合成孔径雷达差分干涉测量
- 格式:ppt
- 大小:2.21 MB
- 文档页数:18
合成孔径雷达⼲涉测量概述合成孔径雷达⼲涉测量(InSAR)简述摘要:本⽂主要介绍了合成孔径雷达⼲涉测量技术的发展简史、基本原理、及其3种基本模式,并且对其数据处理的基本步骤进⾏了概述。
最后,还讲述合成孔径雷达⼲涉测量的主要应⽤,并对其未来发展进⾏了展望。
关键字:合成孔径雷达合成孔径雷达⼲涉测量微波遥感影像1.发展简史合成孔径雷达(Synthetic Aperture Radar,SAR)是⼀种⾼分辨率的⼆维成像雷达。
它作为⼀种全新的对地观测技术,近20年来获得了巨⼤的发展,现已逐渐成为⼀种不可缺少的遥感⼿段。
与传统的可见光、红外遥感技术相⽐,SAR 具有许多优越性,它属于微波遥感的范畴,可以穿透云层和甚⾄在⼀定程度上穿透⾬区,⽽且具有不依赖于太阳作为照射源的特点,使其具有全天候、全天时的观测能⼒,这是其它任何遥感⼿段所不能⽐拟的;微波遥感还能在⼀定程度上穿透植被,可以提供可见光、红外遥感所得不到的某些新信息。
随着SAR 遥感技术的不断发展与完善,它已经被成功应⽤于地质、⽔⽂、海洋、测绘、环境监测、农业、林业、⽓象、军事等领域。
L. C. Graham 于1974 年最先提出了合成孔径雷达⼲涉测量(InSAR )三维成像的概念,并⽤于⾦星测量和⽉球观察。
后来Zebker、G. Fornaro及A. Pepe 等做出了进⼀步的研究,以解决InSAR 处理系统中有关基线估计、SAR 图像配准、相位解缠及DEM ⽣成等⽅⾯的问题。
⾃1991 年7 ⽉欧空局发射载有C 波段SAR 的卫星ERS- 1 以来,极⼤地促进了有关星载SAR 的InSAR 技术研究与应⽤。
由于有了优质易得的InSAR 数据源,⼤批欧洲研究者加⼊到这个领域,亚洲(主要是⽇本)的⼀些研究者也开展了这⽅⾯的研究。
⽇本于1992 年2 ⽉发射了JERS- 1,加拿⼤于1995 年初发射了RADARSAT,特别是1995 年ERS- 2 发射后,ERS- 1 和ERS- 2 的串联运⾏极⼤地扩展了利⽤星载SAR ⼲涉的机会,为InSAR 技术的研究提供了数据保证。
dinsar概念
"DInSAR"是差分干涉合成孔径雷达(Differential Interferometric Synthetic Aperture Radar)的缩写。
它是一种利用合成孔径雷达(SAR)数据进行地表形变监测和测量的技术。
DInSAR技术基于雷达干涉原理,通过比较两个或多个不同时刻的SAR图像,利用相位差的变化来推断地表的形变情况。
具体来说,DInSAR技术使用两个或多个SAR图像的相干性信息,通过相位差的计算和分析,可以检测和测量地表的沉降、隆起、位移等形变现象。
DInSAR技术的关键是利用雷达波束的相干性来提取地表形变信息。
它可以应用于多个领域,如地质灾害监测、地下水抽采引起的地面沉降、地震活动引起的地表位移等。
DInSAR技术具有高精度、大范围、无需地面控制点等优点,因此在地表形变监测和地质灾害预警等方面具有广泛的应用前景。
需要注意的是,DInSAR技术的应用需要具备一定的雷达数据处理和解释能力,以及对地质地貌和形变机制的理解。
因此,它通常由专业的遥感和地球科学领域的研究人员和工程师来进行研究和应用。
遥感问答之SAR、InSAR、D-InSAR ⼩课堂在地质灾害监测相关场合中经常会出现“SAR”、“InSAR”、“D-InSAR”这些名词的⾝影,那么是如何⼯作的?针对这些问题,在什么是SAR? SAR有什么特征?InSAR、D-InSAR是如何⼯作的?究竟什么是这⾥和⼤家⼀起学习⼀下关于SAR的那些事。
什么是SAR?SAR是指雷达成像系统中的合成孔径雷达(Synthetic Aperture Radar),与之相对的是真实孔径雷达(Real Aperture Radar,RAR)。
SAR图像和光学图像的对⽐(姜秀鹏等,2016)为了突破真实孔径雷达成像分辨率受天线长度的限制,通过将天线搭载在移动的平台上(如飞机、卫星等),使之沿直线运动,在不同位置上接收同⼀地物的回波信号,进⽽对地物多次回波信号进⾏相关解调压缩处理,“延长”雷达天线的长度,使其具有更⾼分辨率的成像能⼒。
国际上主流SAR成像系统的分辨率已可达⽶级甚⾄亚⽶级,如德国的TerraSAR-X(1m)、美国的FIA系列(0.3或0.1m)等,与光学成像系统相⽐也不逊⾊。
2016年8⽉成功发射的⾼分三号(GF-3)卫星是我国⾸颗分辨率达到1m的多极化合成孔径雷达(SAR)成像卫星,⾃2017年1⽉投⼊使⽤后,已在多个领域展开应⽤。
SAR为什么能够“全天候”、“全天时”?据统计,地球上有40%~60 %的地区经常被云层覆盖,⽽在地质灾害频发的⼭地地区,云覆盖程度更甚。
在这种情况下,⼀般很难利⽤光学遥感来进⾏观测,⽽微波传感器却有能够穿透云⾬的能⼒,能够在云层覆盖的情况下对地物进⾏观测。
微波传感器(ASAR,灰⾊图)的云穿透效果,彩⾊底图底图为光学传感器(MERIS)(图源:Space in Images© ESA)根据传感器能够接受电磁波频率的不同,可将对地观测系统⼤致可分为两类,即光学遥感和微波遥感。
微波的波长处于1mm~1000 mm范围内,⾜够长的波长使其能够绕过云层的粒⼦结构进⾏传播,也就是“衍射现象”;波长⼤于3 cm的微波甚⾄可以在⼤⾬环境下传播。
DInSAR全称Differential Interferometric Synthetic Aperture Radar,合成孔径雷达差分干涉测量技术。
➢InSAR技术提取地表DEM,需要假设两次成像期间,地表没有发生变化,地物产生的随机相位也是不变的。
➢而DInSAR则是一种根据多期SAR数据,获取地表形变信息的方法之一。
根据差分干涉所需影像的多少,DInSAR可以分为:二轨法,三轨法和四轨法。
⏹二轨法:利用两景影像,主影像为形变后获取的数据,辅影像为地表形变前获取的数据。
将两者进行干涉处理,生成干涉图,干涉图中包括地形相位和形变相位,然后引入外部DEM数据,将DEM数据模拟成地形相位,从干涉图中减去,即可得到地表的形变相位。
优点:所需SAR数据少缺点:外部引入的DEM包含的误差会影响最终的差分干涉结果流程图:⏹三轨法:利用三景影像,其中两景是形变发生前获取的数据,另一景是形变后获得的,选区形变前后两景影像中的一景为主影像,其余为辅影像,分别和主影像进行配准,这样便生成两组干涉相位,一组是形变前的,只有地形信息;一组是形变后的,包含形变信息和地形信息;然后将形变后干涉相位减去已经解缠的形变前的相位,得到只含有形变信息的干涉相位,最后进行相位解缠,相位转高程和地理编码,获取地表的形变信息。
优点:无需外部DEM数据及其引入的DEM误差;缺点:需要进行相位解缠,解缠结果的好坏直接影响差分的结果;流程图:四轨法:与二轨法类似,但是不需要外部引入的DEM数据,需要四景影像;基本思路是将形变发生前获取的两幅影像进行干涉处理,得到形变前的干涉相位,只包含地形信息;然后将形变后的两景影像进行干涉处理,得到形变后的干涉相位。
从形变后的干涉相位中减去形变前的干涉相位,得到地表的形变相位,然后相位解缠,得到差分干涉图。
流程图:InSAR获取DEM条件:两期影像获取期间地物没有明显的形变,且地物产生的随机相位是相同的;流程图:。
关于InSAR和D-InSAR的数据处理一、合成孔径雷达干涉技术(InSAR)合成孔径雷达干涉技术出现于20世纪60年代末.它是SAR与射电天文学干涉测量技术结合的产物。
当SAR扫过地面同一目标区域时,利用成像几何关系,通过成像、一些特殊的数据处理和几何转换,即可提取地表目标区域的高程信息和形变信息。
由于InSAR 技术有效利用了SAR的回波相位信息,测高精度为米级甚至亚米级,而一般雷达立体测量方法只利用灰度信息来实现三维制图,测高精度仅能达到数十米,因此该技术迅速引起了地学界及相关领域科研工作者的极大兴趣,现已成为微波遥感领域的研究热点.干涉合成孔径雷达利用多个接收天线观测得到的回波数据进行干涉处理,可以对地面的高程进行估计,对海流进行测高和测速,对地面运动目标进行检测和定位。
接收天线相位中心之间的连线称为基线,按照基线和航向的夹角,人们将InSAR分为基线垂直于航向的切轨迹干涉和沿航向的顺轨迹干涉。
切轨迹干涉可以快速提取地面的三维信息,顺轨迹干涉主要用于动目标检测和海洋水流与波形测量。
二、InSAR 基本原理InSAR 测量模式主要有两种:一种是双天线单轨(Single Pass)模式,主要用来生成数字高程模型,一般用于机载SAR;另一种是双轨(Two Pass) 模式,主要用于获取地表变形,一般用于星载SAR.下面以重复轨道干涉测量为例,简要介绍InSAR 技术的基本原理(见图1).假设卫星以一定的时间间隔和轨道偏离(通常为几十米到1km 左右)重复对某一区域成像,并在两次飞行过程中处于不同的空间位置1S 和2S ,则空间干涉基线向量为B,长度为B;基线向量B 与水平方向的夹角为基线倾角α。
1S 和2S 至地面点P 的斜距分别为R 和R+△R;将基线沿视线方向分解,得到平行于和垂直于视线向的分量||B 、'B ;H 为1S 到参考面的高度;从1S 发射波长为λ的信号经目标点P 反射后被1S 接收,得到测量相位1ϕ,114arg{}R u πϕλ=+(1)同样,另一空间位置2S 上测量到相位2ϕ,224()arg{}R R u πϕλ=+∆+(2)式中,arg{1u }和arg{2u }表示不同散射特性造成的随机相位.假设两幅图中随机相位的贡献相同,则1S 和2S 关于目标P 点的相位差124R πφϕϕλ=-=-∆(3) 也称为干涉相位,可由经过配准的两幅SAR SLC 图共扼相乘得到.根据图1中的几何关系并利用余弦定理可得: 222()sin()2R B R R RBθα+-+∆-=(4) cos h H R θ=-(5)由于R R ∆且R B ,则||sin()R B B θα∆≈-=(6) (4)、(5) 两式即为In SAR 确定高程的原理性公式.三、合成孔径雷达差分干涉测量(D-InSAR)D-InSAR 技术是在主动式微波合成孔径雷达 SAR 相干成像基础上发展起来的,它以合成孔径雷达复数据提供的相位信息为信息源,可从包含目标区域地形和形变等信息的一幅或多幅干涉纹图中提取地面目标的微小形变信息。
DInSAR全称Differential Interferometric Synthetic Aperture Radar,合成孔径雷达差分干涉测量技术。
➢InSAR技术提取地表DEM,需要假设两次成像期间,地表没有发生变化,地物产生的随机相位也是不变的。
➢而DInSAR则是一种根据多期SAR数据,获取地表形变信息的方法之一。
根据差分干涉所需影像的多少,DInSAR可以分为:二轨法,三轨法和四轨法。
⏹二轨法:利用两景影像,主影像为形变后获取的数据,辅影像为地表形变前获取的数据。
将两者进行干涉处理,生成干涉图,干涉图中包括地形相位和形变相位,然后引入外部DEM数据,将DEM数据模拟成地形相位,从干涉图中减去,即可得到地表的形变相位。
优点:所需SAR数据少缺点:外部引入的DEM包含的误差会影响最终的差分干涉结果流程图:⏹三轨法:利用三景影像,其中两景是形变发生前获取的数据,另一景是形变后获得的,选区形变前后两景影像中的一景为主影像,其余为辅影像,分别和主影像进行配准,这样便生成两组干涉相位,一组是形变前的,只有地形信息;一组是形变后的,包含形变信息和地形信息;然后将形变后干涉相位减去已经解缠的形变前的相位,得到只含有形变信息的干涉相位,最后进行相位解缠,相位转高程和地理编码,获取地表的形变信息。
优点:无需外部DEM数据及其引入的DEM误差;缺点:需要进行相位解缠,解缠结果的好坏直接影响差分的结果;流程图:四轨法:与二轨法类似,但是不需要外部引入的DEM数据,需要四景影像;基本思路是将形变发生前获取的两幅影像进行干涉处理,得到形变前的干涉相位,只包含地形信息;然后将形变后的两景影像进行干涉处理,得到形变后的干涉相位。
从形变后的干涉相位中减去形变前的干涉相位,得到地表的形变相位,然后相位解缠,得到差分干涉图。
流程图:InSAR获取DEM条件:两期影像获取期间地物没有明显的形变,且地物产生的随机相位是相同的;流程图:。