热力发电厂热经济性..
- 格式:ppt
- 大小:4.46 MB
- 文档页数:3
热力发电厂课后习题答案第一章热力发电厂动力循环及其热经济性1、发电厂在完成能量的转换过程中,存在哪些热损失?其中哪一项损失最大?为什么?各项热损失和效率之间有什么关系?能量转换:化学能—热能—机械能—电能(煤)锅炉汽轮机发电机热损失:1)锅炉热损失,包括排烟损失、排污热损失、散热损失、未完全燃烧热损失等。
2)管道热损失。
3)汽轮机冷源损失: 凝汽器中汽轮机排汽的气化潜热损失;膨胀过程中的进气节流、排气和部损失。
4)汽轮机机械损失。
5)发电机能量损失。
最大:汽轮机冷源热损失中的凝汽器中的热损失最大。
原因:各项热损失和效率之间的关系:效率=(1-损失能量/输入总能量)×100%。
2、发电厂的总效率有哪两种计算方法?各在什么情况下应用?1)热量法和熵方法(或火用方法或做功能力法)2)热量法以热力学第一定律为基础,从燃料化学能在数量上被利用的程度来评价电厂的热经济性,一般用于电厂热经济性的定量分析。
熵方法以热力学第二定律为基础,从燃料化学能的做工能力被利用的程度来评价电厂的热经济性,一般用于电厂热经济性的定性分析。
3、热力发电厂中,主要有哪些不可逆损失?怎样才能减少这些过程中的不可逆损失性以提高发电厂热经济性?存在温差的换热过程,工质节流过程,工质膨胀或压缩过程三种典型的不可逆过程。
主要不可逆损失有1) 锅炉有温差换热引起的不可逆损失;可通过炉打礁、吹灰等措施减少热阻减少不可逆性。
2) 锅炉散热引起的不可逆损失;可通过保温等措施减少不可逆性。
3) 主蒸汽管道中的散热和节流引起的不可逆性;可通过保温、减少节流部件等方式来减少不可逆性。
4)汽轮机中不可逆膨胀引起的不可逆损失;可通过优化汽轮机结构来减少不可逆性。
5)凝汽器有温差的换热引起的不可逆损失;可通过清洗凝汽器减少热阻以减少不可逆性。
4、发电厂有哪些主要的热经济性指标?它们的关系是什么?主要热经济性指标有:能耗量(汽耗量,热耗量,煤耗量)和能耗率(汽耗率,热耗率,煤耗率)以及效率。
分类号郑州电力高等专科学校毕业设计(论文)题目:热电厂热经济性指标分析研究Title : Analysis of thermal power plantthermal economic indicators系部动力工程系专业电厂热能动力装置姓名*** 班级***指导教师*** 职称***论文报告提交日期2012年6月1日郑州电力高等专科学校摘要:热电联产是指发电厂既生产电能,又利用汽轮发电机作过功的蒸汽对用户供热的生产方式。
以热电联产方式运行的火电厂称为热电厂。
对外供热的蒸汽源是抽汽式汽轮机的调整抽汽或背压式汽轮机的排汽,前者供工业生产,后者供民用采暖。
热电联产集中供热具有明显地节约能源、改善环境、提高供热质量、增加电力供应等综合效益。
热电厂的建设是治理大气污染和提高能源综合利用率的重要手段之一。
通过对热电厂的热经济运行进行分析和研究与对不供热机组联合运行热负荷的分配,热力计算及经济指标的计算,根据计算比较热量法与(火用)方法在热力系统分析计算上的差别。
同时,针对日益增长的热负荷需求,结合热电厂生产运行的实际问题进行具体分析计算,得出如何做好经济指标分析的结论。
关键词:热电联产;热经济性指标;热负荷;经济运行;原则性热力系统Abstract:Cogeneration power plants produce both electricity, turbine generator for the production of the power of steam users heating. Known as the thermal power plant to run cogeneration thermal power plant. Source of external heating steam extraction turbine to adjust extraction or back pressure steam turbine exhaust steam, the former for the industrial production, the latter for civil heating. Cogeneration district heating and energy conservation, improve the environment, improve the quality of heating, increasing electricity supply and other comprehensive benefits. Heat and power plant construction is an important means of air pollution and improve the comprehensive utilization of energy. Analysis and research and not a joint operation of the heating unit heat load distribution of thermodynamic calculation and the calculation of economic indicators, according to the calculation of the heat method (fire) method in the calculation of the thermodynamic system analysis on the hot economic operation of thermal power plants difference. For increasing the thermal load demand, combined with the practical problems of heat and power plant production run for the specific analysis and calculation, how to do the analysis of economic indicators conclusion.Keywords: cogeneration; hot-economic indicators; heat load; economic operation; principle thermodynamic system目录1.绪论 (1)2.热电联产的主要设备及热力系统拟定 (3)2.1 锅炉的类型 (3)2.2 供热式汽轮机组的类型 (3)2.2.1 供热式汽轮机组的型式 (3)2.2.2 供热式汽轮机的特点 (4)2.2.3 供热式机组机型选择 (5)2.2.4 背压式汽轮机的类型及特点 (6)2.2.5 抽汽式汽轮机主要参数的选择 (6)2.2.6凝汽-采暖两用机组 (7)2.3 原则性热力系统的拟定及计算 (9)2.3.1 发电厂原则性热力系统的作用与组成 (9)2.3.2 编制发电厂原则性热力系统的主要步骤: (9)2.3.3 热电厂原则性热力系统计算 (10)3.热力发电厂热经济性评价 (13)3.1 评价热力发电厂热经济性的两种基本分析方法 (13)3.2 热电联产的主要形式: (14)3.3 热电厂总热耗量的分配及主要热经济指标 (15)3.3.1 热电厂总热耗量的分配 (15)3.3.2 热电厂主要热经济指标: (17)3.4热电联产热经济性的计算分析 (22)3.5结果分析 (29)4.总结与展望 (30)结束语 (31)参考文献 (32)附录 (33)1.绪论随着经济的发展和技术的进步,电与热能在生活中的作用越来越重要。
汽轮机热力系统经济性分析华北电科院汽轮机所刘双白电力是国家基础工业,电力企业的总经济效益分别由锅炉系统、汽轮机系统、发电及供电系统的性能特性决定。
而汽轮机系统的经济性分别由汽轮机、各种辅机及热力系统的特性决定。
对于已建成投产的机组,我们可以分析汽轮机、辅机及热力系统的特性,找寻各设备、系统的最佳运行点,提高汽轮机系统运行效率,达到电厂优化运行、节能增效的目的。
由于设备、系统固有的特性和现阶段的运行状况,每个电厂、每台机组的优化运行方式可能都不一样,所以在这里主要以一台200MW三排汽汽轮机组为例,对系统中可以调整的地方进行计算分析和说明,并尽量对各种参数及热耗变化进行量化。
1.汽轮机本体1.1通流型线型线是汽轮机基本要素,决定了汽轮机基本特性。
现阶段设计水平的提高和机加工设备的改善,为采用高效率的叶片型线提供了可能。
很多老厂都对通流部分进行了现代化改造,即提高了运行效率、又提高了出力,同时也为充分利用各辅机提供了可能。
最典型的例子是大同二电厂的5、6号机组,通过通流改造提高了汽轮机效率,更多的热能转化为机械能,使得汽轮机排汽热量减小,减少了海勒式间接空冷系统的负担,提高了空能系统的度夏能力。
型线有直叶型、等环流流型、等α1流型、等密流型、受控涡流流型、混合流型、中间流型等,现发展的新型叶型有子午面收缩静叶(降低二次流损失)、分流叶型、三元流可控涡流型、高效层流叶型、弯扭成型静叶片、高可靠性及高效率的长叶片系列等。
叶型计算从采用简化的一元计算、S2流面计算、准三元计算,发展到对型线特性的全三维数值计算。
以200MW机组为例,高压缸叶片速度系数增加1%,高压缸效率提高1.3%,热耗降低23.6kJ/kW.h,煤耗降低0.88g/kW.h。
1.2调节级高压缸通流效率的主要限制因素是调节级,调节级焓降大,容积流量小,喷嘴及动叶片短,具有较大的二次流损失,效率低。
老200MW机组调节级效率大致为62%,新的能够做到75%。
如何提高企业自备热电厂的热经济性摘要:随着我国这些年的经济发展和工业发展,我国的热电联产也取得了不小的进步,企业自备热电厂发展更是获得了创新性的突破。
但是在实际的企业自备热电厂能量转化过程中会出现一系列的影响因素,导致企业自备热电厂的热经济性下降,需要针对这些问题提出相应的解决措施,才能够提高企业自备热电厂的热经济性,达到节约能源的目的。
文章将对如何提高企业自备热电厂的如何经济性做出简要的探讨与分析。
关键词:热电厂;火力发电;热经济性前言:关于热电联产的具体内容,就是同时利用热机和发电站共同产生电力和有用的热量。
主要是将发电之后的废热能量再次用在工业制造中,或者是将工业制造过程中产生的废热进行发电,将能源的利用发挥到最大化,以达到节能减排、促进我国可持续发展的目的。
热电联产在实际的工业生产中是节能的有效措施。
将生产过程中的余热和废热进行二次利用,既能够产生电力资源又能够满足整个企业的生产用汽,节能减排的同时也能够实现企业的经济效益。
1.提高企业自备热电厂的热经济性的必要性一般情况下,企业自备热电厂若是利用工业锅炉裕压的发电形式进行发电,通常这样的发电方式使得整个企业的总体能源使用效率能够提升高百分之八左右,对于能源的损耗能够降低百分之十二左右。
但是热电厂存在着一系列的影响因素,也就是会出现一定程度的工质损失,供热式机组凝汽发电的抵消作用和热、电负荷变化存在差异性,导致机组常常会出现偏离设计的情况,想要做到节能减排同时节省燃料,需要在特定的条件下才能进行。
若是企业不能够对这个问题有清晰的认知,在设计和热电厂运转的过程中可能会出现一定的运转问题,导致热电厂可能需要消耗更多的燃料。
在这样的时代背景下,需要对热电厂的实际能量转换过程呈现出来的不可逆特点,指定出相应的应对措施,减少其中的热量损失,提升整个企业自备热电厂的热经济性,达到节约能源的目的,为企业创造更多的收入。
热电厂在进行能量转换时,转换的方式和转换过程呈现出比较复杂的特点,是众多不可逆转换过程的结合,而不可逆的转换过程会引起熵增△s,最终导致作功能力损耗,从而出现企业自备热电厂热经济性下降的情况。
热力发电厂动力循环和热经济性分析作者:郭华波朱九喜来源:《城市建设理论研究》2013年第17期【摘要】在我国,伴随着能源的需求日益增长,开发新能源的可能性比较小,提升能源的利用率才是最根本的方式。
就此,通过在热力发电厂中采取先进的动力循环系统,可以很大程度的改善现阶段我国能源使用情况。
【关键词】热力系统;热经济性分析方法;发展方向中图分类号:O414文献标识码:A 文章编号:前言电厂热力系统热经济性分析是电厂节能降耗的理论分析基础,它既是热力系统设计、改造的理论依据,又是热力设备经济运行在线分析、监测的实用技术,其分析和研究具有十分重要的理论和现实意义。
我国科学技术人员在这方面做了大量工作,也取得了很大的成果。
二、热力发电厂动力循环系统热力发电厂动力循环系统是根据能源在燃烧使用时的梯级原理,首先将煤炭和天然气等在锅炉中充分燃烧,第一次产生热能进行发电,再将发电后产生的余热用于发电厂的动力循环装置中,再次发出相应的电能。
使用这种动力循环系统相比以往的发电系统有很大的优势。
主要表现在:能源使用上相比过去大大降低,而且可以将资源再次利用;增加了电力的供应,在原有的基础上电能的输出有了本质的提升;循环系统的建造可以节省发电厂的用地面积,在最小的范围内,完成发电的任务;集中收集尾气,将尾气的热量再次利用,有效地保护了环境,减少了有害气体的排放量;发电的效率和质量有所提高;有利于企业对发电厂的综合治理,在很大程度上减低了事故发生的概率,保障了生产的安全。
三、热力系统热经济性分析方法的概况电厂热力系统热经济性分析方法大都建立在热力学第一和第二定律的基础上,种类较多,见诸文献的有:常规热平衡法、循环函数法、等效热降法、常规热平衡简捷算法、热耗变换系数法、热量品位系统法、质量单元矩阵分析法、火用分析法及人工神经网络等,其中前三种分析方法较为成熟,广泛的应用于实际生产领域。
大体上述各分析方法可以分为以下两类:第一类分析方法是以手工计算为主,主要包括常规热平衡法、等效热降法、循环函数法等。
热力发电厂动力循环和热经济性分析一、动力循环及其优化方法热力发电厂的动力循环包括汽轮机和发电机。
汽轮机是利用蒸汽推动旋转叶片以产生动力的原理,发电机则利用发动机驱动的发电机产生电能。
热力发电厂的动力循环主要分为三个部分:热力循环、汽轮机和发电机。
1.热力循环热力循环是将化石燃料燃烧产生的热能转化成蒸汽能的过程,其过程包括锅炉、汽轮机和凝汽器。
锅炉的主要功能是利用发动机燃烧化石燃料产生高温高压蒸汽,蒸汽经过汽轮机驱动旋转叶片,将热能转化成机械能。
凝汽器的主要功能是将排出的低温蒸汽凝结成水再次送入锅炉循环,以达到节能的目的。
2.汽轮机汽轮机是将热能转换成机械能的关键环节。
汽轮机主要由旋转叶片、定子、固定叶片和旋转轴等组成。
当高温高压蒸汽通过固定叶片和旋转叶片时,叶片将产生一个静压力和动压力的作用力,从而驱动汽轮机旋转。
汽轮机的转速、功率和效率都是与进口蒸汽温度、压力、出口蒸汽湿度以及转速等相关。
3.发电机发电机是将机械能转换成电能的部件。
发电机的主要组成部件包括转子和定子。
当汽轮机的旋转叶片驱动转子旋转时,定子将因转子的旋转而产生的磁场发生变化而感应出电动势,从而产生电能。
热力发电厂的发电量主要取决于汽轮机的性能和发电机的质量。
为了提高热力发电厂的性能,可以从以下几个方面对动力循环进行优化:1.提高燃烧效率。
燃烧效率的高低直接关系到热力循环的效率。
为了提高燃烧效率,可以利用更先进的燃烧技术,通过追求更高的燃烧温度和压力来提高效率。
2.提高汽轮机效率。
汽轮机的效率受进口蒸汽温度、压力、出口蒸汽湿度以及转速等多种因素影响。
通过优化汽轮机叶片的形状、材料以及加工技术,可以提高汽轮机效率。
3.提高发电机效率。
发电机是将机械能转换成电能的部件,其效率直接关系到热力发电厂的发电量。
通过采用新型导线材料并优化其线圈的布局,可以提高发电机的效率。
二、热经济性的分析方法和提高措施热经济性是评价热力发电厂性能的重要指标之一。
热力发电厂动力循环和热经济性分析
热力发电厂是一种能够将热能转化为电能的设备。
在热力发电厂中,热能由燃烧、核
能或其他方式产生,然后通过动力循环转化为机械能,最终由发电机将机械能转化为电
能。
动力循环是热力发电厂的核心部分,它利用各种工质在高温高压和低温低压之间的热
力转换,实现了能量的连续转换。
常见的动力循环有蒸汽动力循环和气体动力循环。
蒸汽动力循环是热力发电厂中最常用的动力循环之一。
在蒸汽动力循环中,燃料燃烧
产生高温高压的蒸汽,然后通过蒸汽轮机将蒸汽的热能转化为机械能。
蒸汽轮机输出的机
械能驱动发电机发电,最后将机械能转化为电能。
蒸汽在蒸汽轮机中释放了大量的热能后,进入冷凝器被冷却,然后再次回到锅炉进行加热。
热经济性分析是评估热力发电厂的热能利用效率的一种方法。
它计算了热能输入和输
出之间的比值,用于评估热能利用的效率和经济性。
热经济性分析可以帮助热力发电厂优
化能源利用和提高经济效益。
在热经济性分析中,常用的指标有热耗比、能源利用效率和热经济性指标等。
热耗比
是指单位发电量所需要的热能输入量。
能源利用效率是指热能转化为电能的效率。
热经济
性指标是综合考虑了能源利用效率、热耗比和成本等因素的指标,用于评估热力发电厂的
经济性。
通过热经济性分析,可以找出热力发电厂中能源利用不足的环节,并采取相应的措施
进行优化。
可以采用余热发电技术,将废热转化为电能,提高热能的利用效率。
还可以改
进动力循环系统,减少能量损失,提高能源利用效率。
热力发电厂动力循环及其热经济性一、热力发电厂动力循环简介热力发电厂是一种利用化石燃料或核能等能源转换为电能的设施。
其动力循环是指在热力发电厂中用于产生电能的能量转化过程。
热力发电厂常用的动力循环有常压循环、压力循环以及复杂的混合循环等。
常压循环是一种简单的热力发电厂动力循环,其基本原理是通过水的蒸发与冷凝来实现能量转换。
常压循环包括锅炉、汽轮机和凝汽器三个主要部件。
在锅炉中,燃料燃烧产生高温烟气,使水变为蒸汽。
蒸汽进入汽轮机,驱动汽轮机旋转并带动发电机发电。
蒸汽在汽轮机中释放出能量后,进入凝汽器冷凝为水,再次回到锅炉进行循环利用。
压力循环是一种更高效的热力发电厂动力循环。
与常压循环不同的是,压力循环中的蒸汽在汽轮机中不完全膨胀,而是在一定压力下排出一部分蒸汽,再回到锅炉中再次加热。
这一过程被称为再热,可以提高系统的热效率。
混合循环是一种将常压循环和压力循环相结合的复杂循环方式。
混合循环的核心思想是利用高温蒸汽在汽轮机中释放能量后,再进行再热和再膨胀。
混合循环具有更高的热效率和更低的排放。
目前,混合循环在大型热力发电厂中得到了广泛应用。
二、热力发电厂动力循环与热经济性热力发电厂的热经济性指的是在能源转换过程中能够充分利用能量并最大限度地提高热能利用率的能力。
热经济性的好坏直接关系到热力发电厂的能源利用效率和经济效益。
从热力发电厂动力循环的角度来看,影响热经济性的因素主要包括以下几个方面:1. 燃料热值和燃烧效率燃料的热值和燃烧效率是决定热力发电厂能量转换效率的重要因素。
燃料的热值越高,单位燃料的能量转化为电能的效率就越高。
而燃烧效率则决定了能源消耗的大小。
通过提高燃料热值和改善燃烧效率,可以提高热力发电厂的热经济性。
2. 动力循环中的能量损失动力循环中的能量损失是热力发电厂热经济性的另一个重要影响因素。
在常压循环中,能量损失主要发生在锅炉和凝汽器中,例如烟气冷却和冷凝过程中的热量损失。
在压力循环和混合循环中,由于有再热和再冷凝的过程,能量损失相对较少。