工业冷却水对不锈钢换热器腐蚀的研究及对策
- 格式:docx
- 大小:117.24 KB
- 文档页数:15
换热器腐蚀分析及工艺对策换热器是一种常见的工业设备,用于进行热传递。
由于换热器的工作环境通常会导致其发生腐蚀,这会严重影响其性能和寿命。
进行换热器腐蚀分析,并制定相应的工艺对策,是确保换热器正常运行的重要工作。
换热器腐蚀分析需要从多个方面进行,首先是对工作环境进行分析。
换热器常用于化工、石油、能源等领域,在这些工作环境中存在各种介质,包括腐蚀性介质。
分析介质的成分、浓度和温度等参数,对腐蚀机理进行研究,有助于确定腐蚀形式和程度。
需要对换热器材料进行分析。
不同材料对不同介质的腐蚀性能不同,选择合适的材料可以有效地减轻腐蚀问题。
常见的换热器材料有不锈钢、钛合金、镍合金等,不同材料的耐腐蚀性能各不相同,需要对其进行评估和选择。
还需要对换热器的设计和制造工艺进行分析。
换热器的结构和制造工艺对腐蚀行为有重要影响。
换热器的焊接缝和孔隙等缺陷会导致腐蚀介质进入材料内部,从而加剧腐蚀。
改进焊接工艺,提高焊接质量,可以减少腐蚀产生的可能性。
根据分析结果,可以制定相应的工艺对策,以减少换热器的腐蚀问题。
具体对策包括以下几方面:1. 选择合适的材料。
根据换热器的工作环境和介质性质,选择具有良好耐腐蚀性能的材料,如耐酸不锈钢、钛合金等。
2. 改进设计和制造工艺。
优化换热器的结构和制造工艺,减少焊接缺陷和孔隙,提高焊接质量。
3. 加强防腐措施。
如对换热器进行防腐处理,使用防腐涂层或插管方式,减少腐蚀介质对材料的直接接触。
4. 定期检查和维护。
定期对换热器进行检查和维护,及时发现和处理腐蚀问题,防止其进一步恶化。
换热器腐蚀分析及工艺对策是确保换热器正常运行的重要工作。
通过对工作环境、材料和工艺的分析,制定合理的对策,可以最大程度地减轻腐蚀问题,延长换热器的使用寿命,提高工作效率。
循环冷却水换热器结垢及腐蚀的原因及处理措施1.水中硬度高:水中含有大量以碳酸钙和碳酸镁为主的硬度成分,当水循环过程中温度升高后,硬度成分就会析出形成垢。
处理措施:使用软水,通过水处理设备如软化器或反渗透系统来减少水中的硬度成分。
2.水中含有有机物:循环冷却水中含有有机物,这些有机物在温度变化条件下会发生化学反应,生成沉淀物。
处理措施:使用适当的水处理试剂来稳定有机物,并保持水体的清洁。
3.循环冷却水中含有微生物:水中的微生物如藻类、细菌和真菌会在换热器内壁形成生物膜,进而导致结垢。
处理措施:使用杀菌剂来抑制微生物的生长,定期清洗换热器。
4.放热水性质变化:放热水循环过程中,温度升高,水中盐类溶解度增加,导致结垢。
处理措施:控制水质中的含盐量,定期检测水质。
1.氧腐蚀:水中含有氧气,当水接触金属表面时,氧气可以与金属发生氧化反应,导致金属腐蚀。
处理措施:使用氧化剂来控制水中的氧含量,或者使用缓蚀剂来形成保护膜。
2.酸腐蚀:循环冷却水中可能含有酸性物质,如硫酸、盐酸等,这些酸性物质会导致金属腐蚀。
处理措施:控制水质的酸性物质含量,使用缓蚀剂来形成保护膜。
3.碱腐蚀:循环冷却水中可能含有碱性物质,如氢氧化钠、氢氧化钙等,这些碱性物质会导致金属腐蚀。
处理措施:控制水质的碱性物质含量,使用缓蚀剂来形成保护膜。
4.废气腐蚀:有些工业过程中会产生含有腐蚀性气体的废气,这些废气经过冷却后溶解在水中,导致金属腐蚀。
处理措施:使用除气设备来除去废气中的腐蚀性气体,使用缓蚀剂来形成保护膜。
对于循环冷却水换热器结垢和腐蚀问题的处理措施主要有以下几点:1.定期检测和监测换热器水质,包括PH值、硬度、溶解氧等指标,并根据结果采取相应措施。
2.定期清洗换热器内部,使用适当的清洗剂和工艺来去除结垢和沉积物。
3.定期对换热器进行维护和检修,包括清洗管道、更换损坏的部件等。
4.使用适当的水处理设备,如软化器、反渗透系统等来处理水质。
循环冷却水换热器结垢及腐蚀的原因及处理措施化工生产中各类介质的热量交换均离不开冷却水换热器这一重要的工业设备,大多数冷却水换热器在使用过程中存在结垢堵塞和腐蚀问题,常出现因换热不够而被迫停车清洗甚至导致换热器的报废更换,严重时会影响生产的安全稳定运行,针对冷却水换热器结垢和腐蚀的原因,阐述了常见的结垢和腐蚀的处理措施。
1、结垢的原因A、悬浮于循环水中的固体微粒附着在换热器表面,一般由颗粒细小的泥沙、尘土、不溶性盐类、胶状物、有无等组成,当含有这些物质的水流经换热器表面时,容易形成污垢沉积物,造成垢下腐蚀,为某些细菌生存和繁殖创造了条件。
当防腐措施不当时,最终导致换热表面腐蚀穿孔泄漏。
B、一般生物污垢均指微生物污垢,循环水系统中最常见的微生物主要是铁细菌、真菌,铁细菌能见溶于水中的Fe2+转化为不溶于水的Fe2O3的水合物,在水中产生大量铁氧化物沉淀以及建立氧浓度差腐蚀电池,腐蚀金属。
C、结晶污垢在冷却循环水中,随着水分的蒸发,水中溶解的盐类(重碳酸盐、硫酸盐、硅酸盐)的浓度升高,部分盐类因过饱和而析出,而某些盐类因为则因通过换热器表面受热分解形成沉淀,这些盐类有无机盐组成,结晶致密,被称为结晶水垢。
D、腐蚀污垢具有腐蚀性的流体或流体中含有腐蚀性杂质对换热器表面腐蚀而产生的污垢,腐蚀程度取决于流体中的成分、温度及被处理流体中的PH等因素,金属腐蚀主要是温度在40~50℃的氧腐蚀,而合成冷排工作温度40~60℃,正好跟金属发生氧腐蚀的温度相吻合,加之循环水的PH值长期偏低,一般都在PH至8.0以下,更容易形成金属腐蚀。
2、腐蚀原因A、电化学腐蚀是金属最常见的一种腐蚀形式当冷却水系统内部的金属长期处于水溶液中或潮湿的大气中,金属表面会形成一种微电池,也称腐蚀电池。
阳极上发生氧化反应,使金属溶解,阴极上发生还原反应,使得冷却水系统内金属腐蚀不断进行,进而威胁设备的安全运行。
B、主要是与冷却水系统循环水等介质接触的金属表面上易引起生物腐蚀,生物腐蚀的原因是由于生物体会以有机物缓释剂为食物,生物代谢产生酸,破坏金属耐腐蚀保护层,生物新陈代谢消耗氧,造成金属表面O2浓度不均而引起氧浓差腐蚀3、处理措施3.1、降低介质腐蚀性可以通过除去介质中的溶解氧和氧化剂可以控制应力腐蚀,降低介质中氯离子的浓度,严格控制介质中硫含量也是控制应力腐蚀的有效措施。
换热器腐蚀分析及工艺对策摘要:热交换技术在工业中得到了广泛应用,但在实际运行过程中,换热器往往会出现腐蚀现象,影响其正常运行和使用寿命。
本文针对换热器腐蚀问题进行了分析,并提出了相应的工艺对策,以延长换热器的使用寿命。
一、引言换热器是工业生产中常见的热交换设备,广泛应用于电力、化工、冶金等行业。
换热器的主要作用是实现不同流体之间的能量交换,同时也起到冷却或加热的作用。
在使用过程中,换热器往往会面临腐蚀的问题,腐蚀会导致换热器损坏、效率下降甚至失效。
对换热器的腐蚀问题进行分析并制定相应的工艺对策是非常必要的。
二、腐蚀类型分析换热器的腐蚀类型主要包括化学腐蚀、电化学腐蚀和微生物腐蚀。
化学腐蚀是指换热器在与腐蚀介质直接接触时发生的化学反应导致金属损坏;电化学腐蚀是指换热器在液体和气体中具有电化学活性时发生的腐蚀;微生物腐蚀主要指由微生物产生的酸、碱、氧化物等物质对金属的腐蚀。
针对不同类型的腐蚀,制定相应的工艺对策能够有效地减少腐蚀对换热器的影响。
三、工艺对策1.选择合适的金属材料不同的金属材料对腐蚀的抵抗能力不同,选择具有良好抗腐蚀性能的金属材料能够有效地减少腐蚀问题。
常用的换热器材料有不锈钢、钛合金、镍基合金等,这些材料具有优良的耐蚀性能,能够在恶劣的工作环境下长期使用。
2.采用涂层技术涂层技术是提高金属材料抗腐蚀性能的常用方法之一。
通过在金属表面涂覆一层耐蚀涂层,能够有效地隔绝金属与腐蚀介质的接触,从而减轻腐蚀的程度。
常用的涂层材料有瓷砖、橡胶、聚合物等,根据具体的工艺要求选择合适的涂层材料。
3.控制操作条件操作条件的控制也是减少换热器腐蚀的重要手段之一。
在化学腐蚀环境中,可以通过控制温度、调节流速、控制PH值等方法来减少腐蚀介质对金属的腐蚀作用。
定期清洗和维护换热器也是降低腐蚀的常用方法。
4.采用防腐措施在设计和制造换热器时,可以采用一些防腐措施来延长换热器的使用寿命。
例如在设计中加入防腐层、防腐涂料等,以提高换热器的耐腐蚀性;在制造过程中采用先进的焊接技术和工艺,以确保焊接接头的质量,减少腐蚀问题。
换热器腐蚀分析及工艺对策换热器是化工生产中常见的设备,其作用是将两种介质进行热量交换,常见的换热器包括管壳式换热器、板式换热器等。
而在工业生产过程中,换热器的腐蚀问题一直是影响设备寿命和安全生产的重要因素。
本文将针对换热器腐蚀问题进行分析,并提出相应的工艺对策,以期提高设备的使用寿命和安全性。
一、换热器腐蚀分析1. 腐蚀原因换热器腐蚀的原因多种多样,主要包括介质腐蚀、金属材料本身的腐蚀以及工艺操作不当引起的腐蚀等。
介质腐蚀是换热器腐蚀的主要原因之一,介质的PH值、含盐量、溶解氧等因素都会导致介质对金属材料的腐蚀。
而金属材料本身的腐蚀也是一个重要因素,不同的金属材料对不同的介质都有不同的耐腐蚀性能。
工艺操作不当也会引起换热器的腐蚀,比如长时间的停机、温度变化过大、流体速度过快等都可能导致换热器的腐蚀。
2. 腐蚀类型根据腐蚀的表面特征和病程,换热器腐蚀可以分为局部腐蚀和均匀腐蚀。
局部腐蚀主要是由于原料液体在介质侵蚀下,金属表面的局部破坏;均匀腐蚀则是由于原料液体对金属表面的整体侵蚀。
还有一些特殊的腐蚀类型,比如应力腐蚀、疲劳腐蚀等。
3. 腐蚀严重性换热器腐蚀严重性是判断腐蚀问题的重要标志之一,腐蚀严重会导致换热器的损坏,甚至造成泄漏等严重后果。
由于腐蚀问题的严重性,因此必须制定相应的防腐策略。
二、换热器腐蚀的工艺对策1. 选用耐腐蚀的材料换热器的材料是影响其耐腐蚀性能的重要因素之一。
在选择换热器材料时,要根据介质的化学性质、PH值、温度、流速等因素进行合理的材料选择。
通常情况下,选择耐腐蚀性能好的材料,比如不锈钢、镍基合金等,可以有效提高换热器的抗腐蚀能力。
2. 精细设计和加工换热器的设计和加工是另一个影响其耐腐蚀性能的重要因素。
在设计和加工过程中,要注意减小金属表面的表面粗糙度,避免死角、焊渣、铲焊等现象的出现,以减少介质在换热器表面的滞留时间和对金属表面的侵蚀。
3. 控制介质的PH值和氧化性控制介质的PH值和氧化性是减少腐蚀的重要手段之一。
循环冷却水换热器结垢及腐蚀的原因及处理措施化工生产中各类介质的热量交换均离不开冷却水换热器这一重要的工业设备,大多数冷却水换热器在使用过程中存在结垢堵塞和腐蚀问题,常出现因换热不够而被迫停车清洗甚至导致换热器的报废更换,严重时会影响生产的安全稳定运行,针对冷却水换热器结垢和腐蚀的原因,阐述了常见的结垢和腐蚀的处理措施。
1、结垢的原因A、悬浮于循环水中的固体微粒附着在换热器表面,一般由颗粒细小的泥沙、尘土、不溶性盐类、胶状物、有无等组成,当含有这些物质的水流经换热器表面时,容易形成污垢沉积物,造成垢下腐蚀,为某些细菌生存和繁殖创造了条件。
当防腐措施不当时,最终导致换热表面腐蚀穿孔泄漏。
B、一般生物污垢均指微生物污垢,循环水系统中最常见的微生物主要是铁细菌、真菌,铁细菌能见溶于水中的Fe2+转化为不溶于水的Fe2O3的水合物,在水中产生大量铁氧化物沉淀以及建立氧浓度差腐蚀电池,腐蚀金属。
C、结晶污垢在冷却循环水中,随着水分的蒸发,水中溶解的盐类(重碳酸盐、硫酸盐、硅酸盐)的浓度升高,部分盐类因过饱和而析出,而某些盐类因为则因通过换热器表面受热分解形成沉淀,这些盐类有无机盐组成,结晶致密,被称为结晶水垢。
D、腐蚀污垢具有腐蚀性的流体或流体中含有腐蚀性杂质对换热器表面腐蚀而产生的污垢,腐蚀程度取决于流体中的成分、温度及被处理流体中的PH等因素,金属腐蚀主要是温度在40~50℃的氧腐蚀,而合成冷排工作温度40~60℃,正好跟金属发生氧腐蚀的温度相吻合,加之循环水的PH值长期偏低,一般都在PH至8.0以下,更容易形成金属腐蚀。
2、腐蚀原因A、电化学腐蚀是金属最常见的一种腐蚀形式当冷却水系统内部的金属长期处于水溶液中或潮湿的大气中,金属表面会形成一种微电池,也称腐蚀电池。
阳极上发生氧化反应,使金属溶解,阴极上发生还原反应,使得冷却水系统内金属腐蚀不断进行,进而威胁设备的安全运行。
B、主要是与冷却水系统循环水等介质接触的金属表面上易引起生物腐蚀,生物腐蚀的原因是由于生物体会以有机物缓释剂为食物,生物代谢产生酸,破坏金属耐腐蚀保护层,生物新陈代谢消耗氧,造成金属表面O2浓度不均而引起氧浓差腐蚀3、处理措施3.1、降低介质腐蚀性可以通过除去介质中的溶解氧和氧化剂可以控制应力腐蚀,降低介质中氯离子的浓度,严格控制介质中硫含量也是控制应力腐蚀的有效措施。
换热器腐蚀分析及工艺对策换热器是工业中常用的设备之一,广泛应用于化工、石油、能源等领域。
由于介质的腐蚀性质不同,换热器往往容易受到腐蚀影响而导致设备的损坏。
进行换热器腐蚀分析并采取相应的工艺对策是非常重要的。
换热器的腐蚀问题仍然是工程技术中一个棘手而又关注度较高的问题。
腐蚀问题一直是换热器设计和运行中的一大挑战,这是由于工况的复杂性、介质的不同性以及换热器材料的选择等多方面因素共同造成的。
在进行换热器腐蚀分析时,首先需要了解介质的腐蚀性质,包括介质的酸碱度、温度、速度和流动状态等。
然后需要对材料的腐蚀性能进行评估,选择合适的材料来抵抗腐蚀。
还需要分析介质对换热器的影响,了解介质对换热器壁面的腐蚀程度,以及介质中可能存在的腐蚀产物和沉淀物对换热器的影响。
在工艺对策方面,可以从材料选择、改进设备结构以及采取防腐措施等多个方面进行。
在材料选择方面,可以选择耐腐蚀性能较好的材料来制造换热器,如不锈钢、钛合金等。
在设备结构方面,可以优化流体的流动状态,减少局部流速过高或过低的区域,避免产生腐蚀倾向。
可以考虑采用层叠式结构,增加管板间的流体交叉,提高介质的流动均匀性。
还可以加强设备的防护措施,如加装防腐层、防腐涂料等,从而有效地减少腐蚀的发生。
定期进行换热器的维护和检修也是非常关键的。
定期清洗换热器内部的沉积物和结垢,避免堵塞和积垢加剧腐蚀的可能性。
定期检查换热器的密封性能,避免泄漏情况的发生。
如果需要更换换热器材料,应选用的新材料要经过充分的实验和测试,确保其耐腐蚀性能能够满足工艺要求。
换热器腐蚀分析及工艺对策是保证换热器安全运行的重要环节。
通过对介质和材料腐蚀性质的评估,采取合适的工艺对策,可以有效地降低换热器的腐蚀程度,延长设备的使用寿命,提高工艺的稳定性和可靠性。
这需要设计、工艺、材料等多个领域的协同合作,提高设备的抗腐蚀性能,减少设备的腐蚀损坏。
换热器腐蚀分析及工艺对策换热器腐蚀是指在换热器的工作环境中由于介质的物理或化学作用而引起的金属表面的损坏。
换热器腐蚀不仅会使得设备的性能下降,还会影响设备的安全操作,甚至导致设备的故障和事故发生。
对换热器的腐蚀问题进行分析和采取相应的工艺对策具有重要的意义。
换热器腐蚀的机理主要包括化学腐蚀、电化学腐蚀和物理腐蚀三种形式。
化学腐蚀是指介质中的酸、碱、盐等化学物质对金属的腐蚀作用。
酸性介质中的腐蚀主要是由于酸性物质对金属具有强烈的氧化作用,而碱性介质中的腐蚀则是由于碱性物质对金属表面的过氧化物具有强烈的还原作用。
而在含有盐份的介质中,盐分会增加水的离子导电性,从而加速金属离子的迁移,产生腐蚀作用。
电化学腐蚀是指金属在介质中与外界的电位差和电流作用下发生的腐蚀作用。
在电化学腐蚀中,金属表面会形成氧化层,从而形成肖像电池,从而发生电流的流动和金属的溶解。
电化学腐蚀可以通过采取阴极保护、阳极保护等方法来防止。
物理腐蚀是指金属在流体中的机械作用下产生的腐蚀。
在物理腐蚀中,金属表面会发生磨损、冲蚀等现象,从而形成腐蚀。
针对换热器腐蚀问题,可以采取如下的工艺对策:1. 选择耐腐蚀性能好的材料。
根据介质的特性选择适合的金属材料,如不锈钢、钛合金等具有良好耐腐蚀性能的材料。
在设计和制造过程中严格控制材料的质量,确保材料的耐腐蚀性能满足要求。
2. 加强换热器的表面保护措施。
可以通过表面涂层、电镀、阳极氧化等方式加强换热器的表面保护,形成一层保护层,防止金属与介质直接接触,减少化学腐蚀和电化学腐蚀的发生。
3. 控制介质的成分和浓度。
对介质的成分和浓度进行控制,避免介质中的酸、碱、盐等化学物质对金属的腐蚀作用。
可以通过调整介质的pH值、控制水的硬度等方式来减少腐蚀的发生。
4. 定期检测和维护换热器。
定期对换热器进行检测,包括表面的腐蚀检测、内部的结垢检测等,及时发现腐蚀问题,采取相应的修复措施和维护措施,保证换热器的正常运行。
编号:AQ-JS-03383( 安全技术)单位:_____________________审批:_____________________日期:_____________________WORD文档/ A4打印/ 可编辑工业冷却水对不锈钢换热器腐蚀的研究及对策Study on Corrosion of stainless steel heat exchanger by industrial cooling water andCountermeasures工业冷却水对不锈钢换热器腐蚀的研究及对策使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。
摘要:不锈钢换热器在石化、电力工业的生产中有着广泛的应用。
但是,不锈钢管局部腐蚀(主要是孔蚀和应力腐蚀破裂)的发展速度和所造成的破坏也是惊人的。
本文简要介绍了不锈钢的腐蚀类型;针对火电厂运行、基建机组凝汽器不锈钢管的防腐蚀工作,阐述了相应的化学处理措施和成功的工作实例。
关键词:不锈钢;凝汽器;孔蚀;应力腐蚀破裂;防腐;化学处理1不锈钢换热器的应用情况不锈钢是铁、铬和镍的合金,最早出现在20世纪初。
铬镍钢,特别是18Cr-8Ni型奥氏体不锈钢,由于它在许多化学介质中具有高度的稳定性,并且能耐高温气体腐蚀,所以在化学工业中得到最广泛的应用,在许多有机产品和聚合物的生产过程中(如尿素、醋酸、聚丙烯、聚乙烯醇等),大多数设备都是由铬镍合金钢和奥氏体不锈钢制造的。
其中大量与各种工业水接触的列管换热器、冷凝器和夹套反应器多用奥氏体不锈钢(主要类型为AISI304、304L、316、316L)制造。
在电力工业中,不锈钢的应用范围也越来越广泛。
在发电厂,不锈钢主要用来制造凝汽器的冷却管。
凝汽器是汽轮发电机组的重要辅机之一,它的性能好坏直接影响机组的运行。
而它的主要传热组件—冷却管,是凝汽器的最重要部分,价格占其总价的一半以上。
因此,冷却管的选材和选型是凝汽器的设计关键。
早在20世纪90年代初,我国就开始应用螺旋槽管传热理论,研制新型凝汽器。
经过反复论证和试验,研制出理想的冷却管凝汽器—高效不锈钢波螺焊管凝汽器。
不锈钢波螺焊管比铜管的总体传热系数提高25~30%,在几家热电厂的实际运行当中,当保持真空度不变的情况下,循环水量比原铜管少20%;当循环水量不变时,真空度提高5%以上。
由于不锈钢的强度和表面硬度都高于铜管,不论是汽侧的高速蒸汽及水滴,还是水侧的泥沙污垢及入口湍流,都不可能对不锈钢管形成冲蚀。
因此,它更能适应于江、河等含沙污垢水质,及排汽温度较高的循环水供热场合。
目前,随着科学技术的进步和发展,我国已能自行生产不锈钢波螺焊管,有的质量已赶超国外先进水平,而且价格适中,造价比铜管便宜10%左右,1台30万千瓦机组凝汽器可节约60~100万元材料费用。
2不锈钢换热器的腐蚀类型虽然不锈钢在各种工业水中具有很低的全面腐蚀速度(如在流速0.3~0.6m/s的海水中,316不锈钢的腐蚀速度仅0.5μm/a),但在实际工业生产条件下,不锈钢设备,特别是各种工业水冷却器,腐蚀破坏的事故却十分频繁。
我国新建的十几套大型化肥厂(年产30万吨合成氨,48万吨尿素)在生产运行1~2年后,各厂的不锈钢水冷却器相继出现腐蚀破坏,目前已更换数十台,并且破坏仍在继续发生,造成了巨大的经济损失。
所有这些腐蚀破坏都是由局部腐蚀(主要是孔蚀和应力腐蚀破裂)造成的。
日本腐蚀工程师协会协同日本不锈钢学会、日本化学工程师协会曾分析检查了700台不锈钢管壳式水冷器1,结果有85台已产生应力腐蚀破裂(占12.1%),其中使用寿命为1~3年的占52.9%,使用寿命超过10年的仅占9.4%,这充分反映出不锈钢腐蚀破坏的严重性。
与化学工业相比,不锈钢在电力工业中的使用情况是时间短、范围小。
发生在化学工业中的不锈钢腐蚀破坏的严重问题必须引起我们的高度重视。
在电力工业中,为了防患于未然,本文将简要说明不锈钢的腐蚀类型,重点阐述不锈钢的防腐蚀对策。
不锈钢的腐蚀形态可分为全面腐蚀和局部腐蚀。
在各种工业水中,不锈钢具有很低的全面腐蚀速度,在理想情况下每100万年才能腐蚀1厘米。
因此、全面腐蚀的危害极小。
在实际应用中,不锈钢的局部腐蚀(主要是孔蚀和应力腐蚀破裂)能造成巨大的破坏。
这种腐蚀往往在设备某处产生和扩大,最终导致不锈钢设备的腐蚀报废。
2.1在工业水中不锈钢的孔蚀孔蚀是一种极端的局部腐蚀形态。
蚀点从金属表面发生后,向纵深发展的速度大于或等于横向发展的速度,腐蚀的结果是在金属表面上形成蚀点或小孔。
蚀点有时是彼此孤立的,有时则彼此靠得很近,好象是一个粗糙表面。
蚀点的直径可大可小,但大多数情况下是比较小的,有的只有几十个微米。
上面常常覆盖着腐蚀产物,因此不易检查出来。
很难由实验室的实验来预估其腐蚀速率。
有时形成蚀点需要较长时间,约几个月或几年。
一旦形成,发展又较快,常常突然出现腐蚀损坏(穿孔)。
因此,孔蚀是一种危害很大的、剧烈的局部腐蚀形态2。
大量研究3已经揭示出,孔蚀发生在附着物或沉积物下。
一旦采取措施消除了附着物或沉积物,问题也就避免了。
2.2在工业水中不锈钢的应力腐蚀破裂在工业水中奥氏体不锈钢的应力腐蚀破裂是由孔蚀诱发的,两者的影响参数相同,只是各自所要求的临界值不同4。
对于发生在各种水冷器上的应力腐蚀破裂,往往温度的影响要比Cl-浓度的影响还重要,因此要注意氯离子浓度和温度的联合作用。
由于试验室试验结果与生产操作条件下的破坏现象存在差异,人们对不锈钢设备特别是换热器的应力腐蚀破裂条件进行了多次工业实用装置破坏情况的调查统计分析。
美国杜邦公司对685台18Cr -10Ni型不锈钢设备报废原因的分析指出,应力腐蚀破裂和孔蚀占38%;日本对954台这类材料设备的破坏原因分析指出,应力腐蚀破裂和孔蚀占63%(其中应力腐蚀破裂占38%,孔蚀占25%)。
西野知良和藤上关卫早在1990年就报道了他们对化工厂奥氏体不锈钢焊接部分破坏的调查结果5。
3防止不锈钢在水中局部腐蚀破坏的途径虽然到目前为止,还没有完全搞清楚腐蚀的机理,也不能提出完全避免或消除腐蚀的边界条件。
实际生产中也常常发现这种情况:工作条件大致相同的两台设备,寿命却相差十分悬殊;再有,同一种不锈钢在氯离子浓度低(仅10~20mg/L)的冷却水中发生了应力腐蚀破裂,而在氯离子浓度高的海水中却长期安全使用。
对大量工业设备运行情况的统计分析,以及许多深入的试验室研究,使我们可以认识到影响不锈钢孔蚀和应力腐蚀破裂的主要因素,并提出一些统计规律来,这无疑是有利于延长不锈钢设备的操作寿命的。
由于不锈钢设备的报废完全是由局部腐蚀破坏,主要是孔蚀和应力腐蚀破裂所造成的,因此对工业水寻求合理、经济、有效的防腐蚀措施,一直是各国悉心研究的对象。
目前虽尚未达到完善的境界,但还是找到了各种有效办法,可供实际生产的需要和条件来加以应用。
3.1选用耐局部腐蚀破坏的合金材料长期以来,认为镍铬奥氏体钢具有应力腐蚀破裂倾向,只有纯铁素体高铬不锈钢没有这种倾向。
实际上,高镍(35~40%)奥氏体不锈钢对应力腐蚀破坏也是免疫的6,只有含镍8~10%的18%Cr 钢对应力腐蚀破裂敏感。
现在,研究人员采用聚焦离子束二级离子质谱技术证实:材料加工技术的改进也可以减少低等级不锈钢腐蚀。
3.2采用退火处理来消除应力为了完全消除应力,退火应在850℃以上进行,这在实际应用时,往往因设备尺寸太大或可能发生变形而办不到。
为了防止不锈钢的晶间应力腐蚀破裂,通常在550~600℃低温退火,这对消除应力也是有效的。
此外在制造设备时,还应注意:(1)有可能导致产生应力腐蚀破裂的介质,不允许在抛光时应用;(2)酸洗后应将残液充分清除掉,并采取钝化工艺7;(3)焊薄壁管时,应消除因对得不直所产生的不均形变。
3.3其它保护方法许多防腐蚀措施在一定条件下均可收到一定效果,如涂层,只要能避免片状剥落就有效。
下面再介绍几种防护方法:3.3.1阴极保护在电位为-0.8V(对Ag/AgCl电极)时,可以抑制与碳钢接触的CrNi钢的缝隙腐蚀,对304和316不锈钢效果明显。
在平静海水中可采用铝牺牲阳极进行阴极保护。
3.3.2用缓蚀剂防止应力腐蚀破裂奥氏体不锈钢的应力腐蚀破裂发生在活化电位区,必须使用吸附型缓蚀剂对其覆盖。
吸附型缓蚀剂的主要成分是有机杂环化合物和有机胺为主体的衍生物,其中的有机胺衍生物在金属表面的阴极区发生了活化电位区;亲水集团中的未公用电子对与金属元素d轨道杂化进行配位结合发生了化学吸附;缓蚀剂分子中的不饱和键也通过Л键的作用在金属表面形成共轭作用加强了化学吸附。
因而在金属表面形成致密吸附膜,抑制了金属腐蚀过程8。
3.3.3采取措施降低与冷却水接触的传热面的表面温度若将表面温度降至临界温度以下,就可大大减少发生应力腐蚀破裂的可能性,并且这种方法要比其它任何办法更有效。
为了降低表面温度,尽可能采用高流速低温水来冷却,以降低表面温度。
3.3.4消除不锈钢管表面的附着物3.3.4.1对于火力发电厂的运行机组,其凝汽器不锈钢管水侧表面的附着物是铁锈和垢,对于已出现的锈、垢,应采用硝酸清洗除去,化学清洗时,应防止带入氯离子9。
只要能保持不锈钢表面的清洁,就可收到良好的保护效果。
化学清洗系统为:清洗箱→清洗泵→临时进液管→凝汽器→临时回液管→清洗箱在生产运行中,各厂应根据具体水质和使用的缓蚀阻垢药剂,通过试验确定运行指标(浊度、硬度和水流速等),以防止表面出现沉积物的问题。
3.3.4.2对于火力发电厂的基建机组,新不锈钢管的内、外表面的附着物是一层成分复杂的有害膜、化学抛光材料10和污染附着物。
其中有害膜和化学抛光材料是不锈钢管在加工过程中产生的;污染附着物是泥土,沙砾、水泥等含硅物质,是不锈钢管在储存、安装期间污染和附着上的(西北地区风沙较大,这种状况更严重)。
同时、新管在生产、运输和安装过程中又造成了残留应力。
因为孔蚀是发生在附着物或沉积物下的3,而不锈钢的应力腐蚀破裂又是由孔蚀诱发的4,所以务必彻底除去不锈钢管表面的有害膜及附着物,以消除不锈钢局部腐蚀(主要是孔蚀和应力腐蚀破裂)的重要诱发因素。
国内外的防腐理论和经验都表明:不锈钢的良好耐蚀性依赖于其表面存在的钝态氧化膜,而表面清洁、结构均一,是形成均匀、致密钝化膜的前提条件。
化工系统正是吸取了以前的教训,使用了一种具有较强的渗透、剥离、清洗和缓蚀能力的清洗药剂,对其不锈钢换热器进行了投运前的清洁处理,才使得腐蚀事故大大减少。
有资料表明11:该产品系美国技术生产,主要用于不锈钢表面的清洁和钝化处理,不产生腐蚀,清洗、钝化一次完成,反应速度快,清除彻底。