合成孔径长度
- 格式:docx
- 大小:10.99 KB
- 文档页数:1
合成孔径matlab -回复如何在MATLAB中进行合成孔径成像(Synthetic Aperture Imaging)。
合成孔径成像是一种通过将多个部分成像组合成高分辨率图像的技术。
它可以通过合成较长有效孔径(有效孔径长度大于实际孔径长度)来提高图像分辨率。
在本篇文章中,我们将介绍如何使用MATLAB进行合成孔径成像。
合成孔径成像的基本原理是通过对同一目标进行多次部分成像,然后将这些部分成像组合成一个高分辨率图像。
在实际应用中,这些成像可以通过机器运动或者集成多个接收器来获得。
首先,我们需要定义一个目标场景来进行合成孔径成像。
在MATLAB中,我们可以使用imageScene类来创建一个目标场景。
imageScene类提供了一个灵活的接口来生成各种不同类型的目标场景。
scene = imageScene;接下来,我们需要定义目标场景的参数,包括目标位置、目标尺寸和目标反射率。
我们可以使用imageTarget类来定义这些参数。
target = imageTarget('Position',[0,0],'Size',[1,1],'Reflectivity',1);然后,我们将目标添加到场景中。
scene.add(target);现在,我们可以使用scene.calculateBackscatteredField函数来计算目标在每个成像位置的反射场。
scene.calculateBackscatteredField;接下来,我们需要定义成像系统的参数,包括发射源和接收器的位置以及它们之间的距离。
我们可以使用configuration类来定义这些参数。
config =configuration('SourcePosition',[-1,0],'ReceiverPosition',[1,0],'Distan ce',2);然后,我们可以使用producer类来生成成像的输入数据。
距离多普勒算法1.简介距离多普勒算法(RDA)是在1976年至1978年为处理SEASAT SAR数据而提出的,至今仍在广泛使用,它通过距离和方位上的频域操作,达到了高效的模块化处理要求,同时又具有了一维操作的简便性。
该算法根据距离和方位上的大尺度时间差异,在两个一维操作之间使用距离徙动校正(RCMC),对距离和方位进行了近似的分离处理。
由于RCMC是在距离时域-方位频域中实现的,所以也可以进行高效的模块化处理。
因为方位频率等同于多普勒频率,所以该处理域又称为“距离多普勒”域。
RCMC的“距离多普勒”域实现是RDA与其他算法的主要区别点,因而称其为距离多普勒算法。
距离相同而方位不同的点目标能量变换到方位频域后,其位置重合,因此频域中的单一目标轨迹校正等效于同一最近斜距处的一组目标轨迹的校正。
这是算法的关键,使RCMC能在距离多普勒域高效地实现。
2.算法概述图1示意了RDA的处理流程。
1.当数据处在方位时域时,可通过快速卷积进行距离压缩。
也就是说,距离FFT后随即进行距离向匹配滤波,再利用距离IFFT完成距离压缩。
图1(a)和图1(b)就是这种情况,图1(c)则不同。
2.通过方位FFT将数据变换至距离多普勒域,多普勒中心频率估计以及大部分后续操作都将在该域进行。
3.在距离多普勒域进行随距离时间及方位频率变化的RCMC,该域中同距离上的一组目标轨迹相互生命。
RCMC将距离徙动曲线拉直到与方位频率轴平等的方向。
4.通过每一距离门上的频域匹配滤波实现方位压缩。
5.最后通过方位IFFT将数据变换回时域,得到压缩后复图像。
如果需要,还进行幅度检测及多视叠加。
以下各节将依次讨论包括两种不同二次距离压缩(SRC)实现在内的所有步骤。
讨论基于机载C波段仿真数据,参数如表1所示。
表1距离信号和方位信号采样的差别图1 RDA 的三种实现框图3. 低斜视角下的RDA首先考察无需SRC 的简单低斜视角情况,处理步骤与图1中的基本RDA 相同。
SAR(Synthetic:[sin'θetik] Aperture:['æpətjuə] Radar;:['reidɑ:] SAR,合成孔径雷达)SAR是一种可成像的雷达,它所用的雷达波段大约是300MHz到30GHz。
比如一般用的波段是1~10GHz的合成孔径雷达,大气对这种波段的影响不大。
也就是说如果天上有一个合成孔径雷达卫星,白天黑夜、大气的云雾雨雪等天气变化对雷达看到的结果影响甚微,可忽略不计。
所以合成孔径雷达是一种全天时、全天候的雷达,它所成的图像就是SAR图像了。
SAR图像的场景和照相机拍出来的场景类似,只不过波段不同看到的事物也不一样。
SAR都是斜视的,而光学的可以垂直照射。
SAR卫星方面,我记得最早发射的是加拿大的Radarsat,且有后续计划。
美国有航天飞机上载的SIR-C等合成孔径雷达。
日本现在有ALOS卫星上载的PALSAR合成孔径雷达(1.27GHz)。
德国的有TerraSAR系列。
据我所知,现在分辨率最高的是德国的X波段SAR系统,数据不好弄到;日本的PALSAR的SAR图像可以到官方网站下载到示例数据。
加拿大的Radarsat和美国的SIR-C数据也是可以到网上下载到的。
机载SAR方面,几乎数的上的雷达强国都有自己的系统。
机载SAR图像有日本的,法国的,德国的,美国的,但是在网络上找这种图像要费点功夫,不是很容易!中国虽然也有,但公开的资料较少,公开的图像资料就更少了。
SAR图像处理软件推荐欧空局的一个免费开源关键PolSARpro(我用过的),可以到欧空局网站上下载,里面的pdf有更详细的介绍SAR及其图像处理等内容。
inSAR技术基于Photoshop插件架构的合成孔径雷达(SAR)图像处理与评估系统主要功能.以图像评估插件的开发为例对关键技术进行了分析.结果表明,采用Photoshop插件方式,可以避免复杂的内存管理编程和用户界面设计,充分利用Photoshop的图形处理功能,减少了工作量,并提高系统稳定性和可用性.所以sar是基于photoshop插件的合成孔径雷达SAR(Synthetic Aperture Radar,合成孔径雷达)问:机载合成孔径雷达sar 多久能生一幅图像就是说采图周期怎么算?最佳答案我们按照最简单的条带式来说,每次生成的是一块图像,这块图像在距离向是全部的范围,在方位向则需要根据你系统的运算能力选择合适的长度。
星载sar方位分辨率计算
星载SAR(合成孔径雷达)的方位分辨率计算公式为:分辨率= λ / (2 * Δθ),其中λ表示雷达波长,Δθ表示SAR雷达天线接收到的目标信号的相位差。
此公式说明,方位分辨率与波长的比例成正比,即波长越短,方位分辨率越高。
因此,要提高方位分辨率,需要减小波长或减小目标信号的相位差。
另外,合成孔径观点的SAR方位向分辨率表达式为:R_a = λR / 2L = l / 2,其中λ表示雷达波长,R为斜距,L为合成孔径长,l为真实雷达孔径长。
从该式可以看出,要提高方位向分辨率,需要减小真实孔径长度l或增大合成孔径长度L。
另外,合成孔径雷达由于自身在方位向上的移动,在照射目标过程中合成了一个等效的大天线,从而实现方位向高分辨率。
对于真实孔径雷达来说,它的方位向分辨率为ρ = Hλ / (Dsinβ),其中H为天线距地高度,β为俯角,λ为波长,D为天线长度。
当雷达工作频率固定后,要提高方位分辨率必须增大天线长度D,这会受到雷达载体的限制。
总之,星载SAR的方位分辨率取决于多个因素,包括雷达波长、天线尺寸、目标信号的相位差等。
要提高方位分辨率,需要综合考虑这些因素并采取相应的措施。
合成孔径雷达SAR综述合成孔径雷达(SAR) 是一种高分辨机载和星载遥感技术,用于对地形等场景上的远程目标进行成像。
1951 年,Carl Wiley 意识到,如果在雷达沿直线路径移动时收集回波信号,则接收信号的多普勒频谱可用于合成更长的孔径,以便提高沿轨道维度的分辨率。
1953 年,当一架 C-46 飞机绘制佛罗里达州基韦斯特的一段地图时,形成了第一张实测SAR 图像。
第一个星载卫星SAR 系统由美国国家航空航天局 (NASA) 的研究人员开发并于 1978 年投入 Seasat。
SAR 模式根据雷达天线的扫描方式,SAR 的模式可分为三种。
如下图所示,当雷达收集其行进区域的电磁 (EM) 反射波,观察与飞行路径平行的地形带时,这种模式称为侧视 SAR或带状 SAR。
当雷达跟踪并将其电磁波聚焦到一个固定的、特定的感兴趣区域时,这种模式称为聚束 SAR,如下图所示。
SAR 操作的另一种模式称为扫描SAR,它适用于雷达在高空飞行并获得比模糊范围更宽的条带时。
条带的这种增强会导致距离分辨率的下降。
如下图所示。
对于这种模式,照射区域被划分为几段,每段被分配到不同的条带的观察。
随着雷达平台的移动,雷达在一段时间内照射一个段,然后切换到另一个段。
这种切换是在特定的方法中完成的,使得所需的条带宽度被覆盖,并且当平台在其轨道上前进时没有留下任何空白段。
SAR 系统设计通用 SAR 系统框图如下图所示。
所有的定时和控制信号都由处理器控制单元产生。
首先,SAR 信号(线性频率调制(LFM)脉冲或阶跃频率波形)由波形发生器生成并传递到发射机。
大多数 SAR 系统使用单个天线或两个紧密放置的天线进行发射和接收,这样系统通常在单站配置下工作。
SAR 天线、转换器和天线波束形成器可沿场景或目标方向形成和引导主波束。
发射的 SAR 信号从场景或目标反射回来后,接收到的信号由 SAR 天线收集并传递给接收机。
接收机输出后的信号被模数转换器采样和数字化。
合成孔径长度
合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种利用微波射线成像的技术,通过利用目标反射回来的电磁波信号,从而获取反射体的距离、速度和方向等信息。
合成孔径雷达技术主要应用在军事、航天、地球科学、地球资源等领域。
其中,合成孔径
雷达的重要参数是合成孔径长度,本文就合成孔径长度进行详尽论述。
1. 合成孔径雷达成像原理
合成孔径雷达的分辨率一般由以下三个因素所影响:
(1)发射频率。
由于发射频率越高,其波长越短,因此对于距离相同的目标,发射频率越高,其分辨率也越高。
(2)接收天线的大小。
天线大小越大,则接收信号的能力也会越强,因此其分辨率也会越高。
(3)合成孔径长度。
合成孔径长度是用于表示SAR图像分辨率的一个重要参数。
当合成孔径长度越大时,其所形成的图像分辨率越高。
合成孔径雷达的合成孔径长度(Synthetic Aperture Length)是合成孔径雷达成像分辨率的重要参数之一。
合成孔径长度是指从雷达发射天线到雷达接收天线所经过的距离。
合成孔径长度越大,则所形成的SAR图像的分辨率也越高。
合成孔径雷达的合成孔径长度一般有两种不同的定义方式,分别是实际合成孔径长度(Actual Synthetic Aperture Length)和等效合成孔径长度(Equivalent Synthetic Aperture Length)。
等效合成孔径长度是指将距离不同的反射体所接受到的信号利用计算的方法,将其处
理成一条等价于以某一距离为合成孔径长度时所接受到的信号。
等效合成孔径长度多应用
在机载雷达上,使得机载雷达系统可以在有限的距离条件下,获得更高分辨率的SAR图
像。
综上,合成孔径长度是合成孔径雷达成像分辨率的重要参数之一。
实际合成孔径长度
和等效合成孔径长度是两种不同的定义方式。
合成孔径雷达技术在军事、航天、地球科学、地球资源等领域有广泛的应用,未来随着技术的不断提高,合成孔径雷达技术的应用将会
越来越广泛。