高考数学(人教a版,理科)题库:古典概型(含答案)
- 格式:doc
- 大小:110.79 KB
- 文档页数:6
古典概型(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率.知识点 古典概型 古典概型 (1)特点:①试验中所有可能出现的结果个数只有有限个,即有限性. ②每个结果发生的可能性相等,即等可能性. (2)概率公式:P (A )=事件A 包含的可能结果数试验的所有可能结果数=m n.易误提醒 (1)在计算古典概型中试验的所有结果数和事件发生结果时,易忽视他们是否是等可能的.(2)概率的一般加法公式P (A +B )=P (A )+P (B )-P (A ∩B )中,易忽视只有当A ∩B =∅,即A ,B 互斥时,P (A +B )=P (A )+P (B ),此时P (A ∩B )=0.[自测练习]1.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13 B.12 C.23D.34解析:甲、乙两位同学参加3个小组的所有可能性有3×3=9种,其中,甲、乙参加同一小组的情况有3种.故甲、乙参加同一个兴趣小组的概率P =39=13.答案:A2.从一副混合后的扑克牌(52张)中,随机抽取1张.事件A 为“抽到红桃K ”,事件B 为“抽到黑桃”,则P (A ∪B )=________(结果用最简分数表示).解析:∵P (A )=152,P (B )=1352,∴P (A ∪B )=P (A )+P (B )=152+1352=1452=726.答案:7263.(2016·南京模拟)现从甲、乙、丙3人中随机选派2人参加某项活动,则甲被选中的概率为________.解析:从甲、乙、丙3人中随机选派2人参加某项活动,有甲、乙,甲、丙,乙、丙三种可能,则甲被选中的概率为23.答案:234.(2016·昆明模拟)投掷两颗相同的正方体骰子(骰子质地均匀,且各个面上依次标有点数1,2,3,4,5,6)一次,则两颗骰子向上点数之积等于12的概率为________.解析:抛掷两颗相同的正方体骰子共有36种等可能的结果:(1,1),(1,2),(1,3),…,(6,6).点数积等于12的结果有:(2,6),(3,4),(4,3),(6,2),共4种,故所求事件的概率为436=19.答案:19考点一 古典概型|1.从1,2,3,4这四个数字中依次取(不放回)两个数a ,b ,使得a 2≥4b 的概率是( ) A.13 B.512 C.12D.712解析:基本事件为(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),…,(4,3),共12个,符合条件的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),共6个,因此使得a 2≥4b 的概率是12.答案:C2.(2015·高考湖南卷)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A 1,A 2和1个白球B 的甲箱与装有2个红球a 1,a 2和2个白球b 1,b 2的乙箱中,各随机摸出1个球.若摸出的2个球都是红球则中奖,否则不中奖.(1)用球的标号列出所有可能的摸出结果;(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率.你认为正确吗?请说明理由.解:(1)所有可能的摸出结果是{A 1,a 1},{A 1,a 2},{A 1,b 1},{A 1,b 2},{A 2,a 1},{A 2,a 2},{A 2,b 1},{A 2,b 2},{B ,a 1},{B ,a 2},{B ,b 1},{B ,b 2}.(2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为{A 1,a 1},{A 1,a 2},{A 2,a 1},{A 2,a 2},共4种,所以中奖的概率为412=13,不中奖的概率为1-13=23>13,故这种说法不正确.计算古典概型事件的概率可分三步(1)算出基本事件的总个数n .(2)求出事件A 所包含的基本事件个数m .(3)代入公式求出概率P .考点二 古典概型的交汇命题|古典概型在高考中常与平面向量、集合、函数、解析几何、统计等知识交汇命题,命题的角度新颖,考查知识全面,能力要求较高.归纳起来常见的交汇探究角度有: 1.古典概型与平面向量相结合. 2.古典概型与直线、圆相结合. 3.古典概型与函数相结合. 4.古典概型与统计相结合. 探究一 古典概型与平面向量相结合1.已知向量a =(x ,-1),b =(3,y ),其中x 随机选自集合{-1,1,3},y 随机选自集合{1,3,9}. (1)求a ∥b 的概率; (2)求a ⊥b 的概率.[解] (1)由题意,得(x ,y )所有的基本事件为(-1,1),(-1,3),(-1,9),(1,1),(1,3),(1,9),(3,1),(3,3),(3,9),共9个.(1)设“a ∥b ”为事件A ,则xy =-3. 事件A 包含的基本事件有(-1,3),共1个. 故a ∥b 的概率为P (A )=19.(2)设“a ⊥b ”为事件B ,则y =3x .事件B 包含的基本事件有(1,3),(3,9),共2个. 故a ⊥b 的概率为P (B )=29.探究二 古典概型与直线、圆相结合2.(2015·洛阳统考)将一颗骰子先后投掷两次分别得到点数a ,b ,则直线ax +by =0与圆(x -2)2+y 2=2有公共点的概率为________.解析:依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a ,b )有(1,1),(1,2),(1,3),…,(6,6),共36种,其中满足直线ax +by =0与圆(x -2)2+y 2=2有公共点,即满足2aa 2+b 2≤2,a 2≤b 2的数组(a ,b )有(1,1),(1,2),(1,3),(1,4),…,(6,6),共6+5+4+3+2+1=21种,因此所求的概率等于2136=712.答案:712探究三 古典概型与函数相结合3.设a ∈{2,4},b ∈{1,3},函数f (x )=12ax 2+bx +1.(1)求f (x )在区间(-∞,-1]上是减函数的概率;(2)从f (x )中随机抽取两个,求它们在(1,f (1))处的切线互相平行的概率.解:(1)f ′(x )=ax +b ,由题意f ′(-1)≤0,即b ≤a ,而(a ,b )共有(2,1),(2,3),(4,1),(4,3)四种,满足b ≤a 的有3种,故概率为34.(2)由(1)可知,函数f (x )共有4种可能,从中随机抽取两个,有6种抽法. ∵函数f (x )在(1,f (1))处的切线的斜率为f ′(1)=a +b ,∴这两个函数中的a 与b 之和应该相等,而只有(2,3),(4,1)这1组满足,∴概率为16.探究四 古典概型与统计相结合4.(2015·高考安徽卷)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a 的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.解:(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,所以a=0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以估计该企业的职工对该部门评分不低于80的概率为0.4.(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3;受访职工中评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},又因为所抽取2人的评分都在[40,50)的结果有1种,即{B1,B2},故所求的概率为110.解决与古典概型交汇命题的问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.9.古典概型综合问题的答题模板【典例】(12分)(2015·高考福建卷)全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道相供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.组号分组频数1[4,5) 22[5,6)83[6,7)74[7,8] 3(1)现从融合指数在[4,5)和2家进行调研,求至少有1家的融合指数在[7,8]内的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.[易误点析](1)观察表中数据,先求出样本空间所含的基本事件数,再求出至少有1家的融合指数在[7,8]内所含的基本事件数,最后利用古典概型的概率公式,即可求出所求事件的概率;(2)利用频率分布直方图中的平均数的计算方法,即可得结果.[规范解答](1)法一:融合指数在[7,8]内的3家“省级卫视新闻台”记为A1,A2,A3;融合指数在[4,5)内的2家“省级卫视新闻台”记为B1,B2.从融合指数在[4,5)和[7,8]内的5家“省级卫视新闻台”中随机抽取2家的所有基本事件是:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},共10个.(3分)其中,至少有1家的融合指数在[7,8]内的基本事件是:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},共9个.(6分)所以所求的概率P=910.(8分)法二:融合指数在[7,8]内的3家“省级卫视新闻台”记为A1,A2,A3;融合指数在[4,5)内的2家“省级卫视新闻台”记为B1,B2.从融合指数在[4,5)和[7,8]内的5家“省级卫视新闻台”中随机抽取2家的所有基本事件是:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},共10个.(3分)其中,没有1家的融合指数在[7,8]内的基本事件是:{B1,B2},共1个.(6分)所以所求的概率P=1-110=910.(8分)(2)这20家“省级卫视新闻台”的融合指数平均数等于4.5×220+5.5×820+6.5×720+7.5×320=6.05.(12分)[模板形成]审题求出样本空间所含的基本事件数↓再分析并求出所求事件的事件数↓利用古典概型公式求概率↓根据统计知识求解相关问题↓反思解题过程,注意规范化[跟踪练习]在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为()A.15B.25C.16D.18解析:如图,在正六边形ABCDEF 的6个顶点中随机选择4个顶点,共有15种选法,其中构成的四边形是梯形的有ABEF ,BCDE ,ABCF ,CDEF ,ABCD ,ADEF ,共6种情况,故构成的四边形是梯形的概率P =615=25,故选B.答案:BA 组 考点能力演练1.第22届冬季奥运会于2014年2月7日在俄罗斯索契开幕,到冰壶比赛场馆服务的大学生志愿者中,有2名来自莫斯科国立大学,有4名来自圣彼得堡国立大学,现从这6名志愿者中随机抽取2人,则至少有1名志愿者来自莫斯科国立大学的概率是( )A.1415 B.115 C.35D.25解析:从6人中抽取2人的基本事件个数为15,而事件“两名志愿者都来自圣彼得堡国立大学”包含的基本事件个数为6,∴所求概率为P =1-615=35.故选C.答案:C2.(2016·威海一模)从集合{2,3,4,5}中随机抽取一个数a ,从集合{1,3,5}中随机抽取一个数b ,则向量m =(a ,b )与向量n =(1,-1)垂直的概率为( )A.16B.13C.14D.12解析:由题意可知m =(a ,b )有:(2,1),(2,3),(2,5),(3,1),(3,3),(3,5),(4,1),(4,3),(4,5),(5,1),(5,3),(5,5),共12种情况.因为m ⊥n ,即m ·n =0,所以a ×1+b ×(-1)=0,即a =b , 满足条件的有(3,3),(5,5)共2个, 故所求的概率为16.答案:A3.记a ,b 分别是投掷两次骰子所得的数字,则方程x 2-ax +2b =0有两个不同实根的概率为( )A.518B.14C.310D.910解析:由题意知投掷两次骰子所得的数字分别为a ,b ,则基本事件有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),…,(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36种,而方程x 2-ax +2b =0有两个不同实根的条件是a 2-8b >0,因此满足此条件的基本事件有(3,1),(4,1),(5,1),(6,1),(5,2),(5,3),(6,2),(6,3),(6,4),共9个,故所求的概率为936=14.答案:B4.(2016·亳州质检)已知集合M ={1,2,3,4},N ={(a ,b )|a ∈M ,b ∈M },A 是集合N 中任意一点,O 为坐标原点,则直线OA 与y =x 2+1有交点的概率是( )A.12B.13C.14D.18解析:易知过点(0,0)与y =x 2+1相切的直线为y =2x (斜率小于0的无需考虑),集合N 中共有16个元素,其中使OA 斜率不小于2的有(1,2),(1,3),(1,4),(2,4),共4个,故所求的概率为416=14. 答案:C5.一个三位数的百位,十位,个位上的数字依次为a ,b ,c ,当且仅当a >b ,b <c 时称为“凹数”(如213,312等),若a ,b ,c ∈{1,2,3,4},且a ,b ,c 互不相同,则这个三位数为“凹数”的概率是( )A.16B.524C.13D.724解析:由1,2,3组成的三位数有123,132,213,231,312,321,共6个. 由1,2,4组成的三位自然数共6个; 由1,3,4组成的三位自然数也是6个; 由2,3,4组成的三位自然数也是6个.所以共有6+6+6+6=24个.当b =1时,有214,213,314,412,312,413,共6个“凹数”. 当b =2时,有324,423,共2个“凹数”. 故这个三位数为“凹数”的概率P =6+224=13.答案:C6.从2男3女共5名同学中任选2名(每名同学被选中的机会均等),这2名都是男生或都是女生的概率等于________.解析:设2名男生为A ,B,3名女生为a ,b ,c ,则从5名同学中任取2名的方法有(A ,B ),(A ,a ),(A ,b ),(A ,c ),(B ,a ),(B ,b ),(B ,c ),(a ,b ),(a ,c ),(b ,c ),共10种,而这2名同学刚好是一男一女的有(A ,a ),(A ,b ),(A ,c ),(B ,a ),(B ,b ),(B ,c ),共6种,故所求的概率P =1-610=25. 答案:257.设集合P ={-2,-1,0,1,2},x ∈P 且y ∈P ,则点(x ,y )在圆x 2+y 2=4内部的概率为________. 解析:以(x ,y )为基本事件,可知满足x ∈P 且y ∈P 的基本事件有25个.若点(x ,y )在圆x 2+y 2=4内部,则x ,y ∈{-1,1,0},用列表法或坐标法可知满足x ∈{-1,1,0}且y ∈{-1,1,0}的基本事件有9个.所以点(x ,y )在圆x 2+y 2=4内部的概率为925.答案:9258.将一颗骰子投掷两次分别得到点数a ,b ,则直线ax -by =0与圆(x -2)2+y 2=2相交的概率为________.解析:圆心(2,0)到直线ax -by =0的距离d =|2a |a 2+b2,当d <2时,直线与圆相交,则有d =|2a |a 2+b 2<2,得b >a ,满足题意的b >a 共有15种情况,因此直线ax -by =0与圆(x -2)2+y 2=2相交的概率为1536=512.答案:5129.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女. (1)若从甲校和乙校报名的教师中各任选1名,求选出的2名教师性别相同的概率; (2)若从报名的6名教师中任选2名,求选出的2名老师来自同一学校的概率.解:(1)从甲、乙两校报名的教师中各选1名,共有n =C 13×C 13=9种选法.记“2名教师性别相同”为事件A ,则事件A 包含基本事件总数m =C 12·1+C 12·1=4,∴P (A )=m n =49. (2)从报名的6人中任选2名,有n =C 26=15种选法.记“选出的2名老师来自同一学校”为事件B ,则事件B 包含基本事件总数m =2C 23=6. ∴选出2名教师来自同一学校的概率P (B )=615=25.10.(2016·烟台一模)某校从参加高三年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),数学成绩分组及各组频数如下:[40,50),2;[50,60),3;[60,70),14;[70,80),15;[80,90),12;[90,100),4. (1)请把给出的样本频率分布表中的空格都填上; (2)估计成绩在85分以上学生的比例;(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩[90,100)中选两位同学,共同帮助成绩在[40,50)中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率.样本频率分布表解:(1)样本的频率分布表:(2)估计成绩在85分以上的有6+4=10人, 所以估计成绩在85分以上的学生比例为1050=15.(3)[40,50)内有2人,记为甲、A .[90,100)内有4人,记为乙,B 、C 、D .则“二帮一”小组有以下12种分组办法:(甲,乙,B ),(甲,乙,C ),(甲,乙,D ),(甲,B ,C ),(甲,B ,D ),(甲,C ,D ),(A ,乙,B ),(A ,乙,C ),(A ,乙,D ),(A ,B ,C ),(A ,B ,D ),(A ,C ,D ).其中甲、乙两同学被分在同一小组有3种办法:(甲,乙,B ),(甲,乙,C ),(甲,乙,D ). 所以甲、乙两同学恰好被安排在同一小组的概率为P =312=14.B 组 高考题型专练1.(2015·高考广东卷)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A.521B.1021C.1121D .1解析:由题意得基本事件的总数为C 215,恰有1个白球与1个红球的基本事件个数为C 110C 15,所以所求概率P =C 110C 15C 215=1021.答案:B2.(2015·高考江苏卷)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为________.解析:从4只球中一次随机摸出2只球,有6种结果,其中这2只球颜色不同有5种结果,故所求概率为56.答案:563.(2015·高考四川卷)一辆小客车上有5个座位,其座位号为1,2,3,4,5.乘客P 1,P 2,P 3,P 4,P 5的座位号分别为1,2,3,4,5,他们按照座位号从小到大的顺序先后上车.乘客P 1因身体原因没有坐自己的1号座位,这时司机要求余下的乘客按以下规则就座:如果自己的座位空着,就只能坐自己的座位;如果自己的座位已有乘客就座,就在这5个座位的剩余空位中任意选择座位.(1)若乘客P 1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出了其中两种坐法,请填入余下两种坐法(将乘客就座的座位号填入表中空格处);(2)若乘客P 1坐到了55号座位的概率. 解:(1)余下两种坐法如下表所示:(2)若乘客P 1坐到了2号座位,其他乘客按规则就座,则所有可能的坐法可用下表表示为:于是,所有可能的坐法共8种.设“乘客P 5坐到5号座位”为事件A ,则事件A 中的基本事件的个数为4, 所以P (A )=48=12.答:乘客P 5坐到5号座位的概率是12.4.(2014·高考福建卷)根据世行2013年新标准,人均GDP 低于1 035美元为低收入国家;人均GDP 为1 035~4 085美元为中等偏下收入国家;人均GDP 为4 085~12 616美元为中等偏上收入国家;人均GDP 不低于12 616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP 如下表:(1)(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.解:(1)设该城市人口总数为a,则该城市人均GDP为1a(8 000×0.25a+4 000×0.30a+6 000×0.15a+3 000×0.10a+10 000×0.20a)=6 400.因为6 400∈[4 085,12 616),所以该城市人均GDP达到了中等偏上收入国家标准.(2)“从5个行政区中随机抽取2个”的所有的基本事件是:{A,B},{A,C},{A,D},{A,E},{B,C},{B,D},{B,E},{C,D},{C,E},{D,E},共10个.设事件“抽到的2个行政区人均GDP都达到中等偏上收入国家标准”为M,则事件M包含的基本事件是:{A,C},{A,E},{C,E},共3个,所以所求概率为P(M)=310.。
高中数学概率几何概型古典概型精选题目(附答案)一、古典概型1.互斥事件与对立事件的概率(1)互斥事件是不可能同时发生的两个事件;对立事件除要求这两个事件不同时发生外,还要求二者必须有一个发生.因此对立事件一定是互斥事件,但互斥事件不一定是对立事件,对立事件是互斥事件的特殊情况.(2)当事件A与B互斥时,P(A+B)=P(A)+P(B),当事件A与B对立时,P(A+B)=P(A)+P(B)=1,即P(A)=1-P(B).(3)求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式P(A)=1-P(A)求解.2.古典概型的求法对于古典概型概率的计算,关键是分清基本事件的总数n与事件A包含的基本事件的个数m,有时需用列举法把基本事件一一列举出来,再利用公式P(A)=mn求出事件发生的概率,这是一个形象、直观的好方法,但列举时必须按照某种顺序,以保证不重复、不遗漏.1.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.[解]甲校两名男教师分别用A,B表示,女教师用C表示;乙校男教师用D 表示,两名女教师分别用E,F表示.(1)从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),共9种.从中选出的2名教师性别相同的结果有:(A,D),(B,D),(C,E),(C,F),共4种,所以选出的2名教师性别相同的概率为P=4 9.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.从中选出的2名教师来自同一学校的结果有:(A,B),(A,C),(B,C),(D,E),(D,F),(E,F),共6种.所以,选出的2名教师来自同一学校的概率为P=615=25.注:解决与古典概型问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.2.某导演先从2个金鸡奖和3个百花奖的5位演员名单中挑选2名演主角,后又从剩下的演员中挑选1名演配角.这位导演挑选出2个金鸡奖演员和1个百花奖演员的概率为()A.13 B.110C.25 D.310解析:选D设2个金鸡奖演员编号为1,2,3个百花奖演员编号为3,4,5.从编号为1,2,3,4,5的演员中任选3名有10种挑选方法:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共10种.其中挑选出2名金鸡奖和1名百花奖的有3种:(1,2,3),(1,2,4),(1,2,5),故所求的概率为P=3 10.3.随着经济的发展,人们生活水平的提高,中学生的营养与健康问题越来越得到学校与家长的重视.从学生体检评价报告单了解到我校3 000名学生的体重发育评价情况,得下表:0.15.(1)求x的值;(2)若用分层抽样的方法,从这批学生中随机抽取60名,问应在肥胖学生中抽多少名?(3)已知y ≥243,z ≥243,求肥胖学生中男生不少于女生的概率.解:(1)由题意得,从这批学生中随机抽取1名学生,抽到偏痩男生的概率为0.15,可知x3 000=0.15,所以x =450.(2)由题意,可知肥胖学生人数为y +z =500(人).设应在肥胖学生中抽取m 人,则m 500=603 000.所以m =10.即应在肥胖学生中抽10名.(3)由题意,可知y +z =500,且y ≥243,z ≥243,满足条件的基本事件如下: (243,257),(244,256),…,(257,243),共有15组.设事件A :“肥胖学生中男生不少于女生”,即y ≤z ,满足条件的(y ,z )的基本事件有:(243,257),(244,256),…,(250,250),共有8组,所以P (A )=815.所以肥胖学生中男生不少于女生的概率为815.二、几何概型(1)几何概型满足的两个特点:①等可能性;②无限性. (2)几何概型的概率求法公式P (A )=构成事件A 的区域长度(面积、体积)试验的全部结果长度(面积、体积).4.(1)已知平面区域D 1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )| ⎩⎨⎧|x |<2,|y |<2,D 2={}(x ,y )|(x -2)2+(y -2)2<4.在区域D 1内随机选取一点P ,则点P 恰好取自区域D 2的概率是( )A.14 B.π4 C.π16D.π32(2)把一根均匀木棒随机地按任意点折成两段,则“其中一段长度大于另一段长度2倍”的概率为________.[解析] (1)因区域D 1和D 2的公共部分是一个半径为2的圆的14,从而所求概率P =14×22π42=π16,故选C.(2)将木棒折成两段的折点应位于距木棒两端点小于13木棒长度的区域内,故所求概率为2×13=23.[答案] (1)C (2)23 注:几何概型问题的解题方法(1)由于基本事件的个数和结果的无限性,其概率就不能应用P (A )=mn 求解,因此需转化为几何度量(如长度、面积、体积等)的比值求解.(2)在解题时要准确把握,要把实际问题作合理的转化;要注意古典概型和几何概型的区别,正确地选用几何概型的类型解题.5.如图,两个正方形的边长均为2a ,左边正方形内四个半径为a2的圆依次相切,右边正方形内有一个半径为a 的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为P 1,P 2,则P 1,P 2的大小关系是( )A .P 1=P 2B .P 1>P 2C .P 1<P 2D .无法比较解析:选A 由题意知正方形的边长为2a .左图中圆的半径为正方形边长的14,故四个圆的面积和为πa 2,右图中圆的半径为正方形边长的一半,圆的面积也为πa 2,故P 1=P 2.6.在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为( )A.34B.23C.13D.14解析:选A 不等式-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1可化为log 122≤log 12⎝ ⎛⎭⎪⎫x +12≤log 1212,即12≤x +12≤2,解得0≤x ≤32,故由几何概型的概率公式得P =32-02-0=34.7.圆具有优美的对称性,以圆为主体元素构造的优美图案在工艺美术、陶瓷、剪纸等上有着广泛的应用,如图1,图2,图3,图4,其中图4中的3个阴影三角形的边长均为圆的半径,记图4中的阴影部分区域为M ,现随机往图4的圆内投一个点A ,则点A 落在区域M 内的概率是( )A.34πB.334πC.2πD.3π解析:选B 设圆内每一个小正三角形的边长为r , 则一个三角形的面积为12×r ×32r =34r 2, ∴阴影部分的面积为334r 2. 又圆的面积为πr 2,∴点A 落在区域M 内的概率是334r 2πr 2=334π.。
[A 基础达标]1.同时投掷两颗大小完全相同的骰子,用(x ,y )表示结果,记A 为“所得点数之和小于5”,则事件A 包含的基本事件数是( )A .3B .4C .5D .6解析:选D.事件A 包含的基本事件有6个:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).故选D.2.下列关于古典概型的说法中正确的是( )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件的总数为n ,随机事件A 若包含k 个基本事件,则P (A )=k n. A .②④ B .①③④C .①④D .③④解析:选B .根据古典概型的特征与公式进行判断,①③④正确,②不正确,故选B .3.下列是古典概型的是( )(1)从6名同学中,选出4人参加数学竞赛,每人被选中的可能性的大小;(2)同时掷两颗骰子,点数和为7的概率;(3)近三天中有一天降雨的概率;(4)10个人站成一排,其中甲、乙相邻的概率.A .(1)(2)(3)(4)B .(1)(2)(4)C .(2)(3)(4)D .(1)(3)(4)解析:选B .(1)(2)(4)为古典概型,因为都适合古典概型的两个特征:有限性和等可能性,而(3)不适合等可能性,故不为古典概型.4.已知集合A ={2,3,4,5,6,7},B ={2,3,6,9},在集合A ∪B 中任取一个元素,则它是集合A ∩B 中的元素的概率是( )A.23 B .35C.37 D .25解析:选 C.A ∪B ={2,3,4,5,6,7,9},A ∩B ={2,3,6},所以由古典概型的概率公式得,所求的概率是37. 5.把一枚骰子投掷两次,观察出现的点数,记第一次出现的点数为a ,第二次出现的点数为b ,则方程组⎩⎪⎨⎪⎧ax +by =3,x +2y =2只有一个解的概率为( ) A.512 B .1112C.513 D .913解析:选B .点(a ,b )取值的集合共有36个元素.方程组只有一个解等价于直线ax +by =3与x +2y =2相交,即a 1≠b 2,即b ≠2a ,而满足b =2a 的点只有(1,2),(2,4),(3,6),共3个,故方程组⎩⎪⎨⎪⎧ax +by =3,x +2y =2只有一个解的概率为3336=1112.6.甲、乙两人随意入住三间空房,则甲、乙两人各住一间房的概率是________.解析:设房间的编号分别为A 、B 、C ,事件甲、乙两人各住一间房包含的基本事件为:甲A 乙B ,甲B 乙A ,甲B 乙C ,甲C 乙B ,甲A 乙C ,甲C 乙A 共6个,基本事件总数为3×3=9,所以所求的概率为69=23. 答案:237.甲、乙两人玩数字游戏,先由甲心中任想一个数字记为a ,再由乙猜甲刚才想的数字,把乙想的数字记为b ,且a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,则称“甲、乙心有灵犀”,现任意找两个人玩这个游戏,得出他们“心有灵犀”的概率为________.解析:数字a ,b 的所有取法有36种,满足|a -b |≤1的取法有16种,所以其概率为P =1636=49. 答案:498.(2016·石家庄检测)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它能获得食物的概率为________.解析:该树枝的树梢有6处,有2处能找到食物,所以获得食物的概率为26=13. 答案:139.(2014·高考山东卷)海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区A B C 数量 50 150 100(1)求这6件样品中来自A ,B ,C 各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解:(1)因为样本容量与总体中的个体数的比是650+150+100=150, 所以样本中包含三个地区的个体数量分别是:50×150=1,150×150=3,100×150=2. 所以A ,B ,C 三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A ,B ,C 三个地区的样品分别为:A ;B 1,B 2,B 3;C 1,C 2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D :“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有: {B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2},共4个.所以P (D )=415,即这2件商品来自相同地区的概率为415. 10.(2016·长沙联考)某停车场临时停车按时段收费,收费标准如下:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时按1小时计算).现有甲、乙两人在该地停车,两人停车都不超过4小时.(1)若甲停车1小时以上且不超过2小时的概率为13,停车费多于14元的概率为512,求甲的停车费为6元的概率;(2)若甲、乙两人每人停车的时长在每个时段的可能性相同,求甲、乙两人停车费之和为28元的概率.解:(1)设“一次停车不超过1小时”为事件A ,“一次停车1到2小时”为事件B ,“一次停车2到3小时”为事件C ,“一次停车3到4小时”为事件D .由已知得P (B )=13,P (C +D )=512. 又事件A ,B ,C ,D 互斥,所以P (A )=1-13-512=14. 所以甲的停车费为6元的概率为14. (2)易知甲、乙停车时间的基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个;而“停车费之和为28元”的事件有(1,3),(2,2),(3,1),共3个,所以所求概率为316. [B 能力提升]1.盒中有1个黑球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球,设第1个人摸出的1个球是黑球的概率为P 1,第10个人摸出黑球的概率是P 10,则( )A .P 10=110P 1B .P 10=19P 1 C .P 10=0 D .P 10=P 1解析:选D.摸球与抽签是一样的,虽然抽签的顺序有先后,但只需不让后人知道先抽的人抽出的结果,那么各个抽签者中签的概率是相等的,并不因抽签的顺序不同而影响到其公平性.所以P 10=P 1.2.(2014·高考课标全国卷Ⅰ)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.解析:两本不同的数学书用a 1,a 2表示,语文书用b 表示,由Ω={(a 1,a 2,b ),(a 1,b ,a 2),(a 2,a 1,b ),(a 2,b ,a 1),(b ,a 1,a 2),(b ,a 2,a 1)}.于是两本数学书相邻的情况有4种,故所求概率为46=23.答案:233.某班体育兴趣小组共有12名同学(学号为1到12),要从中选出一个同学去参加某项比赛,由于1号同学受伤,只好从2至12号同学中选出.因为这11位同学水平相当,所以有人提议用如下的办法选出:用两台完全相同的计算机各随机产生1到6中的一个整数,这两个整数的和是几就选择几号.你认为这种方法公平吗?若公平,说明理由;若不公平,说明这种方法最有可能选中几号?几号同学被选中的可能性最小?解:所以基本事件空间中共有36个基本事件.其中,选中2号与12号的概率都为136,选中3号与11号的概率都为236=118,选中4号与10号的概率都为336=112,选中5号与9号的概率都为436=19,选中6号与8号的概率都为536, 选中7号的概率为636=16, 所以这种方法不公平,最有可能选中7号,2号和12号同学被选中的可能性最小.4.(选做题)田忌和齐王赛马是历史上有名的故事,设齐王的三匹马分别为A 、B 、C ,田忌的三匹马分别为a 、b 、c ;三匹马各比赛一次,胜两场者获胜.若这六匹马比赛优、劣程度可以用以下不等式表示:A >a >B >b >C >c .(1)正常情况下,求田忌获胜的概率;(2)为了得到更大的获胜机会,田忌预先派出探子到齐王处打探实情,得知齐王第一场必出上等马A ,于是田忌采用了最恰当的应对策略,求这时田忌获胜的概率.解:(1)比赛配对的基本事件共有6个,它们是:(Aa ,Bb ,Cc ),(Aa ,Bc ,Cb ),(Ab ,Ba ,Cc ),(Ab ,Bc ,Ca ),(Ac ,Ba ,Cb ),(Ac ,Bb ,Ca ).经分析:仅有配对为(Ac ,Ba ,Cb )时,田忌获胜,且获胜的概率为16. (2)田忌的策略是首场安排劣马c 出赛,基本事件有2个:(Ac ,Ba ,Cb ),(Ac ,Bb ,Ca ),配对为(Ac ,Ba ,Cb )时,田忌获胜且获胜的概率为12.故正常情况下,田忌获胜的概率为16,获得信息后,田忌获胜的概率为12.。
古典概型1.下列试验中,属于古典概型的是( )A .种下一粒种子,观察它是否发芽B .从规格直径为250 mm ±0.6 mm 的一批合格产品中任意抽一根,测量其直径dC .抛一枚硬币,观察其出现正面或反面D .某人射击中靶或不中靶【答案】 C【解析】 依据古典概型的特点判断,只有C 项满足:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相同.2.一枚硬币连掷3次,有且仅有2次出现正面向上的概率为( )A.38B.23C.13D.143.四条线段的长度分别是1,3,5,7,从这四条线段中任取三条,则所取出的三条线段能构成一个三角形的概率是( )A .14B .13C .12D .25【答案】 A【解析】 从四条长度各异的线段中任取一条,每条被取出的可能性均相等,所以该问题属于古典概型.又所有基本事件包括(1,3,5),(1,3,7),(1,5,7),(3,5,7)四种,而能构成三角形的基本事件只有(3,5,7)一种,所以所取出的三条线段能构成一个三角形的概率是P =14. 4.集合A ={2,3},B ={1,2,3},从A 、B 中各任意取一个数,则这两数之和等于4的概率是( ) A.23 B.12 C.13 D.165.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.6、现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9.若从中一次抽取2根竹竿,则它们的长度恰好相差0.3 m的概率为________.答案1 5解析基本事件共有(2.5,2.6),(2.5,2.7),(2.5,2.8),(2.5,2.9),(2.6,2.7),(2.6,2.8),(2.6,2.9),(2.7,2.8),(2.7,2.9),(2.8,2.9)10种情况.相差0.3 m的共有(2.5,2.8),(2.6,2.9)两种情况,所以P=210=1 5.7.有100张卡片(从1号到100号),从中任取1张,取到的卡号是7的倍数的概率为________.8.在不大于100的自然数中任取一个数.(1)求所取的数为偶数的概率;(2)求所取的数是3的倍数的概率;(3)求所取的数是被3除余1的数的概率.。
第4讲古典概型一、选择题1.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少毁灭一次5点向上的概率是( )A.5216B.25216C.31216D.91216解析抛掷3次,共有6×6×6=216个大事.一次也不毁灭5,则每次抛掷都有5种可能,故一次也未毁灭5的大事总数为5×5×5=125.于是没有毁灭一次5点向上的概率P=125 216,所求的概率为1-125216=91216.答案 D2.一个袋子中有5个大小相同的球,其中有3个黑球与2个红球,假如从中任取两个球,则恰好取到两个同色球的概率是().A.15 B.310 C.25 D.12解析基本大事有C25=10个,其中为同色球的有C23+C22=4个,故所求概率为410=2 5.答案 C3.甲、乙两人各写一张贺年卡,任凭送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是().A.12 B.13 C.14 D.15解析(甲送给丙,乙送给丁),(甲送给丁,乙送给丙),(甲、乙都送给丙),(甲、乙都送给丁),共四种状况,其中甲、乙将贺年卡送给同一人的状况有两种,所以P=24=1 2.答案 A4.甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( )A.318B.418C.518D.618解析正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个等可能的基本大事.两条直线相互垂直的状况有5种(4组邻边和对角线),包括10个基本大事,所以概率等于518.答案 C5.一块各面均涂有油漆的正方体被锯成1 000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个正方体其三面涂有油漆的概率是( ).A.112B.110C.325D.1125解析小正方体三面涂有油漆的有8种状况,故所求其概率为:81 000=1125.答案 D6.将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a,放回后,乙从今口袋中再摸出一个小球,其号码为b,则使不等式a-2b+4<0成立的大事发生的概率为().A.18 B.316 C.14 D.12解析由题意知(a,b)的全部可能结果有4×4=16个.其中满足a-2b+4<0的有(1,3),(1,4),(2,4),(3,4),共4个,所以所求概率为14.答案 C二、填空题7.在集合A={2,3}中随机取一个元素m,在集合B={1,2,3}中随机取一个元素n,得到点P(m,n),则点P在圆x2+y2=9内部的概率为________.解析由题意得到的P(m,n)有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6个,在圆x2+y2=9的内部的点有(2,1),(2,2),所以概率为26=13.答案138. 现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 .解析 组成满足条件的数列为:.19683,6561,2187,729,243,81,27.9,3,1-----从中随机取出一个数共有取法10种,其中小于8的取法共有6种,因此取出的这个数小于8的概率为53.答案 539.甲、乙二人参与普法学问竞答,共有10个不同的题目,其中6个选择题,4 个推断题,甲、乙二人依次各抽一题,则甲、乙两人中至少有一人抽到选择题的概率是________. 解析 方法1:设大事A :甲乙两人中至少有一人抽到选择题.将A 分拆为B :“甲选乙判”,C :“甲选乙选”,D :“甲判乙选”三个互斥大事, 则P (A )=P (B )+P (C )+P (D ).而P (B )=C 16C 14C 110C 19,P (C )=C 16C 15C 110C 19,P (D )=C 14·C 16C 110C 19,∴P (A )=2490+3090+2490=7890=1315.方法2:设大事A :甲乙两人中至少有一人抽到选择题,则其对立大事为A : 甲乙两人均抽推断题.∴P (A )=C 14C 13C 110C 19=1290,∴P (A )=1-1290=7890=1315. 故甲、乙两人中至少有一人抽到选择题的概率为1315. 答案 131510.三位同学参与跳高、跳远、铅球项目的竞赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是________(结果用最简分数表示).解析 依据条件求出基本大事的个数,再利用古典概型的概率计算公式求解.由于每人都从三个项目中选择两个,有(C 23)3种选法,其中“有且仅有两人选择的项目完全相同”的基本大事有C 23C 13C 12个,故所求概率为C 23C 13C 12(C 23)3=23. 答案 23 三、解答题11.某地区有学校21所,中学14所,高校7所,现接受分层抽样的方法从这些学校中抽取6所学校对同学进行视力调查.(1)求应从学校、中学、高校中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析, ①列出全部可能的抽取结果; ②求抽取的2所学校均为学校的概率.解 (1)由分层抽样的定义知,从学校中抽取的学校数目为6×2121+14+7=3;从中学中抽取的学校数目为6×1421+14+7=2;从高校中抽取的学校数目为6×721+14+7=1.故从学校、中学、高校中分别抽取的学校数目为3,2,1.(2)①在抽取到的6所学校中,3所学校分别记为A 1,A 2,A 3,2所中学分别记为A 4,A 5,1所高校记为A 6,则抽取2所学校的全部可能结果为(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 1,A 5),(A 1,A 6),(A 2,A 3),(A 2,A 4),(A 2,A 5),(A 2,A 6),(A 3,A 4),(A 3,A 5),(A 3,A 6),(A 4,A 5),(A 4,A 6),(A 5,A 6),共15种.②从6所学校中抽取的2所学校均为学校(记为大事B )的全部可能结果为(A 1,A 2),(A 1,A 3),(A 2,A 3),共3种. 所以P (B )=315=15.12.从某小组的2名女生和3名男生中任选2人去参与一项公益活动. (1)求所选2人中恰有一名男生的概率; (2)求所选2人中至少有一名女生的概率.解析 设2名女生为a 1,a 2,3名男生为b 1,b 2,b 3,从中选出2人的基本大事有:(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,b 1),(a 2,b 2),(a 2,b 3),(b 1,b 2),(b 1,b 3),(b 2,b 3),共10种.(1) 设“所选2人中恰有一名男生”的大事为A ,则A 包含的大事有:(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,b 1),(a 2,b 2),(a 2,b 3),共6种, ∴P (A )=610=35, 故所选2人中恰有一名男生的概率为35.(2)设“所选2人中至少有一名女生”的大事为B,则B包含的大事有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),共7种,∴P(B)=7 10,故所选2人中至少有一名女生的概率为710.13.袋内装有6个球,这些球依次被编号为1,2,3,…,6,设编号为n的球重n2-6n+12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).(1)从袋中任意取出一个球,求其重量大于其编号的概率;(2)假如不放回的任意取出2个球,求它们重量相等的概率.解(1)若编号为n的球的重量大于其编号.则n2-6n+12>n,即n2-7n+12>0.解得n<3或n>4.∴n=1,2,5,6.∴从袋中任意取出一个球,其重量大于其编号的概率P=46=23.(2)不放回的任意取出2个球,这两个球编号的全部可能情形共有C26=15种.设编号分别为m与n(m,n∈{1,2,3,4,5,6},且m≠n)球的重量相等,则有m2-6m+12=n2-6n+12,即有(m-n)(m+n-6)=0.∴m=n(舍去)或m+n=6.满足m+n=6的情形为(1,5),(2,4),共2种情形.由古典概型,所求大事的概率为2 15.14.某省试验中学共有特级老师10名,其中男性6名,女性4名,现在要从中抽调4名特级老师担当青年老师培训班的指导老师,由于工作需要,其中男老师甲和女老师乙不能同时被抽调.(1)求抽调的4名老师中含有女老师丙,且4名老师中恰有2名男老师、2名女老师的概率;(2)若抽到的女老师的人数为ξ,求P(ξ≤2).解由于男老师甲和女老师乙不能同时被抽调,所以可分以下两种状况:①若甲和乙都不被抽调,有C48种方法;②若甲和乙中只有一人被抽调,有C12C38种方法,故从10名老师中抽调4人,且甲和乙不同时被抽调的方法总数为C48+C12C38=70+112=182.这就是基本大事总数.(1)记大事“抽调的4名老师中含有女老师丙,且恰有2名男老师,2名女老师”为A,由于含有女老师丙,所以再从女老师中抽取一人,若抽到的是女老师乙,则男老师甲不能被抽取,抽调方法数是C25;若女老师中抽到的不是乙,则女老师的抽取方法有C12种,男老师的抽取方法有C26种,抽调的方法数是C12C26.故随机大事“抽调的4名老师中含有女老师丙,且4名老师中恰有2名男老师、2名女老师”含有的基本大事的个数是C25+C12C26=40.依据古典概型概率的计算公式得P(A)=40182=2091.(2)ξ的可能取值为0,1,2,3,4,所以P(ξ≤2)=1-P(ξ>2)=1-P(ξ=3)-P(ξ=4),若ξ=3,则选出的4人中,可以含有女老师乙,这时取法为C23C15种,也可以不含女老师乙,这时有C33C16种,故P(ξ=3)=C23C15+C33C16182=21182=326;若ξ=4,则选出的4名老师全是女老师,必含有乙,有C44种方法,故P(ξ=4)=C44182=1182,于是P(ξ≤2)=1-21182-1182=160182=8091.。
姓名,年级:时间:第五节古典概型与几何概型2019考纲考题考情1.古典概型(1)基本事件的特点①任何两个基本事件是互斥的。
②任何事件(除不可能事件)都可以表示成基本事件的和.(2)古典概型的定义具有以下两个特点的概率模型称为古典概率模型,简称古典概型。
(3)古典概型的概率公式P(A)=错误!。
2.几何概型(1)几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,那么称这样的概率模型为几何概率模型,简称几何概型.(2)几何概型的两个基本特点(3)几何概型的概率公式P(A)=错误!.1.古典概型中的基本事件都是互斥的,确定基本事件的方法主要有列举法、列表法与树状图法。
2.概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=∅,即A,B互斥时,P(A ∪B)=P(A)+P(B),此时P(A∩B)=0。
3.几何概型的基本事件的个数是无限的,古典概型中基本事件的个数是有限的,前者概率的计算与基本事件的区域长度(面积或体积)的大小有关,而与形状和位置无关。
4.几何概型中,线段的端点、图形的边框是否包含在事件之内不影响所求结果。
一、走进教材1.(必修3P 127例3改编)掷两颗均匀的骰子,则点数之和为5的概率等于( )A.错误! B 。
错误! C 。
错误! D 。
错误!解析 所有基本事件的个数为6×6=36,点数之和为5的基本事件有(1,4),(2,3),(3,2),(4,1)共4个。
故所求概率为P =错误!=错误!。
故选B 。
答案 B2.(必修3P 140练习T 1改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )解析 如题干选项中各图,各种情况的概率都是其面积比,中奖的概率依次为P (A )=38,P (B )=28,P (C )=错误!,P (D )=错误!.故选A 。
高三数学古典概型试题答案及解析1.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.【答案】A【解析】由题意知本题是一个古典概型,试验发生包含的事件数是种结果,满足条件得事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到,故选A.【考点】古典概型及其概率计算公式.2.甲、乙两人玩一种游戏;在装有质地、大小完全相同,编号分别为1,2,3,4,5,6六个球的口袋中,甲先模出一个球,记下编号,放回后乙再模一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.(1)求甲赢且编号和为8的事件发生的概率;(2)这种游戏规则公平吗?试说明理由.【答案】(1);(2)这种游戏规则是公平的.【解析】(1)设“两个编号和为8”为事件A,计算甲、乙两人取出的数字等可能的结果数,事件A包含的基本事件为(2,6),(3,5),(4,4),(5,3),(6,2)共5个,按古典概型概率的计算公式计算;(2)首先按古典概型计算两人分别获胜的概率,通过比较大小,作出结论.所以这种游戏规则是公平的.试题解析:(1)设“两个编号和为8”为事件A,则事件A包含的基本事件为(2,6),(3,5),(4,4),(5,3),(6,2)共5个,又甲、乙两人取出的数字共有6×6=36(个)等可能的结果,故 6分(2)这种游戏规则是公平的. 7分设甲胜为事件B,乙胜为事件C,则甲胜即两编号和为偶数所包含的基本事件数有18个:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)所以甲胜的概率,乙胜的概率= 11分所以这种游戏规则是公平的. 12分【考点】古典概型概率的计算.3.(本小题满分12分)一个盒子里装有三张卡片,分别标记有数字,,,这三张卡片除标记的数字外完全相同。
& 鑫达捷致力于精品文档 精心制作仅供参考 &3.2.1古典概型A 组一、选择题1.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是( ) A.41 B.21 C.81 D.无法确定 2.下列概率模型中,古典概型的个数为( )(1)从区间[1,10]内任取一个数,求取到1的概率;(2)从1,2,…,9,10中任取一个整数,求取到1的概率;(3)向一个正方形ABCD 内任意投一点P ,求点P 刚好与点A 重合的概率;(4)向上抛掷一枚质地不均匀的硬币,求出现反面朝上的概率.A .1B .2C .3D .43.将一枚质地均匀的硬币连掷4次,出现“至少两次正面向上”的概率为( )A .14B .34C .38D .11164.有五条线段长度分别为1,3,5,7,9,从这5条线段中任取3条,则所取3条线段能构成一个三角形的概率为( ) A.101 B.103 C.21 D.107 5.若连续抛掷两次骰子得到的点数分别为m ,n ,则点P (m ,n )在直线x +y =4上的概率是( ) A. 13 B. 14 C. 16 D. 1126.某省举行的一次民歌大赛中,全省六个地区各选送两名歌手参赛,现从这12名歌手中选出4名优胜者,则选出的4名优胜者中恰有两人是同一地区送来的歌手的概率是( ) A.883 B.64165 C. 1633 D.6117.在正四面体的6条棱中随机抽取2条,则其2条棱互相垂直的概率为( )A .43B .32C .51D .31 8.记,a b 分别是投掷两次骰子所得的数字,则方程220x ax b -+=有两个不同实根的概率为( )A .518B .14C .310D .910二、填空题9.分别写有数字1,2,3,4的4张卡片,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率是__________.10.把一枚硬币向上连抛10次,则正、反两面交替出现的概率是 .11.某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课个1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为 (用鑫达捷& 鑫达捷致力于精品文档 精心制作仅供参考 &鑫达捷数字作答).12.如图,沿田字型的路线从A 往N 走,且只能向右或向下走,随机地选一种走法,则经过点C 的概率是 .三、解答题13.学校在开展学雷锋活动中,从高二甲乙两班各选3名学生参加书画比赛,其中高二甲班选出了1女2男,高二乙班选出了1男2女。
12.2 古典概型一、选择题1.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次5点向上的概率是( )A.5216B.25216C.31216D.91216解析 抛掷3次,共有6×6×6=216个事件.一次也不出现5,则每次抛掷都有5种可能,故一次也未出现5的事件总数为5×5×5=125.于是没有出现一次5点向上的概率P =125216,所求的概率为1-125216=91216. 答案 D2. 先后掷两次正方体骰子(骰子的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为,m n ,则mn 是奇数的概率是( )A. 12B. 13C. 14D. 16答案 C3.甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( )A.318B.418C.518D.618解析 正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个等可能的基本事件.两条直线相互垂直的情况有5种(4组邻边和对角线),包括10个基本事件,所以概率等于518. 答案 C4.连续抛掷2颗骰子,则出现朝上的点数之和等于6的概率为( ).A.536B.566C.111D.511解析 设“朝上的点数之和等于6”为事件A ,则P (A )=536. 答案 A5.从1,2,3,4,5,6六个数中任取2个数,则取出的两个数不是连续自然数的概率是( ).A.35B.25C.13D.23解析 取出的两个数是连续自然数有5种情况,则取出的两个数不是连续自然数的概率P =1-515=23. 答案 D6.某种饮料每箱装6听,其中有4听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是( ).A.115B.35C.815D.1415解析 从“6听饮料中任取2听饮料”这一随机试验中所有可能出现的基本事件共有15个,而“抽到不合格饮料”含有9个基本事件,所以检测到不合格饮料的概率为P =915=35. 答案 B7.一块各面均涂有油漆的正方体被锯成1 000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个正方体其三面涂有油漆的概率是( ).A.112B.110C.325D.1125解析 小正方体三面涂有油漆的有8种情况,故所求其概率为:81 000=1125. 答案 D二、填空题8.有一质地均匀的正四面体,它的四个面上分别标有1,2,3,4四个数字.现将它连续抛掷3次,其底面落于桌面,记三次在正四面体底面的数字和为S ,则“S 恰好为4”的概率为________.解析 本题是一道古典概型问题.用有序实数对(a ,b ,c )来记连续抛掷3次所得的3个数字,总事件中含4×4×4=64个基本事件,取S =a +b +c ,事件“S 恰好为4”中包含了(1,1,2),(1,2,1),(2,1,1)三个基本事件,则P (S 恰好为4)=364. 答案 3649. 现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 . 解析 组成满足条件的数列为:.19683,6561,2187,729,243,81,27.9,3,1-----从中随机取出一个数共有取法10种,其中小于8的取法共有6种,因此取出的这个数小于8的概率为53.510.甲、乙二人参加普法知识竞答,共有10个不同的题目,其中6个选择题,4个判断题,甲、乙二人依次各抽一题,则甲、乙两人中至少有一人抽到选择题的概率是________. 解析 方法1:设事件A :甲乙两人中至少有一人抽到选择题.将A 分拆为B :“甲选乙判”,C :“甲选乙选”,D :“甲判乙选”三个互斥事件,则P (A )=P (B )+P (C )+P (D ).而P (B )=C 16C 14C 110C 19,P (C )=C 16C 15C 110C 19,P (D )=C 14·C 16C 110C 19, ∴P (A )=2490+3090+2490=7890=1315. 方法2:设事件A :甲乙两人中至少有一人抽到选择题,则其对立事件为A :甲乙两人均抽判断题.∴P (A )=C 14C 13C 110C 19=1290,∴P (A )=1-1290=7890=1315. 故甲、乙两人中至少有一人抽到选择题的概率为1315. 答案 131511.先后两次抛掷同一个骰子,将得到的点数分别记作a ,b ,与5分别作为三条线段的长,则这三条线段能够构成等腰三角形的概率是________.解析 基本事件的总数是6×6=36,当a =1时,b =5符合要求,有1种情况;当a =2时,b =5符合要求,有1种情况;当a =3时,b =3,5符合要求,有2种情况;当a =4时,b =4,5符合要求,有2种情况;当a =5时,b =1,2,3,4,5,6均符合要求,有6种情况;当a =6时,b =5,6符合要求,有2种情况.故所求其概率为:1436=718. 答案 71812.将一颗骰子投掷两次分别得到点数a ,b ,则直线ax -by =0与圆(x -2)2+y 2=2相交的概率为________.解析 圆心(2,0)到直线ax -by =0的距离d =|2a |a 2+b 2,当d <2时,直线与圆相交,则有d =|2a |a 2+b 2<2,得b >a ,满足题意的b >a ,共有15种情况,因此直线ax -by =0与圆(x -2)2+y 2=2相交的概率为1536=512.12三、解答题13.从某小组的2名女生和3名男生中任选2人去参加一项公益活动.(1)求所选2人中恰有一名男生的概率;(2)求所选2人中至少有一名女生的概率.解析 设2名女生为a 1,a 2,3名男生为b 1,b 2,b 3,从中选出2人的基本事件有:(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,b 1),(a 2,b 2),(a 2,b 3),(b 1,b 2),(b 1,b 3),(b 2,b 3),共10种.(1) 设“所选2人中恰有一名男生”的事件为A ,则A 包含的事件有:(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,b 1),(a 2,b 2),(a 2,b 3),共6种,∴P (A )=610=35, 故所选2人中恰有一名男生的概率为35. (2)设“所选2人中至少有一名女生”的事件为B ,则B 包含的事件有:(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,b 1),(a 2,b 2),(a 2,b 3),共7种,∴P (B )=710, 故所选2人中至少有一名女生的概率为710. 14.有编号为A 1,A 2,…,A 10的10个零件,测量其直径(单位:cm),得到下面数据:(1)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(2)从一等品零件中,随机抽取2个.①用零件的编号列出所有可能的抽取结果;②求这2个零件直径相等的概率.解析 (1)由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A ,则P (A )=610=35. (2)①一等品零件的编号为A 1,A 2,A 3,A 4,A 5,A 6.从这6个一等品零件中随机抽取2个,所有可能的结果有:{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共有15种.②“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B )的所有可能结果有:{A 1,A 4},{A 1,A 6},{A 4,A 6},{A 2,A 3},{A 2,A 5},{A 3,A 5},共有6种.所以P (B )=615=25. 15.设平面向量a m =(m,1),b n =(2,n ),其中m ,n ∈{1,2,3,4}.(1)请列出有序数组(m ,n )的所有可能结果;(2)若“使得a m ⊥(a m -b n )成立的(m ,n )”为事件A ,求事件A 发生的概率.解析 (1)有序数组(m ,n )的所有可能结果为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.(2)由a m ⊥(a m -b n ),得m 2-2m +1-n =0,即n =(m -1)2,由于m ,n ∈{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个,又基本事件的总数为16,故所求的概率为P (A )=216=18. 16.新华中学高三(1)班共有学生50名,其中男生30名、女生20名,采用分层抽样的方法选出5人参加一个座谈会.(1)求某同学被抽到的概率以及选出的男、女同学的人数;(2)座谈会结束后,决定选出2名同学作典型发言,方法是先从5人中选出1名同学发言,发言结束后再从剩下的同学中选出1名同学发言,求选出的2名同学中恰好有1名为女同学的概率.解析 (1)某个同学被抽到的概率P =550=110,根据分层抽样方法,应抽取男同学3人,女同学2人.(2)记选出的3名男同学为A 1,A 2,A 3,2名女同学为B 1,B 2.则基本事件是:(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 2,A 1),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 3,A 1),(A 3,A 2),(A 3,B 1),(A 3,B 2),(B 1,A 1),(B 1,A 2)(B 1,A 3),(B 1,B 2),(B 2,A 1),(B 2,A 2)(B 2,A 3),(B 2,B 1).基本事件的总数为20个,其中满足“恰好有1名为女同学”的基本事件有12个,故所求的概率P =1220=35. 【点评】 近几年新课标高考对概率与统计的交汇问题考查次数较多.解决此类题目步骤主要有:,第一步:根据题目要求求出数据 有的用到分层抽样、有的用到频率分布直方图等知识 ;,第二步:列出所有基本事件,计算基本事件总数;,第三步:找出所求事件的个数;,第四步:根据古典概型公式求解;,第五步:明确规范表述结论.。
高考数学复习第九单元第47讲古典概型练习文(含解析)新人教A版第47讲古典概型1.已知集合A={1,2,3,4,5,6},B={3,4,5,6,7,8},在集合A∪B中任取一个元素,则该元素是集合A∩B中的元素的概率为()A. B.C. D.2.有两个男生和两个女生一起乘车去抗日战争纪念馆参加志愿者服务,他们依次上车,则第二个上车的是女生的概率为()A. B.C. D.3.设m是甲抛掷一个骰子得到的点数,则方程3x2+mx+1=0有实数根的概率为()A. B.C. D.4.[2018·湖北七市联考]从数字1,2,3,4,5中随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于12的概率为()A.B.C.D.5.同时投掷大小不同的两个骰子,所得点数之和为5的概率是.6.[2018·哈尔滨联考]已知x,y∈{1,2,3,4,5,6},且x+y=7,则y≥的概率为()A. B.C. D.7.[2018·海南中学月考]若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则关于x的一元二次方程x2+2ax+b2=0有实根的概率是()A. B. C. D.8.在正六边形的6个顶点中随机选择4个顶点构成四边形,则构成的四边形是梯形的概率为()A. B. C. D.9.在平面直角坐标系xOy中,不等式组表示的平面区域为W,从W中随机取点M(x,y).若x∈Z,y∈Z,则点M位于第二象限的概率为()A. B.C.1-D.1-10.[2018·上饶模拟]从集合{2,4,8}中随机选取一个数m,则方程+=1表示离心率为的椭圆的概率为()A. B. C. D.111.[2018·河南中原名校联考]从1,3,5,7,9中任取3个不同的数字分别作为a,b,c(a<b<c),则a+b>c的概率是.12.[2018·绵阳涪城区模拟]在一场比赛中,某篮球队有9名队员上场比赛,其得分的茎叶图如图K47-1所示,从得分超过10分的队员中任取2名,则这2名队员的得分之和超过35分的概率为.图K47-113.[2018·太原模拟]某人在微信群中发了一个7元的“拼手气”红包,被甲、乙、丙三人抢完,若三人均领到整数元,且每人至少领到1元,则甲领取的钱数不少于其他任何人的概率是.14.[2018·玉溪模拟]将一颗骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为.15.记连续抛掷两次骰子得到的点数分别为m,n,向量a=(m,n)与向量b=(1,0)的夹角为α,则α∈的概率为()A.B.C. D.16.[2018·湖北联考]据《孙子算经》中记载,中国古代诸侯的等级从低到高分为男、子、伯、候、公,共五级.现有每个级别的诸侯各一人,五人要把80个橘子分完且每人都要分到橘子,级别每高一级就多分m个(m为正整数),若按这种方法分橘子,“公”恰好分得30个橘子的概率是()A. B. C. D.课时作业(四十七)1.D[解析]∵A∪B={1,2,3,4,5,6,7,8},A∩B={3,4,5,6},∴在集合A∪B中任取一个元素,则该元素是集合A∩B中的元素的概率为=.2.B[解析] 设两男两女分别为a1,a2,b1,b2,只考虑第一个和第二个上车的人,则基本事件分别是(a1,a2),(a1,b1),(a1,b2),(a2,a1),(a2,b1),(a2,b2),(b1,a2),(b1,a1),(b1,b2),(b2,a2),(b2,a1),(b2,b1),基本事件总数为12,其中第二个上车的是女生的基本事件数为6,所以所求概率P=,故选B.3.C[解析] 由题意可知m的所有可能取值为1,2,3,4,5,6,又由Δ=m2-12≥0,得m可取4,5,6,所以所求概率P==.4.A[解析] 从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,基本事件总数为53=125.由2,5,5能组成3个满足条件的三位数;由4,4,4能组成1个满足条件的三位数;由3,4,5能组成6个满足条件的三位数.故满足条件的三位数共有3+1+6=10(个),∴其各位数字之和等于12的概率P==.5.[解析] 同时投掷大小不同的两个骰子,共有36种结果,所得点数之和为5的有(1,4),(2,3),(4,1),(3,2),共4种结果,由古典概型概率计算公式得所得点数之和为5的概率P==.6.B[解析] 由题x,y所组成的(x,y)包含的基本事件有(1,6),(2,5),(3,4),(4,3),(5,2)(6,1),满足题意的有(1,6),(2,5),(3,4),(4,3),故y≥的概率为=.7.B[解析] 设事件A为“关于x的一元二次方程x2+2ax+b2=0有实根”,当a≥0,b≥0时,方程x2+2ax+b2=0有实根的充要条件为Δ=4a2-4b2=4(a2-b2)≥0,即a≥b,a,b所组成的(a,b)包含的基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).事件A包含(0,0),(1,0),(1,1),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)9个基本事件,∴事件A发生的概率P(A)==.8.B[解析] 如图所示,在正六边形ABCDEF的6个顶点中随机选择4个顶点,有ABCD,ABCE,ABCF,ABDE,ABDF,ABEF,ACDE,ACDF,ACEF,ADEF,BCDE,BCDF,BCEF,BDEF,CDEF,共15种选法.其中4个顶点构成的四边形是梯形的有ABEF,BCDE,ABCF,CDEF,ABCD,ADEF,共6种,故所求概率P==.9.A[解析] 画出不等式组表示的平面区域(图略),平面区域内的整数点有(-1,0),(-1,1),(-1,2),(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),共12个.其中位于第二象限的有(-1,1),(-1,2),共2个,所以所求概率P=.10.C[解析] 从集合{2,4,8}中随机选取一个数m,则m=2时,椭圆方程为+=1,离心率e===;m=4时,方程+=1表示圆;m=8时,椭圆方程为+=1,离心率e===.故方程+=1表示离心率为的椭圆的概率为.11.[解析] 从1,3,5,7,9中任取3个不同的数字a,b,c(a<b<c),则(a,b,c)的所有可能结果有(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9),(5,7,9),共10种.其中,满足条件a+b>c的结果有(3,5,7),(3,7,9),(5,7,9),共3种.故所求概率P=.12.[解析] 由茎叶图知,得分超过10分的队员有5名,从中任取2名,所有的基本事件是(12,14),(12,15),(12,20),(12,22),(14,15),(14,20),(14,22),(15,20),(15,22),(20,22)共10个.满足这2名队员的得分之和超过35分的事件有(14,22),(15,22),(20,22),共3个,则所求的概率P=.13.[解析] 由题意得(甲、乙、丙)所有可能的结果有(1,1,5),(1,5,1),(5,1,1),(1,2,4),(1,4,2),(2,1,4),(2,4,1),(4,1,2),(4,2,1),(1,3,3) ,(3,1,3),(3,3,1),(2,2,3),(2,3,2),(3,2,2),共15种.其中甲领取的钱数不少于其他任何人的有(5,1,1),(4,1,2),(4,2,1),(3,1,3),(3,3,1),(3,2,2),共6种,所以所求概率为=.14.[解析]∵骰子连续抛掷三次,它落地时向上的点数依次成等差数列,∴落地时向上的点数若不同,则为1,2,3或1,3,5或2,3,4或2,4,6或3,4,5或4,5,6.故共有6×2=12(种)情况;若全相同,则有6种情况.∴共有18种情况.将一颗骰子连续抛掷三次,它落地时向上的点数有63=216(种)情况,∴落地时向上的点数依次成等差数列的概率为=.15.B[解析] 依题意,(m,n)共有36种可能的情况,向量a=(m,n)与向量b=(1,0)的夹角α∈0,,则可知n<m.(m,n)可根据n的具体取值进行分类计数:当n=1时,m有5种不同的取值情况;当n=2时,m有4种不同的取值情况;当n=3时,m有3种不同的取值情况;当n=4时,m有2种不同的取值情况;当n=5时,m有1种取值情况.共有1+2+3+4+5=15(种),所以所求概率为=.16.B[解析] 由题意可知等级从低到高的5个诸侯所分的橘子个数组成公差为m的等差数列,不妨设为{a n}.设“男”分到的橘子个数为a1,其前n项和为S n,则S5=5a1+×m=80,即a1+2m=16,且a1,m均为正整数,若a1=2,则m=7,此时a5=30;若a1=4,m=6,此时a5=28;若a1=6,m=5,此时a5=26;若a1=8,m=4,此时a5=24;若a1=10,m=3,此时a5=22;若a1=12,m=2,此时a5=20;若a1=14,m=1,此时a5=18.∴“公”恰好分得30个橘子的概率为.。
第4讲 古典概型一、选择题1.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次5点向上的概率是( ) A.5216 B.25216 C.31216 D.91216 解析 抛掷3次,共有6×6×6=216个事件.一次也不出现5,则每次抛掷都有5种可能,故一次也未出现5的事件总数为5×5×5=125.于是没有出现一次5点向上的概率P =125216,所求的概率为1-125216=91216. 答案 D2.一个袋子中有5个大小相同的球,其中有3个黑球与2个红球,如果从中任取两个球,则恰好取到两个同色球的概率是 ( ).A.15B.310C.25D.12解析 基本事件有C 25=10个,其中为同色球的有C 23+C 22=4个,故所求概率为410=25. 答案 C3.甲、乙两人各写一张贺年卡,随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是( ).A.12B.13C.14D.15解析 (甲送给丙,乙送给丁),(甲送给丁,乙送给丙),(甲、乙都送给丙),(甲、乙都送给丁),共四种情况,其中甲、乙将贺年卡送给同一人的情况有两种,所以P =24=12. 答案 A4.甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( )A.318 B.418 C.518D.618解析 正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个等可能的基本事件.两条直线相互垂直的情况有5种(4组邻边和对角线),包括10个基本事件,所以概率等于518.答案 C5.一块各面均涂有油漆的正方体被锯成1 000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个正方体其三面涂有油漆的概率是( ).A.112B.110C.325D.1125解析 小正方体三面涂有油漆的有8种情况,故所求其概率为:81 000=1125.答案 D6.将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a ,放回后,乙从此口袋中再摸出一个小球,其号码为b ,则使不等式a -2b +4<0成立的事件发生的概率为( ).A.18B.316C.14D.12解析 由题意知(a ,b )的所有可能结果有4×4=16个.其中满足a -2b +4<0的有(1,3),(1,4),(2,4),(3,4),共4个,所以所求概率为14. 答案 C 二、填空题7.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为________. 解析 由题意得到的P (m ,n )有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6个,在圆x 2+y 2=9的内部的点有(2,1),(2,2),所以概率为26=13.答案 138. 现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 .解析 组成满足条件的数列为:.19683,6561,2187,729,243,81,27.9,3,1-----从中随机取出一个数共有取法10种,其中小于8的取法共有6种,因此取出的这个数小于8的概率为53.答案 539.甲、乙二人参加普法知识竞答,共有10个不同的题目,其中6个选择题,4个判断题,甲、乙二人依次各抽一题,则甲、乙两人中至少有一人抽到选择题的概率是________.解析 方法1:设事件A :甲乙两人中至少有一人抽到选择题.将A 分拆为B :“甲选乙判”,C :“甲选乙选”,D :“甲判乙选”三个互斥事件, 则P (A )=P (B )+P (C )+P (D ).而P (B )=C 16C 14C 110C 19,P (C )=C 16C 15C 110C 19,P (D )=C 14·C 16C 110C 19,∴P (A )=2490+3090+2490=7890=1315. 方法2:设事件A :甲乙两人中至少有一人抽到选择题,则其对立事件为A :甲乙两人均抽判断题.∴P (A )=C 14C 13C 110C 19=1290,∴P (A )=1-1290=7890=1315.故甲、乙两人中至少有一人抽到选择题的概率为1315. 答案131510.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是________(结果用最简分数表示).解析 根据条件求出基本事件的个数,再利用古典概型的概率计算公式求解.因为每人都从三个项目中选择两个,有(C 23)3种选法,其中“有且仅有两人选择的项目完全相同”的基本事件有C23C13C12个,故所求概率为C23C13C12 (C23)3=23.答案2 3三、解答题11.某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.解(1)由分层抽样的定义知,从小学中抽取的学校数目为6×2121+14+7=3;从中学中抽取的学校数目为6×1421+14+7=2;从大学中抽取的学校数目为6×721+14+7=1.故从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)①在抽取到的6所学校中,3所小学分别记为A1,A2,A3,2所中学分别记为A4,A5,1所大学记为A6,则抽取2所学校的所有可能结果为(A1,A2),(A1,A3),(A1,A4),(A1,A5),(A1,A6),(A2,A3),(A2,A4),(A2,A5),(A2,A6),(A3,A4),(A3,A5),(A3,A6),(A4,A5),(A4,A6),(A5,A6),共15种.②从6所学校中抽取的2所学校均为小学(记为事件B)的所有可能结果为(A1,A2),(A1,A3),(A2,A3),共3种.所以P(B)=315=15.12.从某小组的2名女生和3名男生中任选2人去参加一项公益活动.(1)求所选2人中恰有一名男生的概率;(2)求所选2人中至少有一名女生的概率.解析设2名女生为a1,a2,3名男生为b1,b2,b3,从中选出2人的基本事件有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3),共10种.(1) 设“所选2人中恰有一名男生”的事件为A,则A包含的事件有:(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),共6种,∴P(A)=610=35,故所选2人中恰有一名男生的概率为3 5 .(2)设“所选2人中至少有一名女生”的事件为B,则B包含的事件有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),共7种,∴P(B)=7 10,故所选2人中至少有一名女生的概率为710.13.袋内装有6个球,这些球依次被编号为1,2,3,…,6,设编号为n的球重n2-6n+12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).(1)从袋中任意取出一个球,求其重量大于其编号的概率;(2)如果不放回的任意取出2个球,求它们重量相等的概率.解(1)若编号为n的球的重量大于其编号.则n2-6n+12>n,即n2-7n+12>0.解得n<3或n>4.∴n=1,2,5,6.∴从袋中任意取出一个球,其重量大于其编号的概率P=46=23.(2)不放回的任意取出2个球,这两个球编号的所有可能情形共有C26=15种.设编号分别为m与n(m,n∈{1,2,3,4,5,6},且m≠n)球的重量相等,则有m2-6m+12=n2-6n+12,即有(m-n)(m+n-6)=0.∴m=n(舍去)或m+n=6.满足m+n=6的情形为(1,5),(2,4),共2种情形.由古典概型,所求事件的概率为2 15.14.某省实验中学共有特级教师10名,其中男性6名,女性4名,现在要从中抽调4名特级教师担任青年教师培训班的指导教师,由于工作需要,其中男教师甲和女教师乙不能同时被抽调.(1)求抽调的4名教师中含有女教师丙,且4名教师中恰有2名男教师、2名女教师的概率;(2)若抽到的女教师的人数为ξ,求P(ξ≤2).解由于男教师甲和女教师乙不能同时被抽调,所以可分以下两种情况:①若甲和乙都不被抽调,有C48种方法;②若甲和乙中只有一人被抽调,有C12C38种方法,故从10名教师中抽调4人,且甲和乙不同时被抽调的方法总数为C48+C12C38=70+112=182.这就是基本事件总数.(1)记事件“抽调的4名教师中含有女教师丙,且恰有2名男教师,2名女教师”为A,因为含有女教师丙,所以再从女教师中抽取一人,若抽到的是女教师乙,则男教师甲不能被抽取,抽调方法数是C25;若女教师中抽到的不是乙,则女教师的抽取方法有C12种,男教师的抽取方法有C26种,抽调的方法数是C12C26.故随机事件“抽调的4名教师中含有女教师丙,且4名教师中恰有2名男教师、2名女教师”含有的基本事件的个数是C25+C12C26=40.根据古典概型概率的计算公式得P(A)=40182=2091.(2)ξ的可能取值为0,1,2,3,4,所以P(ξ≤2)=1-P(ξ>2)=1-P(ξ=3)-P(ξ=4),若ξ=3,则选出的4人中,可以含有女教师乙,这时取法为C23C15种,也可以不含女教师乙,这时有C33C16种,故P(ξ=3)=C23C15+C33C16182=21182=326;若ξ=4,则选出的4名教师全是女教师,必含有乙,有C44种方法,故P(ξ=4)=C44182=1182,于是P(ξ≤2)=1-21182-1182=160182=8091.。