3第三章矢量量化技术
- 格式:ppt
- 大小:659.50 KB
- 文档页数:36
矢量量化编码1. 引言矢量量化是一种高效的数据压缩技术,它具有压缩比大、解码简单和失真较小等优点。
自从1980年提出矢量量化器(Vector Quantizater)码书设计的LBG算法[Linde et al(1980)]以来,矢量量化(Vector Quantization)技术[Gray(1984)]已经成功地应用到图像压缩和语音编码中。
矢量量化压缩中最核心的技术是码书的设计,码书的优化性直接影响到压缩效率和图像复原质量。
这里主要对码书设计算法进行讨论。
首先介绍了经典的LBG算法及其在图像压缩中的应用;然后,针对LBG算法的不足,结合图像处理的特点,提出了改进的覆盖聚类算法,有效改善了系统性能。
2 .码书的设计码书设计是矢量量化压缩系统的关键环节。
码书设计得越优化,矢量量化器的性能就越好。
实际中,不可能单独为每幅待编码的图像设计一个码书,因此通常是以一些代表性图像构成的训练集为基础,为一类图像设计一个最优码书。
从数学的观点看,矢量量化中的码书设计,实质是把系统的率失真函数看成目标函数,并使之在高维空间中成为最小的全局优化问题。
假设采用平方误差测度作为失真测度,训练集中的矢量数为M,目的是生成含N(N<M)个码字(码矢量)的码书。
码书设计过程就是寻求把M 个训练矢量分成N类的一种最佳方案(使均方误差最小),而把各类的质心矢量作为码书的码字。
可以证明,各种可能的码书个数为(1/ N!)Σ(一1)(N-i)CNiM,其中( 为组合数。
通过测试所有码书的性能可得到全局最优码书。
然而,在N 和M 比较大的情况下,搜索全部码书是根本不可能的。
为了克服这个困难,各种码书设计方法都采取搜索部分码书的方法得到局部最优或接近全局最优的码书。
因此,研究码书设计算法的目的就是寻求有效的算法尽可能找到全局最优或接近全局最优的码书以提高码书性能,并尽可能减少计算复杂度。
3 LBG算法描述经典的码书设计算法是LBG算法[它是Y.Linde,A.Buzo与R.M.Gray 在1980年推出的,其思想是对于一个训练序列,先找出其中心,再用分裂法产生一个初始码书A0,最后把训练序列按码书A0中的元素分组,找出每组的中心,得到新的码书,转而把新码书作为初始码书再进行上述过程,直到满意为止。
矢量量化在语音信号处理中的应用简介矢量量化是一种常用的数据压缩技术,旨在通过将连续信号离散化表示来减少数据传输和存储的成本。
在语音信号处理中,矢量量化广泛应用于语音编码、语音识别和语音合成等领域。
本文将深入探讨矢量量化在语音信号处理中的应用。
语音编码语音信号的特点为了更好地理解矢量量化在语音编码中的应用,首先需要了解语音信号的特点。
语音信号是一种时间连续的信号,具有较高的带宽要求和较低的信噪比。
此外,语音信号中的语音内容通常通过谐波周期、共振峰和无意义的噪声等特征进行表示。
矢量量化在语音编码中的角色在语音编码中,矢量量化被用于将连续的语音信号转换为离散表示,以实现对语音信号的压缩。
通过将语音信号分割成不同的时间段或频率帧,并将这些帧用离散的码矢量表示,矢量量化可以显著减少所需的传输和存储资源。
此外,矢量量化还能提供一种方式来描述和比较不同语音片段之间的相似性。
矢量量化的实现方法在语音编码中,有许多矢量量化的实现方法可供选择。
其中,最简单但性能相对较差的方法是基于均匀矢量量化。
该方法将矢量空间均匀划分为一系列子区域,并为每个子区域分配一个代表矢量。
然而,由于语音信号的非均匀分布特性,均匀矢量量化的效果有限。
为了克服均匀矢量量化的不足,研究人员提出了一些更高级的方法,如聚类算法和向量量化树。
聚类算法将语音帧分成几个类别,并为每个类别分配一个代表矢量。
而向量量化树则是一种层次结构,通过递归地将帧分成更小的子集,并为每个叶子节点分配一个代表矢量。
这些方法相对于均匀矢量量化能够更好地适应语音信号的分布特性,从而提高编码效果。
矢量量化的应用实例矢量量化在语音编码中的应用有很多,以下是一些常见的实例:1.无损压缩:通过高效地将连续语音信号转换为离散表示,矢量量化可以实现对语音信号的无损压缩。
这种压缩方法无需对语音信号进行任何信息损失,因此在一些对语音质量要求较高的应用中非常有用。
2.语音传输:矢量量化能够显著减少语音信号传输所需的带宽和存储资源。
最佳矢量量化器码本设计指导教师姓名: ×××报告提交日期: 20××年×月×日摘要矢量量化技术作为一种有损压缩编码技术在语音信号的存储和低码率传输过程中起到了巨大的推动作用。
本文主要介绍了适量量化的一些基本概念,以及矢量编码器的码本设计方法。
关键词适量量化矢量量化器矢量量化矢量量化介绍矢量量化是70年代后期发展起来的一种数据压缩技术基本思想:将若干个标量数据组构成一个矢量,然后在矢量空间给以整体量化,从而压缩了数据而不损失多少信息。
矢量量化技术是七十年代后期发展起来的一种数据压缩和编码技术,广泛应用于语音编码、语音合成、语音识别和说话人识别、图像压缩等领域。
矢量量化的基本原理是:将若干个标量数据组成一个矢量(或者是从一帧语音数据中提取的特征矢量)在多维空间给予整体量化,从而可以在信息量损失较少的情况下压缩数据量。
矢量量化有效地应用了矢量中各元素间的相关性,因此可以有比标量量更好的压缩效果。
一般来说矢量维数越大量化越优越。
矢量量化原理概述标量量化将抽样值的整个动态范围被分成若干个小区间,每个小区间有一个代表值,量化时落入小区间的信号值就用这个代表值代替,或者叫被量化为这个代表值。
这时的信号量是一维的,所以称为标量量化。
矢量量化若干个标量数据组成一个矢量,矢量量化是对矢量进行量化,和标量量化一样,它把矢量空间分成若干个小区域,每个小区域寻找一个代表矢量,量化时落入小区域的矢量就用这个代表矢量代替,或者叫被量化为这个代表矢量。
矢量量化的要点首先设计一个好码本。
关键在于如何划分J个区域边界。
这需要大量的输入信号矢量,经过统计实验才能确定,这个过程称为“训练”或“学习”。
应用聚类算法,按照一定的失真度准则(失真测度),对训练的数据进行分类,从而把训练数据在多维空间中划分成一个以码字为中心的胞腔,常用的是LBG算法来实现。
未知矢量的量化。
矢量量化(vector quantizization)技术技术是一种数据压缩和编码技术,矢量量化压缩技术的应用领域非常广阔,如军事部门和气象部门的卫星(或航天飞机)遥感照片的压缩编码和实时传输、雷达图像和军用地图的存储与传输、数字电视和DVD 的视频压缩、医学图像的压缩与存储、网络化测试数据的压缩和传输、语音编码、图像识别和语音识别等等 。
其具体的方法如下图所示:
几个术语的解释:
1.压缩比:log 2Nc/n*n*bpp (像素字节数bpp )
n*n 即一个与编码本中一个数对应的向量,所以Nc 个数我们可以对应所有向量即全图,而Nc 的字节数为log 2Nc 。
2. d(B, C):我们可以解释为距离差,d 的定义有很多种可以是Σ|b i c i |,Σ(b i – c i )2 ,Max|b i - c i |等等。
例子:
編碼端解
由上图我们可以看到左边为原图像,而右边为编码本。
例如我们可以讲原图像以如图所示的方式分为若干个有四个量的向量如(100,100,80,80)其余编码本中的
(100,100,90,90)计算的d (X ,Xk )最小故我们可以用数字k 表示向量
(100,100,80,80)。
其实我们可以理解为矢量量化就是讲图像中分割成若干的小块,然后再将小块分类,一类用一个码表示。
下面是一个我论文中看到的也是最常用的VQ 算法:LBG 算法也叫K 平均分类算法。
以下是步骤:
当然我们可以设置一个收敛的条件,这个可以根据自己需求设置ε大小,当到达某一步 时 收敛即迭代结束。
ε≤---)1()1(l l l D D
D。
语音信号处理是研究数字信号处理技术对语音信号进行处理的一门科学语音:是声音和语言的结合体,是一连串的音组成的语言的声音。
人的说话过程:想说,说出,传送,接收,理解。
句法的最小单位是单词,词法的最小单位是音节。
语音特征:音色,音调,音强,音长。
语音音素:元音和辅音。
辅音包括浊音(声带振动)和清音共振xx:元音激励进入声道时引起共振特性,产生一组共振频率。
基音频率:浊音的声带振动的基本频率。
汉语是一种声调语言,声调具有辩义作用。
声调的变化就是浊音基音周期的变化。
汉语音节的一般结构:声带,韵母,声调对发音影响最大的是声带。
基音周期:声带每开启和闭合一次的时间,倒数就是基音频率。
语音听觉系统:耳:内耳(将机械信号转化为神经信号),中耳(声阻抗变换),外耳(声源定位和声音放大)。
掩蔽效应:在一个强信号附近,弱信号将变得不可闻。
被掩蔽掉的不可闻信号的最大声压级称为掩蔽门限或掩蔽阈值。
掩蔽效应:同时掩蔽和短时掩蔽。
同时掩蔽:存在一个弱信号和一个强信号频率接近,强信号会提高弱信号的听阀,当弱信号的听阀被升高到一定程度就会导致这个弱信号弱不可闻。
短时掩蔽:当A声和B声不同时存在时也存在掩蔽作用,称为短时掩蔽。
语音信号生成的数学模型:激励模型(一般分为浊音激励和清音激励),声道模型(一般分为声管模型和共振峰模型,共振峰模型又分为三种:级联,xx,混合型),辐射模型。
浊音激励模拟成是一个以基音周期为周期的斜三角脉冲串。
可以把清音模拟成随机白噪声。
完整的语音信号的数学模型的传输函数H(z) = AU(z)V(z)R(z).一阶高通形式的R(z)=R0(1-z^(-1))把和时序相关的傅里叶分析的显示图形称为语谱图。
语谱图是一种三维频谱,它是表示语音频谱随时间变化的图形。
第三章:语音信号分析1.参数性质不同:时域,频域,倒频域。
分析方法:模型分析法(根据语音信号产生的数学模型来分析和提取表征这些模型的特征参数)和非模型分析法(时域,频域,倒频域)。
矢量量化有损压缩是利用人眼的视觉特性有针对地简化不重要的数据,以减少总的数据量。
量化是有损数据压缩中常用的技术。
量化可以分为两种,即标量量化与矢量量化。
标量量化每次只量化一个采样点。
而矢量量化在量化时用输出组集合中最匹配的一组输出值来代替一组输入采样值。
根据香农的速率-失真理论,即使信源是无记忆的,利用矢量编码代替标量编码总能在理论上得到更好的性能,矢量量化可以看作标量量化的推广。
基本的矢量量化器编码,传输与解码过程如图所示。
矢量量化编码器根据一定的失真测度在码书中搜索出与输入矢量最匹配的码字。
传输时仅传输该码字的索引。
解码过程很简单,只要根据接收到的码字索引在码书中查找该码字,并将它作为输入矢量的重构矢量。
码字匹配信道查表信宿信源码书码书输入矢量索引索引编码器解码器输出矢量矢量量化编码和解码示意图假定码书}|,,,{110k j N R C ∈=-y y y y ,其中N 为码书的大小,而k 维输入矢量T k x x x ),,(110-= x 与码字T k j j j j y y y ),,()1(10-= y 之间的失真测度采用平方误差测度来表示,即:22210)(),(jjl k l l j y x d y x y x -=-=∑-=则矢量量化码字搜索问题就是在码书C 中搜索与输入矢量x 最匹配的码字bm y ,使得bm y 与x 之间的失真是所有码字中最小的,即:),(min ),(10bm N bm bm d d y x y x -≤≤= 全搜索算法(FS )是一种最原始、最直观的码字搜索算法,它需要计算输入矢量与所有码字之间的失真,并通过比较找出失真最小的码字。
由于FS 算法每次失真计算需要k 次乘法,12-k 次加法,故为了对矢量进行编码需要Nk 次乘法,)12(-k N 次加法和1-N 次比较运算。
而FS 算法的计算复杂度是由码书的大小和矢量维数决定,而高效率矢量量化编码系统往往采用大码书和高维矢量,这时计算复杂度是非常大的,故减少码字搜索的计算负担是非常必要的,必须寻求快速有效的码字搜索算法。
矢量量化在语音信号处理中的应用矢量量化是一种常用的数据压缩技术,它在语音信号处理中也有广泛的应用。
本文将详细介绍矢量量化在语音信号处理中的应用。
一、矢量量化概述矢量量化是将一个连续的信号空间映射到一个离散的码本空间的过程。
这个过程可以看作是对原始信号进行压缩,以便于存储和传输。
在语音信号处理中,矢量量化可以用来压缩语音信号,并且可以保证压缩后的信号质量不会太差。
二、矢量量化在语音编码中的应用1. 语音编码语音编码是指将语音信号转换为数字形式,以便于存储和传输。
在传统的PCM编码中,每个采样点都被分配一个固定长度的位数来表示其幅度值。
但是这种编码方式占据了大量存储空间和带宽资源。
而使用矢量量化技术可以将采样点分组,并且每组采样点都被映射到一个码本向量中,从而实现对采样点进行压缩。
2. 说话人识别说话人识别是指通过对语音信号的分析,识别说话人的身份。
在说话人识别中,矢量量化可以用来提取语音信号的特征向量,并将其映射到一个码本中。
这个码本可以用来训练模型,从而实现对不同说话人的识别。
3. 语音合成语音合成是指通过计算机程序生成一段类似于人类语音的声音。
在语音合成中,矢量量化可以用来对原始语音信号进行压缩,并且可以保证生成的声音质量不会太差。
三、矢量量化在语音增强中的应用1. 降噪降噪是指从含有噪声的语音信号中去除噪声。
在降噪过程中,矢量量化可以用来对原始信号进行压缩,并且可以保证去除噪声后的信号质量不会太差。
2. 声学回声消除声学回声消除是指从含有回声的语音信号中去除回声。
在回声消除过程中,矢量量化可以用来对原始信号进行压缩,并且可以保证去除回声后的信号质量不会太差。
四、总结总之,矢量量化在语音信号处理中有着广泛的应用,包括语音编码、说话人识别、语音合成、降噪和声学回声消除等方面。
通过使用矢量量化技术,可以实现对语音信号的压缩和特征提取,并且可以保证处理后的信号质量不会太差。
摘要伴随着通讯与信息科技的迅猛发展,数据压缩技术己经成为信息时代人们工作与科研的有力工具。
数据压缩技术,作为信息论研究中的一个重要课题,一直受到人们的广泛关注。
矢量量化技术作为数据压缩领域里的一个重要分支,以它压缩比高、编码速度快、算法简单清晰等良好的特性,在图像压缩等领域都已成为有力的手段和方法。
本文以矢量量化在静止图像方面的应用为研究目标,介绍了矢量量化的定义,基本理论、相关概念及发展现状,重点讨论研究了矢量量化的三大关键技术–码书生成和码字搜索和码字索引分配。
详细阐述了码书设计算法中的LBG算法和最大下降MD算法;快速码字搜索中的基于不等式快速码字搜所和码字索引分配中的BAS算法和禁止搜索码字索引算法等。
最后总结分析了现有典型的算法和改进算法并提出了自己的基于矢量量化算法的实现方法,编程实现了一个完整的数据压缩软件,取得了较好的效果。
关键词:数据压缩,矢量量化,LBGABSTRACT第一章绪论1.1 课题的研究背景及意义1.1.1 研究背景随着计算机和大规模集成电路的飞速发展,数字信号分析和处理技术得到很大发展,并已经广泛应用于通信、雷达和自动化等领域。
数字信号的突出优点是便于传输、存储、交换、加密和处理等。
一个模拟信号f(t),只要它的频带有限并允许一定的失真,往往可以经过采样变成时间离散但幅值连续的采样信号f(n)。
对于数字系统来说,f(n)还需经过量化变成时间和幅值均离散的数字信号x(n)。
通信系统有两大类:一类是传输模拟信号f(t)的模拟通信系统;另一类是传输数字信号x(n)的数字通信系统。
在任何数据传输系统中,人们总希望只传输所需要的信息并以最小失真或者零失真来接收这些信息。
人们常用有效性(传输效率)和可靠性(抗干扰能力)来描述传输系统的性能。
与模拟通信系统相比,数字通信系统具有抗干扰能力强,保密性好,可靠性高,便于传输、存储、交换和处理等优点。
在数字通信中,码速率高不仅影响传输效率,而且增加了存储和处理的负担。