微倾式水准仪的检验与校正1
- 格式:pptx
- 大小:254.11 KB
- 文档页数:20
水准仪的检验与校正实验报告(共5则)第一篇: 水准仪的检验与校正实验报告水准仪的检验与校正实验报告一、实验目的与要求:1.弄清水准仪的主要轴线及它们之间应满足的几何关系;2.掌握DS3水准仪检验与校正的方法。
二、设备:DS3水准仪1台, 水准尺2根, 尺垫2个, 小螺丝刀1把, 校正针1根, 记录板1块。
三、方法与步骤:1.一般性检验:安置仪器后, 首先检验:三脚架是否牢固, 制动和微动螺旋、微倾螺旋、对光螺旋等是否有效, 望远镜成像是否清晰等, 同时了解水准仪各主要轴线及其相互关系。
2.圆水准器轴平行于仪器竖轴的检验与校正:检验:转动脚螺旋使圆水准器气泡居中, 将仪器绕竖轴旋转180°后, 若气泡仍居中, 则说明圆水准器轴平行于仪器竖轴, 否则需要校正。
校正:先稍松圆水准器底部中央的固紧螺丝, 再拨动圆水准器的校正螺丝, 使气泡返回偏离量的一半, 然后再转动脚螺旋使气泡居中。
如此反复检校, 直到圆水准器在任何位置时, 气泡都在刻划圈内为止, 最后旋紧固紧螺旋。
3.十字丝横丝垂直于仪器竖轴的检验与校正:检验:以十字丝横丝一端瞄准约20m处的一细小目标点, 转动水平微动螺旋, 若横丝始终不离开目标点, 则说明十字丝横丝垂直于仪器竖轴, 否则需要校正。
校正:旋下十字丝分划板护罩, 用小螺丝刀松开十字丝分划板的固定螺丝, 微略转动十字丝分划板, 使转动水平微动螺旋时横丝不离开目标点。
如此反复检校, 直至满足要求。
最后将固定螺丝旋紧, 并旋上护罩。
4.水准管轴与视准轴平行关系的检验与校正:检验: 在平坦地面上选定相距60-80米的A.B两点, 放下尺垫立水准尺。
现在距A.B等距离处安置水准仪, 分别读取A.B两点水准尺读数a1.b1, 求得正确高差Hab(b1(a1。
再在A点附近2-3米处水准仪, 分别读取A.B两点水准尺读数a2.b2, 求得B尺的上的应有读数b2(a2(Hab。
若b2=b2'时, 说明水准管轴与视准轴平行;若b2(b2'时, 说明水准管轴与视准轴不平行。
实验十四 水准仪的检验及校正一. 实验目的(1)了解水准仪主要轴线及其应满足的几何条件 (2)掌握DS3水准仪检验和校正方法。
(3)掌握水准仪检验和校正方法 二. 实验组织(1)性质:综合性实验。
(2)时数:课内2学时,课外4学时。
(3)组织:每组4人。
三. 实验设备(1)每组借DS3微倾式水准仪或自动安平水准仪l 台、水准尺1对、尺垫2个,校正针1根,小螺丝刀1把,记录板1块,测伞1把。
(2)DAL1528R 数字电子水准仪一台、脚架一副、配套条码标尺1对、尺垫2个。
(3) 自备:铅笔。
四. 实验方法及步骤(DS3微倾式水准仪)(一) DS3微倾式水准仪1.圆水准轴平行于仪器旋转轴的检验与校正(1)检验方法 安置水准仪后,转动脚螺旋使圆水准器气泡居中,然后将仪器旋转180°,如果气泡仍居中,则表示该几何条件满足,不必校正,否则须进行校正。
(2) 校正方法 水准仪不动,旋转脚螺旋,使气泡向圆水准器中心方向移动偏移量的一半,然后先稍松动圆水准器底部的固定螺丝,按整平圆水准器的方法,分别用校正针拨动圆水准器底部的三个校正螺丝,使圆气泡居中。
重复上述步骤,直至仪器旋转至任何方向圆水准气泡都居中为止。
最后,把底部固定螺丝旋紧。
2.十字丝横丝垂直于仪器旋转轴的检验与校正(1)检验方法 安置水准仪整平后,用十字丝横丝一端瞄准一明显标志,拧紧制动螺旋,缓慢转动微动螺旋,如果标志始终在横丝上移动,则表示十字丝横丝垂直于仪器旋转轴,否则需要校正。
(2)校正方法 旋下目镜端十字丝环外罩,用小螺丝刀松开十字丝环的四个固定螺丝,按横丝倾斜的反方向小心转动十字丝环,使横丝水平(转动微动螺旋,标志在横丝上移动)。
再重复检验,直至满足条件为止。
最后固紧十字丝环的固定螺丝,旋上十字丝环外罩。
3.水准管轴平行于视准轴的检验与校正(1)检验方法 在平坦地面上选择相距约80m 的A、B 两点(可打下木桩或安放尺垫);将水准仪安置于距A、B 两点等距处,分别在A、B 两点上竖立水准尺,读数为1a \、1b ,,求得 A、B 两点间正确高差为:11b a h AB −=为确保观测的正确性,可用两次仪器高法(或双面尺法)测定高差AB h ,若两次测得高差之差不超过3mm,则取平均值作为A、B 两点间正确高差。
水准仪检验与校正方法
嘿,咱今儿就来聊聊水准仪检验与校正方法!这可是个相当重要的事儿呢!
你想想看,水准仪就好比我们的眼睛,如果它不准确了,那可就像我们的眼睛出了问题一样,那得出多大乱子呀!所以检验和校正它可太关键啦。
先来说说检验吧。
我们得检查水准仪的各个部件是不是都完好无损呀,比如那个望远镜,得看看它能不能清晰地看东西。
这就好像我们检查自己的眼镜是不是干净清晰一样。
还有水准器,得保证它能水平呀,不然怎么能测准呢!然后就是看看脚架稳不稳,要是摇摇晃晃的,那不就跟站在跷跷板上测量一样不靠谱嘛!
那怎么校正呢?这可得仔细着点儿。
如果发现水准仪不水平了,那就要调整水准器啦。
就像我们走路走歪了要调整步伐一样。
有时候可能还得调整一下望远镜的焦距,让我们能更清楚地看到目标。
这就好比我们调整自己的视力,让一切都看得明明白白。
要是发现水准仪的测量结果总是有偏差,那可能就得好好找找原因啦。
是不是仪器本身有问题呀,还是使用方法不对呢?这就好像我们做事情,如果总是做不好,就得反思一下是自己的能力问题还是方法问题呀。
咱可不能小瞧了这水准仪检验与校正,它关系到我们测量的准确性呀!要是不准确,那后面的工作不都白干啦?这可不行呀!所以大家一定要重视起来,认真对待每一次检验和校正。
总之,水准仪检验与校正方法真的超级重要,大家一定要好好掌握呀!别等到出了问题才后悔莫及呀!。
水准仪的检验与校正 The manuscript was revised on the evening of 2021水准仪的检验与校正一、检验步骤1.要点:完成圆水准器、十字丝横丝、水准管平行于视准轴(i角)检查2.步骤:圆水准器检校——十字丝横丝检校——水准管平行于视准轴(i角)检校二、检验及校正1.圆水准器的检验圆水准器泡居中后,将望远镜旋转180°后气泡(居中或不居中)校正⑴转动脚螺旋使气泡退回偏离值的一半。
⑵松开圆水准器背面中心固紧螺丝,用校正针拨动相邻两个校正螺,再拨动另一个校正螺丝,使气泡居中。
⑶按这种方法反复检校,直到转到任何方向,气泡均居中为止,校正即可结束。
最后,将中心固紧螺丝拧紧。
2.十字丝横丝检验在墙上找一点,使其恰好位于水准仪望远镜十字丝左端的横丝上,旋转水平微动螺旋,用望眼镜右端对准该点(是否仍位于十字丝右端的横丝上)校正⑴松开十字丝分划板座的固定螺丝,转动整个目镜座,使十字丝横丝与M点轨迹一致,再将固定螺丝拧紧。
⑵当M点偏离横丝不明显时,一般不进行校正,在作业中可利用横丝的中央部分读数。
角检验什么是水准仪的i角?水准仪的视准轴在垂直方向上与水准轴的投影夹角。
水准仪的i角和角是不同的,角(交叉误差)是指水准仪的视准轴与水准管轴在水平面内投影的夹角。
水准仪i角的消除方法是在观测时尽量将一起安置在测区范围的中间,而角在普通测量时影响较小,一般不予考虑,而在精密水准测量时必须要注意,其消除方法是在观测时按奇偶数站将仪器的一条固定的架腿分别安置在路线的左右两侧。
.检验步骤:⑴选择一平坦地面,相距80m左右各打一木桩A、B,将仪器置于中点C,并使A C=BC,⑵将水准仪安置于中点C处,在A、B两点竖立水准尺。
用两次仪高法两次测定A至B点的高差。
当两次高差的较差不大于3mm时,取两次高差的平均值hAB 作为两点高差的正确值。
⑶将仪器安置于C′处即距B点2~3m处,精平仪器后,读出B点尺上的读数b2。
第1章水准面是重力等位面,可理解为自由静止的水面,是一个类似球状的封闭曲面,水准面有无数多个。
与平均海水面吻合程度最高的水准面称之为大地水准面,大地水准面所包围的形体称为大地体,大地体即为地球的物理形状。
大地水准面只有一个,可理解为自由静止的等密度海水在恒温、恒压、无潮汐、无波浪情况下向陆地内部延伸后所形成的封闭海水面。
国家水准面就是符合国家基本地理特征和需求的水准面,具有国家惟一性,国家水准面是一个国家统一的高程起算面“1956黄海高程系统”的水准原点高程为72.289m“1985国家高程基准”的水准原点高程为72.260m。
“高程系统”不同时应根据“水准原点”高程差换算为同一个系统。
参考椭球的定义是体量与地球大致相当的椭圆绕短轴旋转180°所形成的封闭球体,球的表面称为参考椭球面,球的实体称为参考椭球体长半径a、短半径b和扁率α就构成了参考椭球的最重要的几何要素,α=(a-b)/ a 。
人们将与大地体吻合程度最高的参考椭球作为地球的数学形状,并称之为总地球椭球,具有惟一性。
国家椭球就是符合国家基本地理特征和需求的参考椭球,具有国家惟一性,国家椭球是一个国家统一坐标系统的基础框架(即经纬度的衡量基准)。
把地球近似当作圆球看待,半径R取6371km。
测区范围较小时把球面视为平面R=(a+a+b)/3。
国家大地坐标系的构建必须进行大地定位,大地定位包括椭球定位和定向2项工作。
椭球定位是指确定椭球中心的位置。
椭球定向是指确定椭球旋转轴的方向,不论是局部定位还是地心定位都应满足两个平行条件,一是椭球短轴平行于地球自转轴;二是大地起始子午面平行于天文起始子午面。
地面点位表达方式主要有5种,分别是大地坐标+高程;天文坐标+高程;高斯平面直角坐标+高程;独立平面直角坐标+高程;三维地心坐标。
大地坐标是以参考椭球和法线为依据构建起来的。
天文坐标是以大地体和垂线(铅垂线)为依据构建起来的。
高斯平面直角坐标是以高斯---克吕格投影为基础建立的平面直角坐标系统,高斯---克吕格投影是将椭球面变成平面的一种地图投影方式,属于数学函数投影(正形投影)而不是几何投影。
根据水准测量的原理,水准仪必须能提供一条水平视线,才能正确地测出两点间的高差,从而由已知点高程推求未知点高程。
水准仪出厂时各轴线间所具有的几何关系是经过严格检校的,确保仪器能提供一条水平视线,使仪器处于正常状态;但由于仪器在长期使用和运输过程中受到震动等原因,各轴线间之间的关系发生变化,使仪器处于非正常使用状态;因此,为了确保仪器观测数据的准确,我国现行建筑法规规定,仪器首次使用之前以及仪器首次进入施工现场之前必须进行检定,两次检定时间间隔不能超过国家规定的强制检定周期。
水准仪的强制检定周期为一年。
【背景资料:国家测绘局《测绘计量管理暂行办法》国测国字…1996‟24号第十三条规定,“测绘计量器具(用于直接或间接传递量值的测绘工作用仪器、仪表和器具),必须经周期检定合格,才能用于测绘生产。
未经检定、检定不合格或超过检定周期的测绘计量器具,不得使用”。
“在测绘计量器具检定周期内,可由使用者依据仪器使用状况自行检校”。
“教学示范用测绘计量器具可以免检,但须向省级测绘主管部门登记,并不得用于测绘生产。
”“检验、校正”与”检定”的区别:“检验、校正”是指使用者对仪器的检查,发现问题进行校正使之满足应有的技术要求;“检定”是指由国家法定检测部门对计量器具的检验和校正,并对合格仪器发放检定合格证明文件等。
】下面我们介绍水准仪的检验、校正方法。
水准仪检验就是查明仪器各轴线是否满足应有的几何条件,只有这样水准仪才能真正提供一条水平视线,正确地测定两点间的高差。
如果不满足几何条件,且超出规定的范围,则应进行仪器校正,所以校正的目的是使仪器各轴线满足应有的几何条件。
此外,水准仪还设置了一个便于操作的圆水准器,利用它使水准仪初步安平。
水准仪的主要轴线见图1。
一、水准仪应满足的条件1、两个主要条件:一是水准管的水准轴应与望远镜的视准轴平行(微倾式水准仪)/水平视线与望远镜的视准轴平行(自动安平水准仪DSZ);二是望远镜的视准轴不因调焦而变动位置。