浙大数学建模-数学建模概论.
- 格式:ppt
- 大小:599.50 KB
- 文档页数:135
教案名称:数学建模课程课时安排:2学时教学目标:1. 使学生了解数学建模的基本概念和方法;2. 培养学生运用数学知识和方法解决实际问题的能力;3. 培养学生团队合作精神和沟通表达能力。
教学内容:1. 数学建模的基本概念;2. 数学建模的方法和步骤;3. 数学建模案例分析。
教学过程:第一学时一、导入(10分钟)教师通过引入实际问题,激发学生对数学建模的兴趣,如:优化物流配送路线、预测股市走势等。
二、数学建模的基本概念(15分钟)1. 定义:数学建模是一种运用数学知识和方法解决实际问题的过程。
2. 分类:连续模型、离散模型、随机模型等。
3. 数学建模的意义:提高学生运用数学知识解决实际问题的能力,培养团队合作精神和沟通表达能力。
三、数学建模的方法和步骤(20分钟)1. 明确问题:理解实际问题的背景和目标,提炼数学模型所需的关键信息。
2. 建立模型:根据实际问题的特点,选择合适的数学方法和理论,构建数学模型。
3. 求解模型:运用数学软件或手工计算,求解数学模型得到结果。
4. 验证模型:分析求解结果,检验模型的合理性和有效性。
5. 改进模型:根据验证结果,对模型进行调整和改进。
6. 撰写论文:整理解题过程和结果,撰写数学建模论文。
四、数学建模案例分析(15分钟)教师展示一个具体的数学建模案例,如:最小二乘法拟合直线、线性规划等,引导学生了解案例的背景、建模方法和求解过程。
第二学时一、课堂讨论(10分钟)学生分组讨论案例中的数学建模方法,分享自己的理解和心得。
二、小组合作完成数学建模任务(35分钟)1. 教师提出一个实际问题,要求学生分组合作,完成数学建模的全过程。
2. 学生分组讨论,明确问题、建立模型、求解模型、验证模型等步骤。
3. 学生利用数学软件或手工计算,求解数学模型得到结果。
4. 各组展示成果,讨论评价各组的模型和结果。
三、总结与反思(10分钟)1. 教师引导学生总结本次课程的学习内容,巩固数学建模的基本概念和方法。
第0章数学建模概论第0章数学建模概论一般说来,数学建模是科学研究过程中的一个环节。
我们应当了解科学研究的大致过程,以及建模的大概步骤。
科学研究过程就是对客观事物的认识过程。
因此它仍然遵循着一般的认识规律。
不过它把这个认识过程组织得更加具体、周详、精确。
总的说来,可以说是一个科学研究思维的过程。
科学研究思维过程包括四大阶段,即发现问题、了解情况、深入思考和实践验证。
一项科学研究可以包括这个全过程,也可以是只在其中的一个或一个以上的阶段里进行工作并取得成果。
科学研究开始于发现问题。
人们在对客观事物的认识上产生了矛盾也就是出现了问题,必须解决这个矛盾或问题,提高认识,掌握了事物发展运动的规律,才能使事物按着人们的意图向前发展。
为了解决这个矛盾才需要进行科学研究。
所以科学研究的第一步就是善于认清矛盾,或者说善于发现问题。
一个科研工作者有了问题之后,就必然想对这一问题作深入的了解,了解关于这个问题的各方面的情况,了解它的来龙去脉,了解它的多方面的联系,为的是要把这一问题的有关现象或事实弄清楚。
深入思考是在上述的占有丰富资料的基础上进行的。
感性的东西并不能自发地变成理性的东西。
光是占有材料还不能上升到理论。
要想从占有材料中找出带有规律性的理论,还得在占有材料的基础上进行一番“去粗取精、去伪存真、由此及彼、由表及理”的功夫。
这番功夫总起来说就是深入思考,详细分析,它包含着多种形式的脑力加工。
所以,当我们面对一个实际问题进行科学研究时,首先,我们应该针对所要研究的实际问题,去查找其相关的背景知识,其次要了解所要研究问题的研究现状,包括国内的和国外的研究现状,第三,还应该与同行专家等相关人士进行充分的讨论,通过这些调查以后,科研小组提出自己的研究方向与可能的研究路线(注意,并不是所有的想法都能成功地转化为一个理论模型),然后,建立自己的模型,得到自己的科研成果。
我们用下面的草图来说明:在科学研究过程中,数学建模是其核心。
数学建模知识点总结大学一、概述数学建模是指运用数学方法和技巧,通过对实际问题的抽象、描述、分析和求解,得出定量的结果和结论,以解决现实问题的一种方法。
数学建模是一门综合性强、应用性广的学科,它要求掌握多种数学理论和方法,并善于将数学工具与实际问题相结合,用数学语言描述现实,解决实际问题。
数学建模的基本过程包括问题的建立、模型的建立、模型分析和结果验证四个环节。
数学建模的应用范围广泛,包括管理、经济、自然科学、工程技术等各个领域。
二、数学建模的基本概念1. 数学模型数学模型是对客观世界中某一系统的描述或抽象,通常用数学符号和方程式来表示。
数学模型是用数学语言建立起来的,其优点是结构清晰、精确明了。
根据模型中变量的类型和表达方式,数学模型分为连续模型和离散模型。
连续模型是指自变量和因变量是连续的,离散模型是相反的情况。
数学模型的建立需要经验和知识,并且通常依赖于具体的问题类型。
2. 数学建模的基本流程数学建模的基本流程包括问题的建立、模型的建立、模型分析和结果验证。
问题的建立是指对实际问题进行清晰的描述和阐述,明确目标和方法。
模型的建立是指将实际问题抽象为数学问题,建立数学模型。
模型分析是指对数学模型进行求解和分析,并得出结论。
结果验证是指将数学模型的结果与实际问题进行比较,验证数学模型的有效性。
3. 数学建模的方法数学建模的方法包括定性建模和定量建模。
定性建模是指对某一现象的特征进行描述和分析,不考虑具体数值,例如通过图表、影响因素分析等方法,定性分析某一现象的规律。
定量建模是指对现象的具体数值进行刻画和分析,建立数学模型,通过数学公式和方程式描述现象,进行具体的计算和分析。
4. 数学建模的应用数学建模在工程技术、物理学、生物学、环境科学、经济学、管理学等各个领域都有广泛的应用。
例如在工程设计上,可以通过数学建模优化设计参数,提高性能;在经济学领域,可以通过数学建模分析市场供需、成本收益等问题;在环境科学领域,可以通过数学建模预测气候变化、环境污染等问题。
数学模型简介课程号:06191010课程名称:数学模型英文名称:Mathematical Modeling 周学时:2-2 学分:3预修要求:内容简介:本课程以物理、生态、环境、医学、管理、经济、信息技术等领域的一些典型实例为背景,阐述如何通过建立数学模型的方法来研究、解决实际问题的基本方法和技能。
开设本课程的目的是,在传授知识的同时,通过典型建模实例的分析和参加建模实践活动,培养和增强学生自学能力、创新素质。
参加数学建模课的学习,应自己动手解决一、二个实际问题,以求在实际参与中获取真知。
本课程包括一定学时的讨论班,学生可利用课外时间自己参与建模实践活动并自愿参加由指导教师组织的讨论班活动。
选修本课程的本科生经双向选择还有机会参加全国大学生数学建模竞赛(每年约90人)和美国大学生数学建模竞赛(每年约18人)。
选用教材或参考书:“数学建模”,杨启帆等编著,浙江大学出版社出版《数学模型》教学大纲一、课程的教学目的和基本要求本课程以物理、生态、环境、医学、管理、经济、信息技术等领域的一些典型实例为背景,阐述如何通过建立数学模型的方法来研究、解决实际问题的基本方法和技能。
开设本课程的目的是,在传授知识的同时,通过典型建模实例的分析和参加建模实践活动,培养和增强学生自学能力、创新素质。
参加数学建模课的学习,应自己动手解决一、二个实际问题,以求在实际参与中获取真知。
二、相关教学环节安排本课程包括一定学时的讨论班,学生可利用课外时间自己参与建模实践活动并自愿参加由指导教师组织的讨论班、年度校大学生数学建模竞赛活动。
选修本课程的本科生经双向选择还有机会参加全国大学生数学建模竞赛(每年约90人)和美国大学生数学建模竞赛(每年约18人)。
根据学校有关规定,在学校、全国、国际大学生数学建模竞赛获奖同学可获得学分、奖学金、免试保送研究生等奖励。
三、课程主要内容及学时分配每周4学时,17周,共计68学时。
主要内容:(1)数学建模简介3—4学时(2)初等模型6学时(3)微分方程模型10学时(4)代数方法建模4学时(5)离散模型20学时(6)随机模型4学时(7)若干实际问题研究20学时四、教材及主要参考书“数学建模”,杨启帆等编著,浙江大学出版社出版。
即首先给出一个初始流,这样的流是存在的,例如零流。
如果存在关于它的可增广轨,那么调整该轨上每条弧上的流量,就可以得到新的流。
对于新的流,如果仍存在可增广轨,则用同样的方法使流的值增大,继续这个过程,直到网络中不存在关于新得到流的可增广轨为止,则该流就是所求的最大流。
这种方法分为以下两个过程:A.标号过程:通过标号过程寻找一条可增广轨。
B.增流过程:沿着可增广轨增加网络的流量。
这两个过程的步骤分述如下。
(A )标号过程:(i )给发点标号为。
),(∞+s (ii )若顶点已经标号,则对的所有未标号的邻接顶点按以下规则标号: x x y ① 若,且时,令,A y x ∈),(xy xy u f <},min{x xy xy y f u δδ-=则给顶点标号为,若,则不给顶点标号。
y ),(y x δ+xy xy u f =y ② ,且,令,则给标号为,若A x y ∈),(0>yx f },min{x yx y f δδ=y ),(y x δ-,则不给标号。
0=yx f y (iii )不断地重复步骤(ii )直到收点被标号,或不再有顶点可以标号为止。
当t 被标号时,表明存在一条从到的可增广轨,则转向增流过程(B )。
如若点不能t s t t 被标号,且不存在其它可以标号的顶点时,表明不存在从到的可增广轨,算法结s t 束,此时所获得的流就是最大流。
(B )增流过程(i )令。
t u =(ii )若的标号为),则;若的标号为,则u t v δ,(+t vu vu f f δ+=u ),(t v δ-。
t uv uv f f δ-=(iii )若,把全部标号去掉,并回到标号过程(A )。
否则,令,并回s u =v u =到增流过程(ii )。
求网络中的最大流的算法的程序设计具体步骤如下:),,,,(U A V t s N =x 对每个节点,其标号包括两部分信息jf(j))max ),(pred (j 该节点在可能的增广路中的前一个节点,以及沿该可能的增广路到该节点为)(pred j 止可以增广的最大流量。
第一章数学建模概论随着电子计算机的出现和科学技术的迅猛发展,数学的应用已不再局限于传统的物理领域,而正以空前的广度和深度逐步渗透到人类活动的各个领域。
生物、医学、军事、社会、经济、管理……,各学科、各行业都涌现出大量的实际课题,亟待人们去研究、去解决。
利用数学知识研究和解决实际问题,遇到的第一项工作就是要建立恰当的数学模型(简称数学建模),数学建模正在越来越广泛地受到人们的重视。
从这一意义上讲,数学建模被看成是科学研究和技术开发的基础。
没有一个较好的数学模型就不可能得到较好的研究结果,所以,从这一意义上讲,建立一个较好的数学模型乃是解决实际问题的关键步骤之一。
§1.1 数学模型与数学建模模型是客观实体有关属性的模拟。
陈列在橱窗中展览的飞机模型是参照飞机实体的形状,严格按照一定的比例简缩而制成的,它的外形一定要像真正的飞机,至于它是否真的能飞则是无关紧要的;然而参加航模比赛的飞机模型则全然不同了,如果飞行性能不佳或飞不起来,外形再像飞机,也不能算是一个好的模型。
模型并非一定要是实体的一种仿照,也可以是对实体的某些基本属性的抽象。
例如,一张电路图并不需要用实物来模拟,它可以用抽象的符号、文字和数字来反映出该电路的结构特征。
数学模型(Mathematical Model)作为模型的一类,也是一种模拟,是以数学符号、数学表达式、程序、图形等为工具对现实问题或实际课题的本质属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略等。
数学模型一般并非现实问题的直接翻版,它们的建立常常既需要人们对现实问题有比较深入细微的观察和分析,又需要人们能灵活巧妙地利用各种数学知识。
这种应用各种知识从实际课题中抽象、提炼出数学模型的过程被称为数学建模(Mathematical Modeling)。
为了更清楚地说明什么是数学建模,让我们来看一个具体实例。