矩阵的标准阶梯型的唯一性s
- 格式:doc
- 大小:33.50 KB
- 文档页数:1
矩阵的初等变换及其应用线性代数第一次讨论课1.导语2.讨论内容目录3.正文4.个人总结导语:矩阵是研究线性代数方程组和其他相关问题的有力工具,也是线性代数的主要研究啊、对象之一。
它的理论和方法在自然科学、工程技术、社会科学等众多领域等都有极其广泛的应用。
矩阵作为一些抽象数学的具体表现,在数学研究中占有极其重要的地位。
本文从矩阵的概念讨论矩阵的运算及性质,进而讨论用途很广的矩阵的初等变换及其应用。
讨论内容目录矩阵的初等变换及其应用1.两个矩阵的等价2.两个矩阵的乘积3.将矩阵化为行阶梯型、行最简形、标准型4.求矩阵的秩5.求可逆矩阵的逆矩阵6.求线性方程组的解7.判断向量组的线性相关性8.求向量组的秩与极大无关组9.求矩阵的对角化矩阵(采用行列初等变换,对角线元素为特征值)10.二次型化为标准形正文一、矩阵的等价1.定义:若矩阵A经过一系列初等行变换化为B矩阵,则称A与B行等价;若矩阵A经过一系列初等列变换化为B矩阵,则称A与B列等价;若矩阵A经过一系列初等变换化为B矩阵,则称A与B等价(相抵)。
2.矩阵的等价变换形式主要有如下几种:1)矩阵的i行(列)与j行(列)的位置互换;2)用一个非零常数k乘矩阵的第i行(列)的每个元;3)将矩阵的第j行(列)的所有元得k倍加到第i行(列)的对应元上去;即如果两个矩阵可通过有限次上述变换中的一个或几个的组合变为一样的,两个矩阵等价。
3.矩阵等价具有下列性质(1)反身性任一矩阵A与自身等价;(2)对称性若A与B等价,则B与A等价;(3)传递性若A与B等价,B与C等价,则A与C等价;注意:矩阵作初等变换是矩阵的一种运算,得到的是一个新矩阵,这个矩阵一般与原矩阵不会相等。
下面举例说明矩阵等价及等价变换:13640824100412204128--?? ?- ? ?-- ?-??13r r +→43213131414331222136413640824100824100412204122041280 412813641364082410082410000300030060000r rr r r r r rr r r r B ++-++-----???? ? ?-- ? ????→???→---- ? ?-------- ? ?→= ? ? ? ?????1231213121310341813601030013001300001000100000000r r r r r r r r r C -------???? ?-- ? ?→→= ?显然,根据矩阵等价的定义,以上变换过程中的每一个矩阵均为等价的,每个步骤都是等价转换。
矩阵的标准型是什么矩阵的标准型是线性代数中一个非常重要的概念,它可以帮助我们更好地理解矩阵的性质和结构。
在本文中,我们将深入探讨矩阵的标准型是什么,以及它的应用和意义。
首先,让我们来了解一下矩阵的标准型是什么。
矩阵的标准型是指一个矩阵经过相似变换后,可以化为特定形式的矩阵。
这个特定形式的矩阵通常是对角矩阵或者上三角矩阵。
对角矩阵是指除了对角线上的元素外,其他元素都为零的矩阵;而上三角矩阵是指除了对角线及其以下的元素外,其他元素都为零的矩阵。
通过相似变换,我们可以将一个矩阵化为其对角型或者上三角型,这样的形式更容易分析和计算。
其次,矩阵的标准型有着重要的应用价值。
在线性代数和矩阵论中,矩阵的标准型可以帮助我们更好地理解线性变换和矩阵的结构。
通过相似变换将矩阵化为标准型,可以简化矩阵的运算和分析,为我们解决实际问题提供了便利。
此外,矩阵的标准型还可以帮助我们求解线性方程组、研究线性空间的性质,以及分析线性变换的特征。
另外,矩阵的标准型对于理解矩阵的特征值和特征向量也具有重要意义。
矩阵的标准型与特征值和特征向量密切相关,通过相似变换可以将矩阵化为对角型,而对角型矩阵的对角线上的元素就是矩阵的特征值,对应的列向量就是矩阵的特征向量。
因此,矩阵的标准型可以帮助我们更好地理解和求解矩阵的特征值和特征向量,这对于矩阵的应用和理论研究具有重要的意义。
总之,矩阵的标准型是线性代数中一个重要而基础的概念,它可以帮助我们更好地理解和分析矩阵的性质和结构。
通过相似变换将矩阵化为标准型,可以简化矩阵的运算和分析,为我们解决实际问题提供了便利。
此外,矩阵的标准型还与特征值和特征向量密切相关,对于矩阵的特征值和特征向量的理解和求解有着重要的意义。
因此,深入理解和掌握矩阵的标准型对于我们学习和应用线性代数和矩阵论具有重要的意义。
第五讲 矩阵的秩矩阵的秩是线性代数中又一重要概念,它描述了矩阵的一个重要的数值特征:在判定线性方程组是否有解,向量组的线性相关性,求矩阵的特征向量以及在多项式、空间几何等多个方面都有广泛的应用。
本讲我们主要了解矩阵秩的概念及其与方程组各类型解的关系。
5.1.1 矩阵秩的定义在第二讲中,我们通过矩阵的初等行(列)变换定义了矩阵的行(列)阶梯形、矩阵的行(列)最简形以及矩阵的标准形。
其中矩阵行(列)阶梯形与矩阵行(列)最简形可以不唯一,但矩阵的标准形唯一。
因此,下面就利用矩阵标准形的唯一性来给出矩阵秩的概念。
定义5.1 对于给定的m n ⨯矩阵A ,它的标准形(-)(-)(-)(-)rr n r m r r m r n r m nE OF O O ⨯⨯⨯⨯⎛⎫=⎪⎝⎭由数r 完全确定,我们称数r 为矩阵m n A ⨯的秩(rank ),记作()R A 。
其中, r E 是r 阶单位矩阵;其余都是零矩阵。
注:(1) 零矩阵的秩为零:()0R O =;(2) 矩阵的秩就是矩阵标准形中左上角单位矩阵的阶数。
(3)对于n 阶方阵A ,当()R A n =时,称A 为满秩矩阵。
当()R A n <时,称A 为降秩矩阵.例5.1 求矩阵111610121210A ⎛⎫⎪=-- ⎪ ⎪-⎝⎭的秩。
解 先将A 通过初等变换化为标准形111610121210A ⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭2131111601280306r r r r --⎛⎫⎪−−−→ ⎪ ⎪⎝⎭323111601280026r r -⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭111601280013⎛⎫ ⎪→ ⎪ ⎪⎝⎭12312101201280013r r r ---⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭13232100101020013r r r r +-⎛⎫⎪−−−→ ⎪ ⎪⎝⎭()4142433312,3100001000010c c c c c c E O -⨯--⎛⎫ ⎪−−−−−→= ⎪ ⎪⎝⎭可看出,矩阵A 的标准形中左上角是3阶单位矩阵,所以()3R A =. 矩阵秩有如下性质 性质5.1 ()()TR A R A =; 性质5.2 }{0()min ,R A m n ≤≤;性质5.3 如果n 阶方阵A 可逆,则()R A n =;(可逆矩阵也称为满秩矩阵)性质5.4 {}()min (),()R PA R P R A ≤; 当P 可逆时,()()R PA R A =;若 P Q 、都可逆,且有PAQ B =,则()()R A R B =.性质5.5 max {}(),()(|)()+()R A R B R A B R A R B ≤≤;特别地,当B 为列矩阵时,有max {}(),()(|)()+1R A R B R A B R A ≤≤;性质5.6 ()()();()()().r A B r A r B r A B r A r B +≤+-≥-性质5.7 设A 为m n ⨯矩阵且()R A r =,则A 的任意S 行组成的矩阵B ,有().r B r s n ≥+-下面只证明性质5.3和性质5.4,其余的性质请学生自证。
《线性代数》复习提纲第一部分:基本要求(计算方面)四阶行列式的计算;N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用和向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。
第二部分:基本知识一、行列式1.行列式的定义用n^2个元素aij组成的记号称为n阶行列式。
(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则;N阶(n>=3)行列式的计算:降阶法定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;(2)行列式值为0的几种情况:Ⅰ行列式某行(列)元素全为0;Ⅱ行列式某行(列)的对应元素相同;Ⅲ行列式某行(列)的元素对应成比例;Ⅳ奇数阶的反对称行列式。
二.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B为同阶方阵,则|AB|=|A|*|B|;④|kA|=k^n|A|3.矩阵的秩(1)定义非零子式的最大阶数称为矩阵的秩;(2)秩的求法一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。
将矩阵化为标准型矩阵是线性代数中的重要概念,它在数学、物理、工程等领域都有着广泛的应用。
将一个矩阵化为标准型是矩阵理论中的一个重要操作,它可以帮助我们更好地理解和分析矩阵的性质。
在本文中,我们将介绍如何将一个任意的矩阵化为标准型,以及这一操作的意义和应用。
首先,我们来定义什么是矩阵的标准型。
一个矩阵的标准型是指将其化为一种特殊形式,使得矩阵中的元素在一定的规则下排列,从而更容易进行运算和分析。
通常情况下,我们将一个矩阵化为标准型的过程可以分为以下几个步骤。
第一步,对矩阵进行初等变换。
初等变换是指对矩阵进行一系列的行变换,包括交换两行、某一行乘以一个非零常数、某一行加上另一行的若干倍。
通过初等变换,我们可以将矩阵化为简化的形式,为下一步的操作奠定基础。
第二步,将矩阵化为阶梯形。
阶梯形矩阵是一种特殊的形式,其特点是矩阵的每一行的主元(即第一个非零元素)都在前一行的主元的右边,且每一行的主元所在的列都比前一行的主元所在列要大。
通过一系列的初等变换,我们可以将矩阵化为阶梯形,这样可以更方便地进行下一步的操作。
第三步,将矩阵化为最简形。
最简形矩阵是一种更加简化的形式,其特点是除了主元所在的列以外,其他列都是零。
通过一系列的初等变换,我们可以将阶梯形矩阵化为最简形,这样可以更清晰地展现矩阵的性质和结构。
通过以上三步操作,我们就可以将一个任意的矩阵化为标准型。
这种标准型的形式不仅更容易进行运算和分析,而且可以帮助我们更好地理解矩阵的性质和结构,为后续的研究和应用奠定基础。
将矩阵化为标准型在实际应用中有着广泛的意义。
例如,在线性代数中,我们经常需要对矩阵进行运算和分析,而标准型的形式可以使这些操作更加简便和直观。
在工程领域,矩阵的标准型也可以帮助工程师更好地理解和设计复杂的系统和结构。
在物理学中,矩阵的标准型可以帮助物理学家更好地理解和描述物理现象和规律。
总之,将矩阵化为标准型是矩阵理论中的一个重要操作,它可以帮助我们更好地理解和分析矩阵的性质。
矩阵的标准阶梯型的唯一性
对矩阵的列数n 进行归纳.
首先, n=1时
A 的最简型T 是 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0...01或者⎥⎥⎥⎥
⎦
⎤⎢⎢⎢⎢⎣⎡0...00. 由于初等行变换非退化, 所以 T 是唯一的.
其次, 对于自然数n>1, 设具有少于n 列的矩阵A, 最简型惟一.
则当A 具有n 列时, 记T 、T ′是A 的任意两个最简型.
仅观察A 、T 、T ′前n-1列, 仍然得到相应的最简型, 根据归纳法假设, T 、T ′的前n-1列相等, 记其非0行数为r.
T 、T ′前n-1列的角点所在列构成 r 阶单位阵, 第n 列 r+1行以后的元素为0. 故有初等行变换矩阵R, 使得
R ⎥⎦⎤⎢⎣⎡αa 0E =⎥⎦
⎤⎢⎣⎡'α'a 0E 其中a 、a ′分别是 T 、T ′ 的 (r+1,n)元素, α、α′分别是 T 、T ′ 的第n 列前r 行构成的列向量. 对R 进行相应分块, R=⎥⎦
⎤⎢⎣⎡σb 0p , 则 ⎥⎦⎤⎢⎣⎡σb 0p ⎥⎦⎤⎢⎣⎡αa 0E =⎥⎦
⎤⎢⎣⎡'α'a 0E , 即 ⎥⎦⎤⎢⎣⎡σ+αba 0a p p =⎥⎦
⎤⎢⎣⎡'α'a 0E , 故 p=E, p α+σa=α′, ba=a ′. 即 p=E, α+σa=α′, ba=a ′.
若a=0, 则 α =α′, a=a ′=0. 此时 T ′ =T.
若 a ≠0, 则 a=1, α=0.
由于 ba=a ′, 而R 非退化, 故 b ≠0, 因此 a ′ ≠0, 于是 a ′ =1. 进而α′=0.
故 α′=α=0, a ′ =a=1.
故 T 、T ′ 的第 n 列也相等, 所以T ′ =T 也成立.
综上所述, 矩阵的标准阶梯型唯一.
*最简型, 即标准阶梯型。