矢量量化原理 第六章
- 格式:ppt
- 大小:1.92 MB
- 文档页数:41
第一部分语音信号处理第一章·绪论一···考核知识点1·语音信号处理的基本概念2·语音信号处理的发展概况二···考核要点一·语音信号处理的基本概念1.识记:(1)语音信号对人类的重要性。
(2)数字语音的优点。
(3)语音学的基本概念。
(4)语音信号处理的应用领域。
二·语音信号处理的发展概况1.识记:(1)语音信号处理的发展历史。
(2)语音编码、语音合成、语音识别的基本概念。
语音编码技术是伴随着语音的数字化而产生的,目前主要应用在数字语音通信领域。
语音合成的目的是使计算机能象人一样说话说话,而语音识别使能够听懂人说的话。
第二章·基础知识一···考核知识点一·语音产生的过程二·语音信号的特性三·语音信号产生的数字模型四·人耳的听觉特性二···考核要求一·语音产生的过程1.识记:声音是一种波,能被人耳听到,振动频率在20Hz~20kHz之间。
自然界中包含各种各样的声音,而语音是声音的一种,它是由人的发音器官发出的,具有一定语法和意义的声音。
2.领会:(1)语音产生的过程与人类发声的基本原理。
(2)清音、浊音、共振峰的基本概念。
语音由声带震动或不经声带震动产生,其中由声带震动产生的音统称为浊音,而不由声带震动而产生的音统称为清音。
声道是一个分布参数系统,它是一个谐振腔,有许多谐振频率,称为共振峰,它是声道的重要声学特征。
二·语音信号的特性1.识记:(1)语音的物理性质,包括音质、音调、音强、音长等特性。
语音是人的发音器官发出的一种声波,具有声音的物理属性。
其中音质是一种声音区别于其它声音的基本特征。
音调就是声音的高低,取决于声波的频率:频率高则音调高,频率低则音调低。
响度就是声音的强弱,又称音量。
第四章矢量量化1、矢量量化?(VQ)是1956年由steinhaus首次提出的,1970年代后期发展起来的数据压缩和编码技术。
它主要应用于:语音编码、语音合成、语音识别和说话人识别。
矢量量化在语音信号处理中占有重要地位。
2、标量量化和矢量量化?✓标量量化:是对标量进行量化,即一维的矢量量化。
将动态范围分成若干个小区间,每小区间有一个代表值。
当输入信号落入某区间时,量化成该代表值。
✓矢量量化:是对矢量进行量化。
将矢量空间分成若干个小区域,每小区域有一个代表矢量。
当输入矢量落入某区域时,量化成该代表矢量。
矢量量化是标量量化的发展。
矢量量化总是优于标量量化,维数越高,性能越优越。
矢量量化有效利用各分量间的互相关性。
1970年代末,Linde,Buzo,Gray和Markel等人首次解决了矢量量化码书生成的方法,并首先将矢量量化用于语音编码获得巨大成功。
如,在语音通信方面,将在原来编码速率为2.4kbit/s的线性预测声码器基础上,将每帧的10个反射系数加以10维的矢量量化,就可使编码速率降低到800bit/s,而声音质量基本未下降。
又如分段声码器,由于采用矢量量化,可以使数码率降低到150bit/s。
3、矢量量化的基本原理?标量量化是对信号的单个样本或参数的幅度进行量化;标量是指被量化的变量,为一维变量。
矢量量化的过程是将语音信号波形的K个样点的每一帧,或有K个参数的每一参数帧构成K维空间的一个矢量,然后对这个矢量进行量化。
标量量化可以说是K=1的矢量量化。
矢量量化的过程和标量量化过程相似。
在标量量化时,在一维的零至无穷大值之间设置若干个量化阶梯,当某输入信号的幅度值落在某相邻的两个量化阶梯之间时,就被量化成两阶梯的中心值。
而在矢量量化时,则将K维无限空间划分为M 个区域边界,然后将输入矢量与这些边界进行比较,并被量化为“距离”最小的区域边界的中心矢量值。
矢量量化的定义将信号序列{}i y 的每K 个连续样点分成一组,形成K 维欧氏空间中的一个矢量,矢量量化就是把这个K 维输入矢量X 映射成另一个K 维量化矢量。
《语音信号处理》课程笔记第一章语音信号处理的基础知识1.1 语音信号处理的发展历程语音信号处理的研究起始于20世纪50年代,最初的研究主要集中在语音合成和语音识别上。
在早期,由于计算机技术和数字信号处理技术的限制,语音信号处理的研究进展缓慢。
随着技术的不断发展,尤其是快速傅里叶变换(FFT)的出现,使得语音信号的频域分析成为可能,从而推动了语音信号处理的发展。
到了20世纪80年代,随着全球通信技术的发展,语音信号处理在语音编码和传输等领域也得到了广泛应用。
近年来,随着人工智能技术的快速发展,语音信号处理在语音识别、语音合成、语音增强等领域取得了显著的成果。
1.2 语音信号处理的总体结构语音信号处理的总体结构可以分为以下几个部分:(1)语音信号的采集和预处理:包括语音信号的采样、量化、预加重等操作,目的是提高语音信号的质量,便于后续处理。
(2)特征参数提取:从预处理后的语音信号中提取出能够反映语音特性的参数,如基频、共振峰、倒谱等。
(3)模型训练和识别:利用提取出的特征参数,通过机器学习算法训练出相应的模型,并进行语音识别、说话人识别等任务。
(4)后处理:对识别结果进行进一步的处理,如语法分析、语义理解等,以提高识别的准确性。
1.3 语音的发声机理和听觉机理语音的发声机理主要包括声带的振动、声道的共鸣和辐射等过程。
声带振动产生的声波通过声道时,会受到声道形状的影响,从而产生不同的音调和音质。
听觉机理是指人类听觉系统对声波的感知和处理过程,包括外耳、中耳、内耳和听觉中枢等部分。
1.4 语音的感知和信号模型语音的感知是指人类听觉系统对语音信号的识别和理解过程。
语音信号模型是用来描述语音信号特点和变化规律的数学模型,包括时域模型、频域模型和倒谱模型等。
这些模型为语音信号处理提供了理论基础和工具。
第二章语音信号的时域分析和短时傅里叶分析2.1 语音信号的预处理语音信号的预处理主要包括采样、量化、预加重等操作,目的是提高语音信号的质量,便于后续处理。
矢量量化Vector Quantization一.矢量量化初步1.基本原理2.失真测度3.设计码本 (LBG)二.矢量量化进一步1.分裂矢量量化 (Splitted VQ)2.多极矢量量化 (Cascaded VQ)3.其它各种类型矢量量化器三. 几个矢量量化的工程实现问题1.分级矢量量化中的多路径搜索问题2.用模拟退火 (Simulated Annealing) 算法训练最佳码本[2]一.矢量量化初步 1. 基本原理在信息论中已证明,矢量量化优于标量量化。
❑矢量量化是先将K 个(2≥K )个采样值形成K 维空间KR 中的一个矢量,然后将这个矢量一次进行量化。
它可以大大降低编码数率。
❑矢量量化总是优于标量量化的。
这是因为矢量量化有效地应用了矢量中各分量间的四种相互关联的性质:线性依赖性,非线性依赖性,概率分布函数的形状以及矢量维数。
定义:1) 源:若将K M ⋅个信号采样组成的信源序列{}j x 中每K 个为一组分为M个随机矢量,构成信源空间{}M X X X X ,,,21 =(X 在K 维欧氏空间K R 中),其中第j 个矢量可记为()(){}jk k j k j j x x x X ,,,2111 +-+-=,M j ,,2,1 =。
2) 子空间:把KR无遗漏地划分成nN 2=个互不相交的子空间N R R R ,,,21 ,满足:⎪⎩⎪⎨⎧≠===j i R R R R ji N i Ki ,013) 码本:在每个子空间i R 中找一个代表矢量i Y ,令恢复矢量集为:{}N Y Y Y Y ,,,21 =。
Y 也叫输出空间、码本或码书(Code Book),iY 称为码矢(Code Vector)或码字(Code Word),Y 内矢量的数目N ,则叫做码本长度。
4) 码本搜索:当矢量量化器输入任意矢量Kj R X ∈时,它首先判断j X 属于那个子空间,然后输出该子空间i R 的代表矢量{}N i R Y Y Y K i i ,2,1,=⊂∈。