离散数学第四章
- 格式:ppt
- 大小:911.50 KB
- 文档页数:20
第四章代数代数又称为代数结构或代数系统,是用代数方法构造的数学模型。
代数系统对于研究各种数学问题和许多实际问题是很有用的,对计算机科学研究也有很大的实用意义,例如,在程序设计语言的语义研究中,数据结构的研究中,编码理论的研究中,系统生成与结构,语言代数,计算理论以及逻辑电路设计中均有重要的理论和实际意义。
§4.1 一般代数结构这一节开始讨论系统及系统的结构。
第一章与第二章着重讨论了一些集合,一般来讲,不论是什么系统,都是若干个集合按一定的条件构成。
构成的条件可以用列举法给出,更多的是由命题法和归纳法给出。
如果结出的若干个集合不是一些具体的集合,这些不具体的集合概念完全由命题来决定通用的概念,则这种构成系统的方法称为公理的方法。
所以这一节还有一个任务是向公理方法过渡。
4.1.1 代数运算关系是集合,函数是关系,函数是“单值”的关系也是集合。
下面定义的代数运算是一个特殊的函数。
定义4.1.1设X为非空集合,n∈I+,n→称为X上的n元运算,其中n为运算ω的阶(类型),记为n ω。
①函数ω:X X②X中的每一个元素称为X上的0元运算。
当n ω=1时,称ω为一元运算,例如实数集合R上的“负”运算;当n ω=2时,称ω为二元运算,例如R上的“+”和“*”运算。
二元运算在许多方面的研究中有着重要的意义,在后面二元运算用一个字母θ来表示。
实际上用的0元运算只是集合X中的某些特定的元素,例如R中的0和1。
在上一节中所定义的运算是一元运算。
由定义可以看出,所谓集合X上的n元运算,乃是指某种规则,对于X上的每一个n元序偶,规定了X中唯一的元素与之对应。
,,...,∈S,都有ω定义4.1.2设ω为X上的n元运算,S∈X,如果对于任意a a a n12,,...,‡)∈S,则称S关于ω封闭的。
(†a a a n12例如,考察自然数集合N上的加法运算“+”,显然非负偶数集合关于“+”是封闭的,但非负奇数关于“+”是不封闭的。