲的题目都弄会,那么考试就不是什么大问题。
其他的题目就没有必要去刷了,用不着像高中那刷大量的题,如果是想拿奖学金的同学可能就要多付出写努力,比别人多写些题目和练习册了。
第四,希望大家要把学习时间给足了,期末考试可不止高等数学一门学科,临阵磨枪是没办法面面俱到,复习好那么多的学科的。
强烈建议大家多去自习室,很多人说大学气氛不够,没有学习动力,那么自习室就是氛围,给你动力的好地方,也要遵守自习室规则,不要影响到他人的学习。
高数知识点总结大专一、微积分1. 函数与极限函数是一种最基本的数学概念,微积分的核心概念之一就是函数的极限。
通过对函数在某点附近的取值进行分析,可以得到函数在该点的极限值。
极限的概念是微积分理论的起点,它的引入为后续的微分和积分的定义打下了基础。
2. 导数导数是描述函数变化率的重要工具,它可以用来求函数在某一点的斜率,也可以用来表示函数的增长速度。
导数的概念是微积分理论的重要组成部分,它可以帮助我们分析函数在不同点的性质和特征。
3. 微分微分是导数的反向运算,它是用来描述函数在某一点的局部线性近似的工具。
微分的概念可以帮助我们求函数在某一点的切线方程,也可以用来求函数在该点的局部最值。
4. 积分积分是对函数在某一区间上的累积求和,它可以表示函数在该区间上的总变化量。
积分的概念是微积分理论的另一个重要组成部分,它可以帮助我们求函数在某一区间上的平均值、面积、体积等性质。
5. 不定积分与定积分不定积分是对函数的积分运算,它可以得到函数的原函数。
定积分是对函数在某一区间上的积分运算,它可以得到函数在该区间上的累积变化量。
不定积分和定积分是微积分理论中的重要内容,它们可以帮助我们求解各种实际问题。
二、多元函数微积分1. 多元函数的极限多元函数是指自变量和因变量都是多个变量的函数,它的极限是对函数在某点附近的取值进行分析,可以得到函数在该点的极限值。
多元函数的极限是微积分理论的延伸,它可以帮助我们分析多元函数在不同点的性质和特征。
2. 偏导数偏导数是描述多元函数变化率的重要工具,它可以用来求多元函数在某一点的斜率、增长速度等性质。
偏导数的概念是多元函数微积分的核心内容,它可以帮助我们分析多元函数在不同方向上的变化情况。
3. 方向导数方向导数是描述多元函数在某一方向上变化率的工具,它可以用来求多元函数在某一点沿某一方向的变化速度。
方向导数的概念可以帮助我们分析多元函数在不同方向上的特征和性质。
4. 多元函数的微分多元函数的微分是对多元函数在某一点的局部线性近似,它可以用来求函数在该点的切平面方程。
大一数学高数知识点总结
1.极限与连续
-函数的极限:函数极限的定义、极限性质、无穷大与无穷小
-极限运算法则:加减乘除、复合函数、函数比较、夹逼定理
-无穷小的比较:弗斯特定理、阿伯特定理、震荡定理
-连续性与间断点:连续函数的定义、间断点、间断函数
2.导数与微分
-导数的概念与性质:导数的定义、导数的计算、导数的性质
-可导与连续的关系:可导函数的连续性、连续函数的可导性
-高阶导数与导数的应用:高阶导数的定义、多次求导及应用、隐函数求导
-微分与微分近似:微分的概念、微分的计算与应用、泰勒公式与泰勒展开
3.微分学应用
-函数的极值与最值:极值点、最大最小值、最值的存在性
-曲线的凸凹性与拐点:凸凹点与拐点的概念、判定凸凹性与拐点-函数图像与曲线绘制:函数图像的性质、曲线绘制的步骤和方法-积分与微分方程:积分的定义与性质、不定积分与定积分、微分方程的基本概念
4.一元函数积分学
-不定积分与定积分:不定积分的定义与计算、定积分的定义和计算-积分的性质:积分的性质与运算法则、换元积分法、分部积分法
-定积分的应用:面积与曲线长度、曲线的旋转体与体积、物理应用
5.微分方程
-常微分方程:常微分方程的基本概念、一阶线性常微分方程、高阶线性常微分方程
-可降阶的高阶常微分方程:高阶常微分方程的可降阶性、欧拉方程-非齐次线性微分方程:非齐次线性微分方程的解法、特解的构造方法
-解微分方程的初值问题:初值问题的基本概念、存在唯一性定理
以上是大一数学高数的主要知识点总结,涵盖了极限与连续、导数与微分、微分学应用、一元函数积分学以及微分方程等内容。
掌握这些知识点,对于大一数学的学习和理解将起到重要的作用。
高数总结
公式总结:
1.函数定义域值域
Y=arcsinx [-1,1] [-π/2, π/2]
Y=arccosx [-1,1] [0, π]
Y=arctanx (-∞,+∞) (-π/2, π/2)
Y=arccotx (-∞,+∞) (0, π)
Y=shx (-∞,+∞) (-∞,+∞)奇函数,递增
Y=chx (-∞,+∞) [1, +∞)偶函数,(-∞,0)递减
Y=thx (-∞,+∞) (-1,1)奇函数,递增
Y=arshx (-∞,+∞) (-∞,+∞)奇函数,递增
Y=archx [1,+∞) [0,+∞)递增
Y=arthx (-1,1) 奇函数,递增
2.双曲函数和反双曲函数:
shx = [(e^x - e^(-x))/2, sh(x+y)=shxchy+chxshy
(shx) ' =chx sh(x-y)=shxchy-chxshy
chx = [(e^x + e^(-x)]/2 ch(x+y)=chxchy+shxshy
, (chx) ' =shx ch(x-y)=chxchy-shxshy
thx = shx / chx, (chx)^2-(shx)^2=1
(thx) ' = 1/(chx)^2 sh2x=2shxchx
arsh x = ln[ x+ (x^2+1)^(1/2) ] ch2x=(chx)^2+(shx)^2
, (arsh x) ' = 1/ (x^2+1)^(1/2)
arch x = ln[ x+ (x^2-1)^(1/2) ] ,
(arch x) ' = 1/ (x^2-1)^(1/2)
arth x =(1/2) [ ln(1+x)/(1-x) ],
(arth x) ' = 1/(1-x^2)
我只记得考了几个这里的公式,不过不记得是哪次考试了,所以就给你们写上咯
3.对于x趋近于∞,f(x)/g(x)的极限,f(x)和g(x)均为多项式时,分子分母同时除以其中x 的最高次项,利用x趋近于∞时,由1/(x^k)的极限为0(k>0),可以求得结果。
4.极限存在准则:
夹逼准则:证明极限存在并求得极限
单调有界准则:仅用于证明极限存在,对于有递推式的数列比较常用。
一般都是先根据单调有界准则证明极限存在
P54例3 P55例5
5.两个重要极限:
(1)当x趋近于0时,sinx/x的极限等于1
(2)当x趋近于∞时,(1+1/x)^x的极限为e,也可以说当x趋近于0时,(1+x)^(1/x)的极限为e,但是不能说当x趋近于0时,(1+1/x)^x的极限为e.要求(1+在x趋近于∞或0时,该部分极限为0),指数部分为∞
6.无穷小的比较:
b/a的极限为0,则称b是比a高阶的无穷小,b=o(a)
b/a的极限为∞,则称b是比a低阶的无穷小
b/a的极限为常数,则为同阶无穷小,常数为1,为等价无穷小,记作a~b
b/a^k的极限为常数(k>0),则称b是a的k阶无穷小
7.等价无穷小:
Sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~(1/2)x^2 ln(1+x)~x e^x-1~x a^x-1~xlna (1+x)^a-1~ax (1+ax)^b-1~abx tanx-x~(1/3)x^3 x-sinx~(1/6)x^3
log a(x+1)~x/lna
加减运算时不能用等价无穷小,乘除的时候可以。
如P61例5
8.函数的连续与间断:
函数f(x)在某点连续的充要条件为f(x)在该点处既左连续又右连续。
函数的各种间断点以及间断点的条件要记住。
我们上一年有考这种题。
P64-P68
9.函数在某点可导的充要条件为函数在该点的左右导数均存在且相等。
如果函数在某点可导,则它在该点处连续。
逆命题不成立。
10.熟记函数的求导法则:
P96-97初等函数的求导法则。
反函数的导数等于直接函数导数的倒数。
会求复合函数的导数。
11.n阶导:
X ln(1+x)的n阶导=[(-1)^(n-1)](n-1)!/(1+x)^n
sinkx =(k^n)sin(kx+nπ/2)
coskx =(k^n)cos(kx+nπ/2)
1/x =[(-1)^n]n!/[x^(n+1)]
x^a =a(a-1)…(a-n+1)x^(a-n)
a^x =a^x(lna)^n
e^x =e^x
lnx =[(-1)^(n-1)](n-1)!/x^n
1/(ax+b) =[(-1)^n]n!a^n/[(ax+b)^(n+1)]
u(ax+b) =a^n(ax+b)u(n) u(n)为u的n阶导
cu(x) =cu(x)(n) u(x)(n)为u(x)的n阶导
u(x)+-v(x) =u(x)(n)+-v(x)(n) v(x)(n)为v(x)的n阶导
x^n =n! x^n的(n+1)阶导为0
至于莱布尼茨公式,我也不知道考不考,要是不放心还是背会吧,同情你们。
12.隐函数的导数:
求隐函数的导数时,只需将确定隐函数的方程两边对自变量x求导。
(1)对数求导法:注意x=e^(lnx)的化简
(2)参数方程表示的函数的导数:一阶导和二阶导的公式都要记住。
(3)极坐标表示的函数的导数:同参数都需把公式记住或者自己会推导。
(4)相关变化率:以应用题的形式出现,看一下书上的例题P111-112。
13.函数的微分:重要
熟记基本初等函数的微分公式,考试会考,而且同求导法则一样,在下学期的高数中可能会有用。
P117
应用题中,可用微分dA近似代替△A。
复合函数的微分:dy=f’(u)du
14.函数的线性化:
L(x)=f(x0)+f’(x0)(x-x0)称为f(x)在点x0处的线性化。
近似式f(x)≈L(x)称为f(x)在点x0处的标准线性近似,点x0称为该近似的中心。
常用函数在x=0处的标准线性近似公式:
(1+x)^(1/n)≈1+x/n
sinx~x(x为弧度)
tanx~x(x为弧度)
e^x~1+x
ln (1+x)~x
常用于估计某式的近似值。
15,误差计算:
P123表格
16.费马引理,罗尔定理,拉格朗日中值定理,柯西中值定理。
这些定理的条件以及结论均需记住,会考。
17.洛必达法则:
0/0型:当x趋近于a时,函数f(x)及g(x)都趋于0
在点a的某去心领域内,函数的导数均存在,且g’(x)不等于0
X趋近于a时,f’(x)/g’(x)存在或为无穷大
则有x趋近于a时,f(x)/g(x)的极限与f’(x)/g’(x)的极限相等∞/∞型:当x趋近于∞时,函数f(x)及g(x)都趋于0
对于充分大的|x|,函数的导数均存在,且g’(x)不等于0
X趋近于∞时,f’(x)/g’(x)存在或为无穷大
则有x趋近于∞时,f(x)/g(x)的极限与f’(x)/g’(x)的极限相等0*∞型:化为0/0或者∞/∞型来计算
∞-∞型:通分化为0/0型来计算
0^0,1^∞, ∞^0型:可先化为以e为底的指数函数,再求极限
X趋近于a时,lnf(x)的极限为A可化为
X趋近于a时,f(x)的极限等于e^(lnf(x))的极限等于e^(x趋近于a时,lnf(x)的极限)等于A。
P141
18.泰勒公式:
e^x=1+x+x^2/2!+…+x^n/n!+o(x^n)
sinx=x-x^3/3!+x^5/5!-…+[(-1)^n]x^(2n+1)/(2n+1)!+o(x^(2n+2))
cosx=1-x^2/2!+x^4/4!-x^6/6!+…+[(-1)^n]x^(2n)/(2n)!+o(x^(2n+1))
ln(1+x)=x-x^2/2+x^3/3-…+[(-1)^(n-1)]x^n/n+o(x^n)
1/(1-x)=1+X+x^2+…+x^n+o(x^n)
(1+x)^m=1+mx+[m(m-1)/2!]x^2+…+[m(m-1)…(m-n+1)/n!]x^n+o(x^n)
泰勒公式和麦克劳林公式的一般形式也要记住。
我们上一年有考过一题,不过不记得是啥题了。
19.补充一些关于三角函数的知识,可能会用到:
tan(x/2)=(1-cosx)/sinx
1+(tanx)^2=(secx)^2
1+(cotx)^2=(cscx)^2
和差化积公式:
sinx+siny=2sin[(x+y)/2]cos[(x-y)/2]
sinx-siny=2cos[(x+y)/2]sin[(x-y)/2]
cosx+cosy=2cos[(x+y)/2]cos[(x-y)/2]
cosx-cosy=-2sin[(x+y)/2]sin[(x-y)/2]
积化和差公式:
sinxcosy=1/2[sin(x+y)+sin(x-y)]
cosxsiny=1/2[sin(x+y)-sin(x-y)]
cosxcosy=1/2[cos(x+y)+cos(x-y)]
sinxsiny=-1/2[cos(x+y)-cos(x-y)]
补充两个公式:
(1)x^n-1=(x-1)[x^(n-1)+x^(n-2)+…+x+1]
(2)n^(1/n)-1=(n-1)/[1+n^(1/n)+n^(2/n)+…+n^((n-1)/n)] <(n-1)/[(1/2)(n-1)n^(1/2)]=2/[n^(1/2)]。