数学建模概论
- 格式:ppt
- 大小:1.06 MB
- 文档页数:45
一、数学建模概述1.1 什么是数学建模通常我们把现实问题的一个模拟称为模型,如交通图、地质图、航空模型等。
利用数学的语言、公式、图、表、或符号等来模拟现实的模型称为数学模型。
我们知道,对于一个现实问题的研究,一般不需要甚至不可能直接研究现实问题的本身,而是研究模拟该现实问题的模型。
举个简单例子:某司机欲把某货物从甲地运往已地,应如何选择运输路线使总路程最短?该司机不会开着车去试探,而是利用交通图来确定自己的行车路线。
从这个简单的例子中我们可以看到数学建模的重要性。
1.2 数学建模包含哪些步骤数学建模主要包含模型建立、求解以及对结果的分析与检验等步骤。
模型建立 模拟现实问题建立数学模型,不仅要有一定的数学知识与技巧,还要有敏锐的洞察力与理解力,善于抓住问题的内在联系,作出合理的假设与简化,找出影响问题的各种因素及其相互关系。
建立数学模型,不仅要有一定的数学知识与技巧,还要具备其他学科的一些知识,另外还要有一定的编程能力。
一般来说,模型建立的方法不止一种。
如最短路线问题,可以用图论方法,也可以用线性规划方法,有时还可用动态规划的方法。
模型求解 在建立模型之后,就要求解模型,给出有效的计算方法。
例如旅行推销员问题:一个推销员要到n 个城市去推销,如何安排行程?如果用简单的组合算法,其计算步骤是!n 的倍数,随着n 的增大,计算量之大以至无法得到结果。
如30n ,即使以每秒以2410步的速度来计算,也需要8年多,况且现在的计算机还没有达到上述速度。
结果的分析与检验 有些问题需要对解的现实意义作出解释,检验模型的正确性,并对模型的稳定性进行分析。
如种群的相互竞争问题需要对解的现实意义作出解释,并对模型的稳定性进行分析。
二、基本知识微分方程在科技、工程、经济管理、生态、环境、人口、交通等各个领域中有着广泛的应用。
大量的实际问题需要用微分方程来描述。
首先,我们要对实际研究现象作具体分析,然后利用已有规律、或者模拟,或近似的得到各种因素变化率之间的关系,从而建立一个微分方程。
第0章数学建模概论第0章数学建模概论一般说来,数学建模是科学研究过程中的一个环节。
我们应当了解科学研究的大致过程,以及建模的大概步骤。
科学研究过程就是对客观事物的认识过程。
因此它仍然遵循着一般的认识规律。
不过它把这个认识过程组织得更加具体、周详、精确。
总的说来,可以说是一个科学研究思维的过程。
科学研究思维过程包括四大阶段,即发现问题、了解情况、深入思考和实践验证。
一项科学研究可以包括这个全过程,也可以是只在其中的一个或一个以上的阶段里进行工作并取得成果。
科学研究开始于发现问题。
人们在对客观事物的认识上产生了矛盾也就是出现了问题,必须解决这个矛盾或问题,提高认识,掌握了事物发展运动的规律,才能使事物按着人们的意图向前发展。
为了解决这个矛盾才需要进行科学研究。
所以科学研究的第一步就是善于认清矛盾,或者说善于发现问题。
一个科研工作者有了问题之后,就必然想对这一问题作深入的了解,了解关于这个问题的各方面的情况,了解它的来龙去脉,了解它的多方面的联系,为的是要把这一问题的有关现象或事实弄清楚。
深入思考是在上述的占有丰富资料的基础上进行的。
感性的东西并不能自发地变成理性的东西。
光是占有材料还不能上升到理论。
要想从占有材料中找出带有规律性的理论,还得在占有材料的基础上进行一番“去粗取精、去伪存真、由此及彼、由表及理”的功夫。
这番功夫总起来说就是深入思考,详细分析,它包含着多种形式的脑力加工。
所以,当我们面对一个实际问题进行科学研究时,首先,我们应该针对所要研究的实际问题,去查找其相关的背景知识,其次要了解所要研究问题的研究现状,包括国内的和国外的研究现状,第三,还应该与同行专家等相关人士进行充分的讨论,通过这些调查以后,科研小组提出自己的研究方向与可能的研究路线(注意,并不是所有的想法都能成功地转化为一个理论模型),然后,建立自己的模型,得到自己的科研成果。
我们用下面的草图来说明:在科学研究过程中,数学建模是其核心。
数学建模概论数学模型对于现实中的原型,为了某个特定目的,作出一些必要的简化和假设,运用适当的数学工具得到一个数学结构。
也可以说,数学建模是利用数学语言(符号、模拟现实的模型。
把现实模型抽象、简化为某种数学结构是数学模式子与图象) 型的基本特征。
它或者能解释特定现象的现实状态,或者能预测到对象的未来状况,或者能提供处理对象的最优决策或控制。
数学建模把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题,我们把数学知识的这一应用过程称为数学建模。
建模步骤第一、模型准备。
首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
第二、模型假设。
根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。
如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。
第三、模型构成。
根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。
这时,我们便会进入一个广阔的应用数学天地,在这应用数学天地里,在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。
不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。
第四、模型求解。
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。
一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。
第五、模型分析。
对模型解答进行数学上的分析。
“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精确的分析,决定了你的模型能否达到更高的档次。
第一章数学建模概论随着电子计算机的出现和科学技术的迅猛发展,数学的应用已不再局限于传统的物理领域,而正以空前的广度和深度逐步渗透到人类活动的各个领域。
生物、医学、军事、社会、经济、管理……,各学科、各行业都涌现出大量的实际课题,亟待人们去研究、去解决。
利用数学知识研究和解决实际问题,遇到的第一项工作就是要建立恰当的数学模型(简称数学建模),数学建模正在越来越广泛地受到人们的重视。
从这一意义上讲,数学建模被看成是科学研究和技术开发的基础。
没有一个较好的数学模型就不可能得到较好的研究结果,所以,从这一意义上讲,建立一个较好的数学模型乃是解决实际问题的关键步骤之一。
§1.1 数学模型与数学建模模型是客观实体有关属性的模拟。
陈列在橱窗中展览的飞机模型是参照飞机实体的形状,严格按照一定的比例简缩而制成的,它的外形一定要像真正的飞机,至于它是否真的能飞则是无关紧要的;然而参加航模比赛的飞机模型则全然不同了,如果飞行性能不佳或飞不起来,外形再像飞机,也不能算是一个好的模型。
模型并非一定要是实体的一种仿照,也可以是对实体的某些基本属性的抽象。
例如,一张电路图并不需要用实物来模拟,它可以用抽象的符号、文字和数字来反映出该电路的结构特征。
数学模型(Mathematical Model)作为模型的一类,也是一种模拟,是以数学符号、数学表达式、程序、图形等为工具对现实问题或实际课题的本质属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略等。
数学模型一般并非现实问题的直接翻版,它们的建立常常既需要人们对现实问题有比较深入细微的观察和分析,又需要人们能灵活巧妙地利用各种数学知识。
这种应用各种知识从实际课题中抽象、提炼出数学模型的过程被称为数学建模(Mathematical Modeling)。
为了更清楚地说明什么是数学建模,让我们来看一个具体实例。