第一章数学建模概论1
- 格式:ppt
- 大小:386.00 KB
- 文档页数:23
第一章课程概述§1.1 数学模型与数学建模一.基本概念数学是研究现实世界中数量关系和空间形式的科学。
其产生以及许多重大发展都是和现实世界的生产活动和其他相应学科的需要密切相关的;同时,作为认识和改造世界的强有力的工具,又促进了科学技术和生产建设的发展。
特别在当今时代,由于计算机软硬件的迅速发展和普及,数学方法被广泛应用于生产实践、社会管理的各个领域和层面。
对具体的应用问题或问题类进行合理的简化假设以及适当的抽象并最终表述为某种数学结构,即我们在这里讨论的数学模型,是现代生产实践与社会生活实现优化决策和科学管理的必要环节。
而数学建模则是指根据实际需要或最终管理目标,对现实问题构建数学模型,对模型进行分析求解,并最终将模型解翻译为决策方案应用于实际的一个由诸多环节组成的一个完整过程。
为理解现实对象与数学模型的关系,以下给出数学建模的一个流程图:二.(引例1)椅子的平稳放置问题将(四脚)椅子置于不平的地面,通常只有三只脚着地,放不稳;然而只需稍挪动几次,就可以使四只脚同时着地,放稳了——这是我们在日常生活中遇到的一件很普通的事实。
这一现象是偶然的呢,还是有其必然性呢?三.(引例2)商人过河设有三名商人,各带一个随从,欲乘一小船渡河,小船只能容纳两人,须由他们自己划行。
随从们密约,在河的任何一岸,一旦随从的人数比商人多,就杀人越货。
而如何乘船渡河的大权掌握在商人们的手中。
商人们怎样才能安全渡河呢?椅子的平稳放置问题将(四脚)椅子置于不平的地面,通常只有三只脚着地,放不稳;然而只需稍挪动几次,就可以使四只脚同时着地,放稳了——这是我们在日常生活中遇到的一件很普通的事实。
这一现象是偶然的呢,还是有其必然性呢?以下的模型给出了肯定的回答。
一.模型假设:1.椅子四条腿一样长,椅脚与地面接触处可视为一点,四脚的连线呈正方形;2.地面高度是连续变化的,沿任何方向都不会出现间断(没台阶)。
即地面可视为数学上的连续曲面;3.对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,使椅子在任何位置上至少有三只脚同时着地。
第1章数学建模概论随着电子计算机的出现和科学技术的迅猛发展,数学的应用已不再局限于传统的物理领域,而正以空前的广度和深度逐步渗透到人类活动的各个领域。
生物、医学、军事、社会、经济、管理等各学科、各行业都涌现出大量的实际课题,亟待人们去研究、去解决。
利用数学知识研究和解决实际问题,遇到的第一项工作就是要建立恰当的数学模型,简称数学建模,数学建模正在越来越广泛地受到人们的重视。
从这一意义上讲,数学建模被看成是科学研究和技术开发的基础。
没有一个较好的数学模型就不可能得到较好的研究结果,所以,从这一意义上讲,建立一个较好的数学模型乃是解决实际问题的关键步骤之一。
1.1 数学模型与数学建模1.1.1 模型的概念在日常生活和工作中,人们经常会遇到或用到各种模型,如飞机模型、水坝模型、火箭模型、人造卫星模型、大型水电站模型等实物模型;也有文字、符号、图表、公式、框图等描述客观事物的某些特征和内在联系的模型,如模拟模型、数学模型等抽象模型。
模型是客观事物的一种简化的表示和体现,它应具有如下的特点:1.它是客观事物的一种模仿或抽象;它的一个重要作用就是加深人们对客观事物如何运行的理解,为了使模型成为帮助人们合理进行思考的一种工具,因此要用一种简化的方式来表现一个复杂的系统或现象。
2.为了能协助人们解决问题,模型必须具备所研究系统的基本特征和要素。
此外,还应包括决定其原因和效果的各个要素之间的相互关系。
有了这样的一个模型,人们就可以在模型内实际处理一个系统的所有要素,并观察它们的效果。
模型可以分为实物(形象)模型和抽象模型,抽象模型又可以分为模拟模型和数学模型。
对我们来说,最感兴趣的是数学模型。
与上述的各种各样的模型相对应的是它们在现实世界中的原型(原始参照物)。
所谓原型,是指人们研究或从事生产、管理的实际对象,也就是系统科学中所说的实际系统,如电力系统、生态系统、社会经济系统等。
而模型则是指为了某个特定目的,将原型进行适当地简化、提炼而构造的一种原型替代物。
第一章数学建模概论随着电子计算机的出现和科学技术的迅猛发展,数学的应用已不再局限于传统的物理领域,而正以空前的广度和深度逐步渗透到人类活动的各个领域。
生物、医学、军事、社会、经济、管理……,各学科、各行业都涌现出大量的实际课题,亟待人们去研究、去解决。
利用数学知识研究和解决实际问题,遇到的第一项工作就是要建立恰当的数学模型(简称数学建模),数学建模正在越来越广泛地受到人们的重视。
从这一意义上讲,数学建模被看成是科学研究和技术开发的基础。
没有一个较好的数学模型就不可能得到较好的研究结果,所以,从这一意义上讲,建立一个较好的数学模型乃是解决实际问题的关键步骤之一。
§1.1 数学模型与数学建模模型是客观实体有关属性的模拟。
陈列在橱窗中展览的飞机模型是参照飞机实体的形状,严格按照一定的比例简缩而制成的,它的外形一定要像真正的飞机,至于它是否真的能飞则是无关紧要的;然而参加航模比赛的飞机模型则全然不同了,如果飞行性能不佳或飞不起来,外形再像飞机,也不能算是一个好的模型。
模型并非一定要是实体的一种仿照,也可以是对实体的某些基本属性的抽象。
例如,一张电路图并不需要用实物来模拟,它可以用抽象的符号、文字和数字来反映出该电路的结构特征。
数学模型(Mathematical Model)作为模型的一类,也是一种模拟,是以数学符号、数学表达式、程序、图形等为工具对现实问题或实际课题的本质属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略等。
数学模型一般并非现实问题的直接翻版,它们的建立常常既需要人们对现实问题有比较深入细微的观察和分析,又需要人们能灵活巧妙地利用各种数学知识。
这种应用各种知识从实际课题中抽象、提炼出数学模型的过程被称为数学建模(Mathematical Modeling)。
为了更清楚地说明什么是数学建模,让我们来看一个具体实例。