华东师大八年级数学上册整式的乘除复习
- 格式:pptx
- 大小:272.38 KB
- 文档页数:40
整式的乘除(重点、难点、考点复习总结)1.知识系统总结2.重点难点易错点归纳(1)几种幂的运算法则的推广及逆用例1:(1)已知52x=4,5y=3,求(53x)2; 54x+2y-2练习:1. 已知a x=2,a y=3, a z=4求a3x+2y-z(2)46×0.256= (-8)2013×0.1252014 =(2)同底数幂的乘除法:底数互为相反数时如何换底能使计算简便判断是否同底:判断底数是否互为相反数:看成省略加号的和,每一项都相反结果就互为相反数换底常用的两种变形:例2:(1)-x7÷(-x)5·(-x)2 (2)(2a-b)7·(-b+2a)5÷(b-2a)8(3)区分积的乘方与幂的乘方例3:计算(1)(x3)2 (2) (-x3)2 (3)(-2x3)2(4)-(2x3)2(4)比较法:逆用幂的乘方的运算性质求字母的值(或者解复杂的、字母含指数的方程)例4:(1)如果2×8n×16n=28n ,求n的值(2)如果(9n)2=316,求n的值(3)3x=,求x的值(4)(-2)x= -,求x的值(5)利用乘方比较数的大小指数比较法:833,1625, 3219底数比较法:355,444,533乘方比较法:a2=5,b3=12,a>0,b>0,比较a,b的大小比较840与6320的大小(6)分类讨论思想例6:是否存在有理数a,使(│a│-3)a =1成立,若存在,求出a的值,若不存在,请说明理由整式的乘法(1)计算法则明确单项式乘以单项式、单项式乘以多项式、多项式乘以多项式的计算法则,尤其注意符号的问题,结果一定要是最简形式。
单项式乘以多项式、多项式乘以多项式最终都是要转化为单项式乘以单项式,通过省略加号的和巧妙简化符号问题。
【例1】计算:(1)(-3x2y)(-xz4)(-2y3zt) (2)-5x n y n+2(3x n+2y-2x n y n-1+y n) (3)(-x+2)(x3-x2)练一练:先化简再求值:[xy(x2-3y)+3xy2](-2xy)+x3y2(2x-y),其中x=-0.25,y=4(2)利用整式的乘法求字母的值①指数类问题:②系数类问题:【例2】已知-2x3m+1y2n与7x m-6y-3-n的积与x4y是同【例3】在x2+ax+b与2x2-3x-1的积中,x3项项,求m与n的值的系数为—5,x2项的系数为-6,求a,b的值(3)新定义题【例4】现规定一种新运算:a*b=ab+a-b,其中a,b为有理数,则(a*b)+[(b-a)*b]=练一练:现规定一种新运算:a※b=ab+a-b,其中a,b为有理数,计算:[(m+n)※n]+[(n-m)※n] 课后提升:1.(-0.7×104)×(0.4×103)×(-10)=2.若(2x-3)(5-2x)=ax2+bx+c,则a= ,b=3.若(-2x+a)(x-1)的结果不含x的一次项,则a=4.计算:(1)(-5x-6y+z)(3x-6y) (2)-2xy(x2-3y2)- 4xy(2x2+y2)平方差公式(1)公式:(a+b)(a-b)=a2-b2注意:公式中的a,b既可以是具体的数字,也可以是单项式或多项式,只要不是单独的数字或字母,写成平方的差时都要加括号公式的验证:根据面积的不同表达方式是验证整式乘法公式常用的方法(2)平方差公式的不同变化形式【例1】计算下列各式:(1)(-5x+2y)(-2y-5x)= (2)(2a-1)(2a+1)(4a2+1)=(3)20132-2012×2014 =练一练:1、(2y-x-3z)(-x-2y-3z)=2、99×101×10001=3、 3×(22+1)×(24+1)×(28+1)×…×(232+1)+1=(3)平方差公式的逆用【例2】∣x+y-3∣+(x-y+5)2=0,求3x2-3y2的值练一练:已知实数a,b满足a+b=2,a-b=5,求(a+b)3(a-b)3的值.课后提升:1.已知下列式子:①(x-y)(-x-y);②(-x+y)(x-y);③(-x-y)(x+y);④(x-y)(y-x).其中能利用平方差公式计算的是2.(-a-3)( )=9-a23.如果a2-2k=(a-0.5)(a+0.5),那么k=4.为了美化城市,经统一规划,将一正方形的南北方向增加3米,东西方向缩短3米,将改造后的长方形草坪面积与原来的正方形草坪面积相比()A.增加6平方米B.增加9平方米C.减少9平方米D.保持不变5.解方程:(3x+4)(3x-4)=9(x-2)26.计算:(2+1)×(22+1)×(24+1)×…×(22014+1)完全平方公式(1)公式:(a±b)2=a2±2ab +b2首平方,尾平方,2倍乘积放中央,同号加,异号减注意:公式中的a,b既可以是具体的数字,也可以是单项式或多项式【例1】计算下列各式:(2x-5y)2 = (-mn+1)2 =(-t2-2)2=(2)完全平方公式的推广应用①直接推广②间接推广【例2】计算(a-2b+3c)2【例3】已知x+y+z=10,xy+xz+yz=8,求x2+y2+z2的值(3)利用完全平方公式求字母的值【例4】两数和的平方的结果是x2+(a-1)x+25,则a的值是()A.-9B.1C.9或-11D.-9或11(4)利用完全平方公式进行简化计算【例5】计算:(1)1992 (2)3.012(5)完全平方公式的变形应用【例6】(1)已知m+n=7,mn=10,求8m2+8n2的值(2)已知(x+y)2=16,(x-y)2=4,求xy的值课后提升:1.下列展开结果是2mn-m2-n2的式子是()A.(m+n)2B.(-m+n)2C.-(m-n)2D.-(m+n)22.(x+2y-z)2=3.若∣x+y-7∣+(xy-6)2=0,则3x2+3y2=4.若代数式x2+3x+2可以表示为 (x-1)2+a(x-1)+b的形式,则a+b的值是5.计算:(2x-y)2(2x+y)2整式的除法(1)计算法则整式乘法的逆运算,可以互相验证。
第十三章 整数的乘除知识结构:单项式乘以单项式单项式乘以多项式多项式乘以多项式因式分解冪的运算a ·a =a a ÷a =amn m +n m n m +n (a )=a (a b )=a b m m n n n n n 多项式除以单项式提公因式法公式法(a +b )(a -b )=a -b 22(a +b )=a +2a b +b222乘法公式单项式除以单项式(1)应知1、基本概念因式分解:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
公因式:一个多项式中每一项都含有的因式叫做这个多项式的公因式。
二、基本法则1. 同底冪的乘法:同底数的幂相乘,底数不变,指数相加。
m ,n 都,(都是正整数n m a a a n m n m +=∙是正整数)2. 同底冪的除法:同底数的幂相除,底数不变,指数相减。
m ,n 都0,,(≠=÷-a n m a a a n m n m 都是正整数是正整数,a ≠0)3. 冪的乘方:幂的乘方,底数不变,指数相乘。
(m ,n 都是正整数),(都是正整数)(n m a a mn n m =4. 积的乘方:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。
(n 是正整数)()(都是正整数n b a ab n n n =5. 单项式乘单项式:把它们的系数、同底数幂分别相乘的积作为积的因式,其余字母连同它的指数不变,也作为积的因式。
6. 单项式乘多项式:用单项式乘以多项式的每一项,再把所得的积相加。
7. 多项式乘多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
8. 单项式除以单项式:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
9. 多项式除以单项式:先把多项式的每一项除以单项式,再把所得的商相加。
【注意】(1)单项式乘单项式的结果仍然是单项式。
整式的乘除复习讲义板块一:幂的运算一、知识点梳理:1.同底数幂的乘法:(为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方:(为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(≠0, 为正整数,并且).同底数幂相除,底数不变,指数相减.5.零指数幂:即任何不等于零的数的零次方等于1.二、例题讲解例1、下列各个选项中的两个幂是同底数幂的是( C )A .2x -和3)(x -B .2)(x -和2xC .2x -和3xD .5)(b a -和5)(a b - 例2、计算:(1)(m 4)2+m 5•m 3+(﹣m )4•m 4 (2)x 6÷x 3•x 2+x 3•(﹣x )2.(3)(﹣1)2019+(π﹣3.14)0﹣()﹣1. (4)(﹣2x 2y )3﹣(﹣2x 3y )2+6x 6y 3+2x 6y 2(5) (6)(﹣x )3•x 2n ﹣1+x 2n •(﹣x )2解:(1)原式=m 8+m 8+m 8=3m 8;(2)原式=x 6﹣3+2+x 3•x 2=x 5+x 5=2x 5.m n ,n a m n ,m n >()010.a a =≠35(2)(2)(2)b b b +⋅+⋅+(3)原式=﹣1+1﹣3=﹣3;(4)原式=﹣8x 6y 3﹣4x 6y 2+6x 6y 3+2x 6y 2=﹣2x 6y 3﹣2x 6y 2.(5)(6)(﹣x )3•x 2n ﹣1+x 2n •(﹣x )2=﹣x 2n+2+x 2n+2=0.例3、已知a x =3,a y =2,求a x+2y 的值解:∵a x =3,a y =2,∵a x+2y =a x ×a 2y =3×22=12.例4、已知,,求的值解:因为, .所以.例5、已知2x =8y+2,9y =3x -9,求x+2y 的值解:根据2x =23(y+2),32y =3x ﹣9,列方程得:,解得:,则x+2y=11.例6、已知,则= 原式353519(2)(2)(2)(2)(2)b b b b b +++⋅+⋅+=+=+84=m 85=n 328+m n 3338(8)464===m m 2228(8)525===n n 323288864251600+=⨯=⨯=m n m n 322,3m m a b ==()()()36322mm m m a b a b b +-⋅()()()()23223232m m m m a b a b =+-⋅∵∵ 原式==-5.例7、已知553=a ,444=b ,335=c ,比较a 、b 、c 的大小解:∵a=355=(35)11=24311,b=444=(44)11=25611,c=555=(55)11=1251112511<24311<25611∵c<a<b例8、计算:()10310210110075.0345.02-⨯⎪⎭⎫ ⎝⎛⨯⨯-解:原式=8343433421212102100=⨯⎪⎭⎫ ⎝⎛⨯⨯⨯⎪⎭⎫ ⎝⎛⨯ 例9、已知10x =a ,5x =b ,求:(1)50x 的值;(2)2x 的值;(3)20x 的值.(结果用含a 、b 的代数式表示)解:(1)50x =10x ×5x =ab ;(2)2x ===;(3)20x =(==.三、巩固练习:1、下列运算正确的是( B )A .x 2+x 3=x 5B .(﹣2a 2)3=﹣8a 6C .x 2•x 3=x 6D .x 6÷x 2=x 3 23222323+-⨯2、下列运算正确的是(D )A .(﹣2ab )•(﹣3ab )3=﹣54a 4b 4B .5x 2•(3x 3)2=15x 12C .(﹣0.16)•(﹣10b 2)3=﹣b 7D .(2×10n )(×10n )=102n3、若成立,则( C ). A. =6,=12B. =3,=12C. =3,=5D. =6,=5 4、若,则=__6_____5、若,则=____5__;若,则=___1___.6、 ____64__; ______; =______.7、若n 是正整数,且,则=______200____.8、计算:(1); (2) ;(3); (4); (5); (6); 解:(1).(2);()391528m n a b a b =m n m n m n m n ()319x a a a ⋅=x 38m a a a ⋅=m 31381x +=x ()322⎡⎤-=⎣⎦()33n ⎡⎤-=⎣⎦9n -()523-103-210n a =3222()8()n n a a --23(2)(2)x y y x -⋅-3843()()x x x ⋅-⋅-2333221()()3a b a b -+-3510(0.310)(0.410)-⨯-⨯⨯⨯()()3522b a a b --()()2363353a a a -+-⋅23235(2)(2)(2)[(2)](2)x y y x x y x y x y -⋅-=-⋅--=--3843241237()()x x x x x x x ⋅-⋅-=-⋅⋅=-(3); (4);(5);(6). 9、已知:x m =4,x n =8.(1)求x 2m 的值;(2)求x m +n 的值;(3)求x 3m ﹣2n 的值.解:(1)∵x m =4,x n =8,∵x 2m =(x m )2=16;(2)∵x m =4,x n =8,∵x m +n =x m •x n =4×8=32;(3)∵x m =4,x n =8,∵x 3m ﹣2n =(x m )3÷(x n )2=43÷82=1.10、已知x 2m =2,求(2x 3m )2﹣(3x m )2的值原式=4x 6m ﹣9x 2m =4(x 2m )3﹣9x 2m =4×23﹣9×2 =14.板块二、整式的化简 和 活用乘法公式233322696411()()327a b a b a b a b -+-=-+3535810(0.310)(0.410)0.30.4101010 1.210-⨯-⨯⨯⨯=⨯⨯⨯⨯=⨯()()()()()3535822222b a a b a b a b a b --=---=--()()236331293125325272a a a a a a a -+-⋅=-⋅=-一、知识点梳理:平方差公式:完全平方公式:二、例题讲解:例1、化简求值:(1)5433[2()3()()][2()]a b a b a b a b +-++--÷+.(2)已知210x y -=,求222[()()2()]4x y x y y x y y +--+-÷的值.解:(1)原式5433[2()3()()][2()]a b a b a b a b =+-+-+÷+5343332()2()3()2()()2()a b a b a b a b a b a b =+÷+-+÷+-+÷+231()()22a b a b =+-+-. (2)原式22222(222)4x y x xy y xy y y =+-+-+-÷2(42)4xy y y =-÷12x y =-. 由已知210x y -=,得152x y -=,即152x y -=.例2、已知将(x 2+nx +3)(x 2﹣2x ﹣m )乘开的结果不含x 3和x 2项.22()()a b a b a b +-=-()2222a b a ab b +=++2222)(b ab a b a +-=-(1)求m 、n 的值;(2)当m 、n 取第(1)小题的值时,求(m ﹣n )(m 2+mn +n 2)的值.解:(1)原式=x 4﹣2x 3﹣mx 2+nx 3﹣2nx 2﹣mnx +3x 2﹣6x ﹣3m =x 4+(n ﹣2)x 3+(3﹣m ﹣2n )x 2+(mn +6)x ﹣3m ,由乘开的结果不含x 3和x 2项,得到n ﹣2=0,3﹣m ﹣2n =0,解得:m =﹣1,n =2;(2)当m =﹣1,n =2时,原式=m 3+m 2n +mn 2﹣m 2n ﹣mn 2﹣n 3=m 3﹣n 3=﹣1﹣8=﹣9.例3、已知一个多项式除以多项式243a a +-所得的商式是21a +,余式是28a +,求这个多项式.解: 所求的多项式为2322(43)(21)282864328a a a a a a a a a a +-+++=+-++-++32295a a =++.例4、若为自然数,试说明整式的值一定是3的倍数.解:=因为3能被3整除,所以整式的值一定是3的倍数.例5、图a 是由4个长为m ,宽为n 的长方形拼成的,图b 是由这四个长方形拼成的正方形,中间的空隙,恰好是一个小正方形.(1)用m 、n 表示图b 中小正方形的边长为 .(2)用两种不同方法表示出图b 中阴影部分的面积;n ()()2121n n n n +--()()2121n n n n +--222223n n n n n +-+=n ()()2121n n n n +--(3)观察图b,利用(2)中的结论,写出下列三个代数式之间的等量关系,代数式(m+n)2,(m﹣n)2,mn;(4)根据(3)中的等量关系,解决如下问题:已知a+b=7,ab=5,求(a﹣b)2的值.解:(1)图b中小正方形的边长为m﹣n.故答案为m﹣n;(2)方法∵:(m﹣n)(m﹣n)=(m﹣n)2;方法∵:(m+n)2﹣4mn;(3)因为图中阴影部分的面积不变,所以(m﹣n)2=(m+n)2﹣4mn;(4)由(3)得:(a﹣b)2=(a+b)2﹣4ab,∵a+b=7,ab=5,∵(a﹣b)2=72﹣4×5=49﹣20=29.例6、已知a﹣b=7,ab=﹣12.(1)求a2b﹣ab2的值;(2)求a2+b2的值;(3)求a+b的值.解:(1)∵a﹣b=7,ab=﹣12,∵a2b﹣ab2=ab(a﹣b)=﹣12×7=﹣84;(2)∵a﹣b=7,ab=﹣12,∵(a﹣b)2=49,∵a2+b2﹣2ab=49,∵a2+b2=25;(3)∵a2+b2=25,∵(a+b)2=25+2ab=25﹣24=1,∵a+b=±1.例7、(a﹣b)(a+b)=;(a﹣b)(a2+ab+b2)=;(a﹣b)(a3+a2b+ab2+b3)=.(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=(其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2.解:(1)(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4+a3b+a2b2+ab3﹣a3b﹣a2b2﹣ab3﹣b4=a4﹣b4;故答案为:a2﹣b2,a3﹣b3,a4﹣b4;(2)由(1)的规律可得:原式=a n﹣b n,故答案为:a n﹣b n;(3)29﹣28+27﹣…+23﹣22+2=(2﹣1)(28+26+24+22+2)=342.例8、已知∵ABC 的三边长、、满足,试判断∵ABC 的形状. 解:∵ ,∵ ,即.即.∵ ,,,即,∵ ∵ABC 为等边三角形.四、巩固练习:1.下列各多项式相乘,可以用平方差公式的有( ).∵()()2552ab x x ab -++ ∵()()ax y ax y ---∵()()ab c ab c --- ∵()()m n m n +--A.4个B.3个C.2个D.1个2. 如图,用代数式表示阴影部分面积为( C ).A.B. C. D.3.已知(a +b )2=11,(a -b )2=7,则2ab 的值是( A )a b c 2220a b c ab bc ac ++---=2220a b c ab bc ac ++---=2222222220a b c ab bc ac ++---=222222(2)(2)(2)0a ab b b bc c a ac c -++-++-+=222()()()0a b b c a c -+-+-=0a b -=0b c -=0a c -=a b c ==ab ac bc +()ac b c c +-()()a c b c --A .2B .-2C .1D .04. 之积中含项的系数为 12 .5. 已知15a a +=,则221a a+的结果是__23_____. 6.多项式x 2+1添加一个单项式后可变为完全平方式,则添加的单项式可以是 2x (任写一个符合条件的即可).7.多项式的最小值是_______4_____.8.计算:(1)[5xy 2(x 2-3xy )+(3x 2y 2)3]÷(5xy )2.解:原式=(5x 3y 2-15x 2y 3+27x 6y 6)÷ 25x 2y 2=15x -35y +2725x 4y 49.已知m ﹣n =3,mn =2,求:(1)(m +n )2的值;(2)m 2﹣5mn +n 2的值.解:∵m ﹣n =3,mn =2,∵(1)(m +n )2=m 2+n 2+2mn =(m ﹣n )2+4mn =9+8=17;(2)m 2﹣5mn +n 2=(m +n )2﹣7mn =9﹣14=﹣5.10.计算:(2+1)()( )()()()+1.解:原式=(2-1)(2+1)( )()()()() +1322322(4235)(233)--+-+x x y xy y x xy y 32x y 222225x xy y y -+++221+421+821+1621+3221+221+421+821+1621+3221+=()( )( )()()()+1=-1+1=.板块三、因式分解一、知识点梳理:因式分解的一般步骤如下:一提:如果多项式即各项有公因式,即分解因式要先 。
第13章 本章总结提升一、 知识结构二、 【方法指导与教材延伸】(一)同底数幂相乘、幂的乘方、积的乘方这三个幂运算,特别是同底数幂相乘的法则是学习整式乘法的基础,其他的如:后面的多项式乘以多项式是转化变成单项式乘以多项式,再转化为单项式乘以单项式,最后转化为同底数幂相乘,所以我们要熟练掌握其法则: 1.同底数幂的相乘的法则是:底数不变,指数相加.即a m·a n=a m +n,幂的乘方法则是:底数不变,指数相乘.即 (a m )n=a m n,积的乘方法则是:积的乘方等于乘方的积.即 (a b)n=a n b n, 同底数幂的相除的法则是:底数不变,指数相减.即a m÷a n=a m-n2.其中m 、n 为正整数,底数a 不仅代表具体的数,也可以代表单项式、多项式或其他代数式. 3.幂的乘方法则与同底数幂的相乘的法则有共同之处,即运算中底数不变,但不同之处一个是指数相乘,一个是指数相加4.这三个幂运算相互容易混淆,出现错误,在初学时要注意辨明“同底数幂”、“幂的乘方”、“积的乘方”等基本概念,对公式的记忆要联系相应的文字表述,运用法则计算时,要注意识别是同底数幂的相乘、幂的乘方还是积的乘方,法则中各字母分别代表什么?再对照法则运算. (二)整式的乘法 1.单项式与单项式相乘:幂的运算 a ·a =a a ÷a =a(a )=a(ab )=a b单项式乘以单项式 单项式乘以多项式多项式乘以多项式因式分解提公因式法 公式法单项式除以单项式多项式除以单项式乘法公式(a +b )(a -b )=a -b(a +b )=a +2ab +b由单项式与单项式法则可知,单项式与单项式相乘实为完成三项工作:(1)系数相乘的积作为积的系数;(2)同字母的指数相加的和作为积中这个字母的指数;(3)只在一个单项式中出现的字母连同它的指数一起作为积中的一个因式.单项式乘法法则对两个以上单项式相乘同样成立.2.单项式与多项式相乘:单项式与多项式相乘,实际上是转化为单项式与单项式相乘:用单项式去乘以多项式中的每一项,再把所得的积相加,即m(a+b+c)=ma+m b+mc单项式与多项式相乘,结果是多项式,积的项数与因式中多项式的项数相同.3.多项式与多项式相乘:多项式与多项式相乘,实际上是先转化为单项式与多项式相乘,即将一个多项式看成一个整体,即(m+n)(a+b)=a(m+n)+b(m+n),再用一次单项式与多项式相乘,得(m+n)(a+b)=ma+n a+m b+b n.多项式乘以多项式其积仍是多项式,积的次数等于两个多项式的次数之和,积的项数在末合并同类项之前等于两个多项式项数之和.(三)乘法公式1.“两数和乘以它们的差等于这两个数的平方差”即(a+b)(a-b)=a2-b2,应用这个乘法公式计算时,应掌握公式的特征:①公式的左边是两个二项式相乘;并且这两个二项式中有一项是完全相同的项a,另一项是相反数项b;②公式的右边是相同项的平方a2减去相反数项的平方b2.公式中的a和b,可以是单项式,也可以是多项式或具体数字.2.“两数和的平方等于它们的平方和加上它们乘积的2倍”.即(a+b)2=a2+2ab+b2.要理解公式的特征:①公式的左边是一个二项式的平方,右边是一个二次三项式.公式的适用范围:公式中的a和b 可以是具体的数,也可以是单项式或多项式;任何形式的两数和(或差)的平方都可以运用这个公式计算.(四)整式的除法整式的除法关键是掌握好同底数幂的除法和单项式与单项式相除的法则。
《整式的乘除》全章复习与巩固—知识讲解(基础)【学习目标】1. 理解正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;4. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【知识网络】【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >). 同底数幂相除,底数不变,指数相减. 5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1.要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式: 两个数的和与这两个数的差的积,等于这两个数的平方差.22()()a b a b a b +-=-要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.()2222a b a ab b +=++;2222)(b ab a b a +-=- 要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项考虑完全平方;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.【典型例题】类型一、幂的运算1、计算下列各题:(1)2334(310)(10)⨯⨯- (2)2332[3()][2()]m n m n +-+(3)26243(2)(3)xy x y -+- (4)63223(2)(3)[(2)]a a a ---+- 【思路点拨】按顺序进行计算,先算积的乘方,再算幂的乘方,最后算同底数的幂相乘.【答案与解析】解:(1)2334(310)(10)⨯⨯-323343(10)(10)=⨯⨯18192710 2.710=⨯=⨯. (2)2332[3()][2()]m n m n +-+36263()(2)()m n m n =⋅+⋅-⋅+ 661227()4()108()m n m n m n =+⋅+=+.(3)26243(2)(3)xy x y -+- 6661233612(1)2(1)3x y x y =-⋅⋅+-⋅612612612642737x y x y x y =-=.(4)63223(2)(3)[(2)]a a a ---+-6662232366(1)2(1)3()(1)(2)a a a =-⋅--⋅⋅+-⋅6666649649a a a a =--=-.【总结升华】在进行幂的运算时,应注意符号问题,尤其要注意系数为-1时“-”号、括号里的“-”号及其与括号外的“-”号的区别.举一反三: 【变式】当41=a ,b =4时,求代数式32233)21()(ab b a -+-的值. 【答案】 解:333223363636611771()()45628884a b ab a b a b a b ⎛⎫-+-=-==⨯⨯= ⎪⎝⎭. 类型二、整式的乘除法运算2、(2016春•保山期末)计算:(2a ﹣b )2﹣(8a 3b ﹣4a 2b 2)÷2ab .【思路点拨】先计算完全平方式和多项式除以单项式,再去括号、合并同类项即可得.【答案与解析】解:原式=4a 2﹣4ab +b 2﹣(4a 2﹣2ab )=4a 2﹣4ab +b 2﹣4a 2+2ab=b 2﹣2ab .【总结升华】本题主要考查完全平方式和整式的除法,熟记完全平方公式和多项式除以单项式的法则是关键.3、已知312326834m n ax y x y x y ÷=,求(2)n m n a +-的值.【思路点拨】利用除法与乘法的互逆关系,通过计算比较系数和相同字母的指数得到m n a 、、的值即可代入求值.【答案与解析】解:由已知312326834m n ax y x y x y ÷=,得31268329284312m n n ax y x y x y x y +=⋅=,即12a =,39m =,2812n +=,解得12a =,3m =,2n =.所以22(2)(23212)(4)16n m n a +-=⨯+-=-=.【总结升华】也可以直接做除法,然后比较系数和相同字母的指数得到m n a 、、的值. 举一反三:【变式】(1)已知1227327m m -÷=,求m 的值.(2)已知1020a =,1105b =,求293a b ÷的值. (3)已知23m =,24n =,求322m n -的值. 【答案】解:(1)由题意,知312(3)327m m -÷=.∴ 3(1)2333m m --=.∴ 3323m m --=,解得6m =.(2)由已知1020a =,得22(10)20a =,即210400a =.由已知1105b =,得211025b =. ∴ 221101040025a b ÷=÷,即2241010a b -=.∴ 224a b -= ∴ 22222493333381a b a b a b -÷=÷===. (3)由已知23m =,得3227m =.由已知24n =,得2216n =. ∴ 32322722216m n m n -=÷=. 类型三、乘法公式4、对任意整数n ,整式(31)(31)(3)(3)n n n n +---+是否是10的倍数?为什么?【答案与解析】解:∵(31)(31)(3)(3)n n n n +---+22222(3)1(3)919n n n n =---=--+22101010(1)n n =-=-,210(1)n -是10的倍数,∴ 原式是10的倍数.【总结升华】要判断整式(31)(31)(3)(3)n n n n +---+是否是10的倍数,应用平方差公式化简后,看是否有因数10.举一反三:【变式】解下列方程(组):22(2)(4)()()32x y x y x y x y ⎧+-+=+-⎨-=-⎩【答案】解: 原方程组化简得2332x y x y -=⎧⎨-=-⎩,解得135x y =⎧⎨=⎩.5、已知3a b +=,4ab =-,求: (1)22a b +;(2)33a b +【思路点拨】在公式()2222a b a ab b +=++中能找到22,,a b ab a b ++的关系. 【答案与解析】解:(1) 222222a b a ab b ab +=++- ()22a b ab =+-∵3a b +=,4ab =-,∴()22232417a b +=-⨯-=(2)333223a b a a b a b b +=+-+ ()()()2a a b b a b a b =+-+-()()22a b a ab b =+-+()()2[3]a b a b ab =++-∵3a b +=,4ab =-,∴()332333463a b ⎡⎤+=-⨯-=⎣⎦. 【总结升华】在无法直接利用公式的情况下,我们采取“配凑法”进行,通过配凑向公式过渡,架起了已知与未知之间桥梁,顺利到达“彼岸”.在解题时,善于观察,捕捉习题特点,联想公式特征,便易于点燃思维的火花,找到最佳思路.类型四、因式分解6、 分解因式:(1)2(1)(1)a b a -+- (2)22(33)(35)1x x x x +++++.【思路点拨】若将括号完全展开,所含的项太多,很难找到恰当的因式分解的方法,通过观察发现:将相同的部分23x x +作为一个整体,展开后再进行分解就容易了.【答案与解析】解:(1)222(1)(1)(1)(1)(1)(1)(1)(1)(1)a b a a b a a b a b b -+-=---=--=-+-.(2)22(33)(35)1x x x x +++++22[(3)3][(3)5]1x x x x =+++++ 222(3)8(3)16x x x x =++++22(34)x x =++.【总结升华】在因式分解中要注意整体思想的应用,对于式子较复杂的题目不要轻易去括号.举一反三:【变式】(2015春•禅城区校级期末)分解因式:(1)(a 2+b 2)2﹣4a 2b 2(2)(x 2﹣2xy+y 2)+(﹣2x+2y )+1.【答案】解:(1)(a2+b2)2﹣4a2b2=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1 =(x﹣y)2﹣2(x﹣y)+1=(x﹣y﹣1)2.。
【巩固练习】一.选择题1.下列各式从左到右的变化中属于因式分解的是( ).A .()()22422m n m n m n -=+-B .()()2111m m m +-=-C .()23434m m m m --=--D .()224529m m m --=--2.(2016•恩施州)下列计算正确的是( )A .2a 3+3a 3=5a 6B .(x 5)3=x 8C .﹣2m (m ﹣3)=﹣2m 2﹣6mD .(﹣3a ﹣2)(﹣3a +2)=9a 2﹣43.若252++kx x 是完全平方式,则k 的值是( )A . —10 B. 10 C. 5 D.10或—104. 将2m ()2a -+()2m a -分解因式,正确的是( )A .()2a -()2m m -B .()()21m a m -+C .()()21m a m --D .()()21m a m --5.(2015•本溪)下列运算正确的是( )A .5m+2m=7m 2B .﹣2m 2•m 3=2m 5C .(﹣a 2b )3=﹣a 6b 3D .(b+2a )(2a ﹣b )=b 2﹣4a 26. 若)5)(3(+-x x 是q px x ++2的因式,则p 为( )A.-15B.-2C.8D.27. 2222)(4)(12)(9b a b a b a ++-+-因式分解的结果是() A .2)5(b a - B .2)5(b a + C .)23)(23(b a b a +- D .2)25(b a -8. 下列多项式中能用平方差公式分解的有( )①22a b --; ②2224x y -; ③224x y -; ④()()22m n ---; ⑤22144121a b -+; ⑥22122m n -+. A .1个 B .2个 C .3个 D .4个二.填空题9.化简()2m n a a ⋅=______. 10.(2016春•普宁市期末)计算:(﹣18a 2b +10b 2)÷(﹣2b )= . 11.若221x y -=,化简()()20122012x y x y +-=________.12. 若2330x x +-=,32266x x x +-=__________.13.把()()2011201222-+-分解因式后是___________.14.()()()()241111x x x x -++-+的值是________.15.(2015春•福田区期末)若x ﹣y=8,xy=10,则x 2+y 2= .16.下列运算中,结果正确的是___________①422a a a =+,②523)(a a =, ③2a a a =⋅,④()()33x y y x -=-,⑤()x a b x a b --=-+,⑥()x a b x b a +-=--,⑦()22x x -=-,⑧ ()()33x x -=--,⑨ ()()22x y y x -=- 三.解答题17.分解因式:(1)234()12()x x y x y ---; (2)2292416a ab b -+. 18. 解不等式()()()22232336x x x x +-+->+,并求出符合条件的最小整数解. 19.(2015春•濉溪县期末)若a 2+a=0,求2a 2+2a+2015的值.20.某种液晶电视由于原料价格波动而先后两次调价,有三种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问三种方案调价的最终结果是否一样?为什么?【答案与解析】一.选择题1. 【答案】A ;【解析】因式分解是把多项式化成整式乘积的形式.2. 【答案】D ;【解析】A 、原式=5a 3,错误;B 、原式=x 15,错误;C 、原式=﹣2m 2+6m ,错误;D 、原式=9a 2﹣4,正确,故选D.3. 【答案】D ;【解析】()2221055x x x ±+=± 4. 【答案】C ;【解析】2m ()2a -+()2m a -=2m ()2a -()2m a --=()()21m a m --.5. 【答案】C ; 【解析】解:A 、5m+2m=(5+2)m=7m ,故A 错误; B 、﹣2m 2•m 3=﹣2m 5,故B 错误;C 、(﹣a 2b )3=﹣a 6b 3,故C 正确;D 、(b+2a )(2a ﹣b )=(2a+b )(2a ﹣b )=4a 2﹣b 2,故D 错误.故选:C .6. 【答案】D ;【解析】2(3)(5)28x x x x -+=+-.【解析】2222)(4)(12)(9b a b a b a ++-+-=()()()22325a b a b a b -++=-⎡⎤⎣⎦. 8. 【答案】D ;【解析】③④⑤⑥能用平方差公式分解.二.填空题9. 【答案】()22m n m n a a a +⋅=. 10.【答案】9a 2﹣5b ;【解析】(﹣18a 2b +10b 2)÷(﹣2b )=﹣18a 2b ÷(﹣2b )+(10b 2)÷(﹣2b )=9a 2+(﹣5b )=9a 2﹣5b .11.【答案】1;【解析】()()()()()201220122012201222201211x y x y x y x y x y +-=+-=-==⎡⎤⎣⎦. 12.【答案】0;【解析】()3222662362360x x x x x x x x x +-=+-=⨯-=.13.【答案】20112;【解析】()()()()()201120122011201120112221222-+-=--=--=.14.【答案】-2;【解析】()()()()()()()242241111111x x x x x x x -++-+=-+-+ 44112x x =---=-.15.【答案】84;【解析】解:∵x﹣y=8,∴(x ﹣y )2=64,x 2﹣2xy+y 2=64.∵xy=10,∴x 2+y 2=64+20=84.故答案为:84.16.【答案】③⑤⑥⑨;【解析】在整式的运算过程中,符号问题和去括号的问题是最常犯的错误,要保证不出现符号问题关键在于每一步的运算都要做到有根据,能够用定理法则指导运算.三.解答题17.【解析】解:(1)234()12()x x y x y ---=224()[3()]4()(32)x y x x y x y y x ---=--;(2)22292416(34)a ab b a b -+=-.解:()()()22232336x x x x +-+->+ 2224129636139913x x x x x x x ++-++>+>->-符合条件的最小整数解为0,所以0x =.19.【解析】解:本题考查整体代入的思想.∵a 2+a=0,∴原式=2(a 2+a )+2015=2015.20.【解析】解:设a 为原来的价格(1) 由题意得:()()110%110%0.99a a +-=(2)由题意得:()()110%110%0.99a a -+=(3)由题意得:()()120%120% 1.20.80.96a a a a +-=⨯=. 所以前两种调价方案一样.。