论脱硝旁路烟道尿素直喷热解方案的优劣性
- 格式:pdf
- 大小:1.18 MB
- 文档页数:1
脱硝直喷系统运行中缺陷分析及处理措施摘要:尿素直喷系统是指将尿素溶液直接喷至锅炉尾部烟道内,通过高温烟气将尿素分解为氨气和水,而氨气经由催化剂与氮氧化物反应生成无污染的氮气和水的一套系统。
尿素直喷系统安全、设备少、耗电率低,但运行中也会出现各种缺陷和隐患,本文就直喷系统运行中出现的缺陷及处理措施进行一些简单介绍。
关键词:脱硝;尿素直喷;缺陷0引言:氮氧化物(NOx)是火力发电厂燃烧过程中产生的危害很大很难处理的污染物之一,它主要分为NO和NO2。
而NO在大气中能很快氧化成NO2。
NO2具有很高的危害性,它对人体危害具大,主要破坏呼吸系统,同时它也会损害动植物,破坏臭氧层,引起酸雨,光化学烟雾和温室效应。
所以烟气脱硝是火力发电厂必不可少的一个环节。
目前火电厂烟气脱硝系统一般采用SCR系统,主要原理是NH3+NO x+O2→N2+H2O,而氨气(NH3)的生成方式各不相同,主要有氨气直喷、尿素热解制氨、尿素直喷。
氨属于可燃、易爆、具有腐蚀性的物质,而尿素无毒无味、易于储存、安全性大大高于成品氨。
且尿素直喷相较于尿素热解,设备简单、电耗小。
这里主要针对尿素直喷系统简单介绍一些缺陷及处理措施。
1按尿素直喷系统分析出现的一些缺陷及处理方法尿素直喷系统:分为尿素系统、稀释水系统、压缩空气及冷却风系统。
1.1尿素系统:尿素系统是尿素直喷的核心,从尿素制备到稀释后喷入炉膛,管路和阀门的泄露都有可能影响尿素的供给,此类缺陷只能通过加强现场的巡查,加大在线监测系统的检测来及时发现。
该缺陷在在线监测系统上的表现为尿素调门明显增加,但尿素流量不正常降低,可根据在线监测初步判断缺陷位置:如各炉尿素供给量均明显降低则缺陷部位可能为尿素总母管或其上游阀门,或者尿素制备后总滤网堵塞;单台机组尿素供给量明显降低,则缺陷部位可能为尿素母管至直喷分配小间之间;单侧直喷系统尿素流量明显降低,则缺陷可能为单侧直喷小间内尿素发生泄露或单侧直喷系统尿素滤网堵塞;如尿素直喷单枪流量低则可能为尿素直喷单枪喷组堵塞。
火电厂脱硝尿素烟气热解、水解工艺对比探讨摘要:尿素由于运输储存安全方便和对环境无害的特点,成为燃煤电厂SCR 烟气脱硝还原剂液氨的可靠替代品.选择合适的尿素制氨技术是SCR烟气脱硝液氨改尿素工程的关键环节.通过工程比对分析采用尿素热解和尿素水解工艺的投资费用和运行成本,探讨分析在火电厂初期投资过程中采用尿素热解和水解工艺差异。
关键词:尿素;热解;水解1.前言《危险化学品重大危险源辨识》(GB 18218—2009)规定氨的贮存量若超过10 t 即成为重大危险源。
由于前期大规模火电厂烟气脱硝改造时主要考虑投资和运行成本因素,目前国内大部分火电厂SCR 烟气脱硝采用液氨作为还原剂,而液氨储存量一般按照满足全厂机组满负荷工况运行5~7 天所需进行设计,因此火电厂氨区基本都属于重大危险源。
但随着国内电厂对安全工作要求越来越高,部分火电厂需要将烟气脱硝采用液氨更改为尿素,本文针对尿素热解和水解工艺进行对比分析,探讨那种工艺更为经济。
针对火电厂SCR烟气脱硝尿素热解项目,调研了通辽霍林河坑口发电有限责任公司#1锅炉SCR脱硝尿素法热解炉电加热器改造工程、河北大唐国际唐山热电有限责任公司2号机组脱硝尿素热解系统节能升级改造项目,就以上两个项目的调研情况进行分析,同时比选更适合高昌公司的尿素热解脱硝方案。
1.尿素水解与尿素热解工艺介绍2.1 脱硝还原剂制备主要工艺介绍目前燃煤电厂脱硝还原剂制备主要有液氨、尿素热解、尿素水解三种工艺。
本工程环评报告中明确采用尿素制氨工艺。
在此仅对尿素水解及尿素热解两种工艺进行比较分析。
2.2.水解系统尿素水解系统有意大利Siirtec Nigi公司的Ammogen工艺和美国Wahlco公司及Hamon公司的U2A工艺。
目前国内尚无Ammogen水解系统使用业绩,而U2A水解工艺国内已有电厂开始采用,如国电青山电厂、云南宣威电厂有采用美国walhco公司的U2A尿素水解工艺。
典型的尿素水解制氨系统如下图所示:尿素颗粒加入到溶解罐,用去离子水将其溶解成质量浓度为40%—60%的尿素溶液,通过溶解泵输送到储罐;之后尿素溶液经给料泵、计量与分配装置进入尿素水解制氨反应器,在反应器中尿素水解生成NH3、H2O和CO2,产物经由氨喷射系统进入SCR脱硝系统。
尿素水解与热解在烟气脱硝工程中应用及对比分析摘要:现有烟气脱硝工程中还原剂在液氨、氨水、尿素中进行选择,液氨和氨水都是有毒物质,其运输和储存都属于重大危险源,具有较大的安全风险。
国家对这两种物质的管控相当严格。
国际上一般是从安全角度考虑。
20世纪八十年代,为了解决合成氨、尿素装置水体排放环保问题,尿素深度分解技术开始在大、中型合成氨尿素厂逐步应用。
关键词:尿素水解;热解;烟气脱硝;应用液氨、氨水及尿素均可作为烟气脱硝还原剂,随着脱硝还原剂储存、制备及供应技术的日渐成熟,脱硝还原剂的选择主要从安全与经济角度考虑。
尽管国外以液氨为还原剂的电站锅炉烟气脱硝工程至今未出现严重的氨泄漏事故,但由于从地方管理部门获得液氨的使用与运输许可证越来越困难,安全防范要求越来越严,相应的安全成本越来越大,因此,氨水和尿素正越来越多地作为脱硝还原剂使用。
1 SCR还原剂的选择选择性催化还原法(SCR)的原理是在催化剂作用下,还原剂(如NH3)在290~400℃下有选择地将一氧化氮(NO)和二氧化氮(NO2)还原成氮气(N2),而几乎不发生氨气(NH3)与氧气(O2)的氧化反应,从而提高了氮气(N2)的选择性,减少了氨气(NH3)的消耗。
主要反应如下所示:4NH3+4NO+O2=4N2+6H2O(1),4NH3+6NO=5N2+6H2O(2)4NH3+2NO2+O2=3N2+6H2O(3),8NH3+6NO2=7N2+12H2O(4)选择性催化还原法(SCR)技术比较成熟,应用较为普遍。
在合理的布置下,可达到80%~90%,甚至是90%以上的脱硝效率,且反应产物无毒无污染,二次污染小。
脱硝还原剂主要有液氨、氨水和尿素。
氨是危险品,有毒,氨气对眼、鼻、皮肤有刺激性和腐蚀性。
氨水无色透明且具有刺激性气味,工业氨水中氨浓度为25%~28%,有燃烧爆炸危险。
氨水易挥发,会产生氨气,对大气造成污染。
氨水和液氨都属于化学危险品。
而尿素是最简单的有机化合物之一,是一种白色晶体,常作为氮肥使用。
尿素热解和水解技术在锅炉烟气脱硝工程中的应用尿素热解和水解技术在锅炉烟气脱硝工程中的应用引言:锅炉烟气脱硝工程是环保领域中的重要一环,其主要目的是降低锅炉烟气排放中的氮氧化物(NOx)浓度,减少大气污染对环境和人类健康的影响。
尿素热解和水解技术作为一种现代化的脱硝方法,其应用在锅炉烟气脱硝工程中逐渐受到关注。
本文将从尿素热解和水解技术的原理、应用以及优势等方面综合评估其在锅炉烟气脱硝工程中的价值和作用。
一、尿素热解和水解技术的原理1. 尿素热解技术原理尿素热解技术是利用高温下尿素分解生成氨和氰酸酯的反应过程。
尿素经过加热后产生氨气,而氨气可以与烟气中的NOx反应生成氮气和水,从而实现脱硝的目的。
2. 尿素水解技术原理尿素水解技术是将尿素与碱性溶液反应生成氨气的过程。
水解反应一般在碱性环境中进行,并通过调节反应条件和溶液浓度来实现对NOx 的脱除。
二、尿素热解和水解技术在锅炉烟气脱硝工程中的应用1. 尿素热解技术的应用尿素热解技术因其简便、高效的特点在锅炉烟气脱硝工程中得到广泛应用。
通过在锅炉燃烧过程中注入尿素,可以有效降低烟气排放中的NOx浓度,达到减少大气污染的效果。
尿素热解技术还可以与其他脱硝技术相结合,提高脱硝效果。
2. 尿素水解技术的应用尿素水解技术是一种适用于低温、低压条件下的脱硝方法,因其操作简便、能耗低的特点受到关注。
该技术主要应用于小型锅炉和工业锅炉等烟气处理中,可以有效降低烟气排放中的NOx浓度,实现环境保护的目标。
三、尿素热解和水解技术的优势1. 高效性尿素热解和水解技术在锅炉烟气脱硝工程中具有高效的优势。
通过合理设计脱硝装置和优化工艺参数,可以实现高效的脱硝效果,使锅炉烟气排放中的NOx浓度大幅度降低。
2. 环保性尿素热解和水解技术对环境友好,其产生的副产物往往可以再利用。
在脱硝过程中,尿素经过热解或水解反应后生成的氮气、水和少量的氨气等对环境没有明显的污染。
3. 经济性尿素热解和水解技术的投资和运维成本相对较低,适用于各种规模和类型的锅炉。
SCR、SNCR、SNCR4.0脱硝技术对比现今烟气脱硝技术可分为干法和湿法两大类,其中干法脱硝中的选择性催化还原(SCR)和选择性非催化还原(SNCR)技术是市场应用最广(约占60%烟气脱硝市场)、技术最成熟的脱硝技术。
SCR脱硝技术即选择性催化剂还原法,是向催化剂上游的烟气中喷入氨气或其它合适的还原剂、利用催化剂将烟气中的NOX转化为氮气和水。
SNCR脱硝技术即选择性非催化还原技术,是一种不用催化剂,在850~1100℃的温度范围内,将含氨基的还原剂(如氨水,尿素溶液等)喷入炉内,将烟气中的NOx还原脱除,生成氮气和水的清洁脱硝技术。
SNCR和SCR脱硝技术相比较的优缺点:1.SCR使用催化剂,SNCR不使用催化剂。
2.SNCR参加反应的还原剂除了可以使用氨以外,还可以用尿素。
而SCR烟气温度比较低,尿素必须制成氨后才能喷入烟气中。
3.SNCR因为没有催化剂,对温度要求严格,温度过低,NOx转化率低;温度过高,NH3则容易被氧化为NOx,抵消了NH3的脱除效率;一方面,降低了脱硝效率,另外一方面,增加了还原剂的用量和成本。
4.SNCR由于反应温度窗的缘故,反应时间以及喷氨点的设置以及切换受锅炉炉膛和/或受热面布置的限制。
5.为了满足反应温度的要求,喷氨控制的要求很高。
喷氨控制成了SNCR的技术关键,也是限制SNCR脱硝效率和运行的稳定性,可靠性的最大障碍。
6.SNCR氨的泄漏量大,不仅污染大气,而且在燃烧含硫燃料时,由于有(NH4)2SO4形成,会使空气预热器堵塞。
,而SCR控制在2~5ppm。
7.SNCR由于反应温度窗以及漏氨的限制,脱硝效率较一般为30~50%,对于大型电站锅炉,脱硝效率一般低于40%。
而SCR的脱硝效率在技术上几乎没有上限,只是从性价比上考虑,国外一般性能保证值为90%。
8.SCR在催化剂的作用下,部分SO2会转化成SO3,而SNCR没有这个问题。
SNCR4.0泰北氨基复合脱硝设备是一种新型脱硝技术,它的工作原理是在炉膛内喷入固体脱硝还原剂,该还原剂在炉中迅速分解,与烟气中的二氧化氮反应生成氮气和水,不与烟气中的氧气发生作用。
烟气脱硝技术方案的对比烟气脱硝技术是治理大气污染的关键措施之一,能够有效降低烟气中的氮氧化物(NOx)排放,减少对大气的污染。
目前,烟气脱硝技术主要包括选择性催化还原(SCR)和选择性非催化还原(SNCR)两种方法。
下面将对这两种技术方案进行对比分析。
首先是SCR技术,它使用催化剂将氨气(NH3)和烟气中的NOx进行催化反应,生成无害的氮气和水。
SCR技术具有高脱硝效率、广泛适用性和成熟的工艺流程等优点。
其污染物排放浓度可在10毫克/立方米以下,脱硝效率可达90%以上。
此外,SCR技术在高温烟气环境下具有较好的稳定性,适用于火电厂、炉窑等大规模烟气脱硝场合。
但SCR技术也存在一些问题。
首先,该技术需要额外添加氨气作为还原剂,增加了运行成本。
其次,SCR催化剂的使用寿命受到积灰、硫酸盐腐蚀等因素的影响,需要定期维护和更换,增加了设备运行的复杂性和费用。
此外,SCR技术对烟气中的氧气含量和温度要求较高,如果不满足要求,会影响脱硝效率。
另一种技术方案是SNCR技术,它通过直接添加氨水(NH4OH)或尿素溶液到烟气中,使其中的NOx在高温下发生非催化还原反应,生成氮气和水。
SNCR技术具有投入成本低、操作简便的特点。
它适用于小型燃煤锅炉、工业炉窑等场合,可以在较短的时间内实现脱硝效果。
然而,SNCR技术也存在问题。
首先,其脱硝效率相对较低,通常在40%至70%之间,无法达到SCR技术的高水平。
其次,SNCR技术对烟气温度的要求较高,一定范围内的温度变化会影响脱硝效率。
此外,SNCR技术对氨水或尿素的溶液浓度、喷射位置和喷射方式等参数也有一定要求,需要认真调节和管理。
综上所述,SCR技术和SNCR技术各有特点,适用于不同的烟气脱硝场合。
对于大型火电厂、炉窑等高温烟气场合,SCR技术具有脱硝效率高、稳定性好的优点,但运行成本较高,需要额外添加氨气和定期维护催化剂。
而对于小型燃煤锅炉、工业炉窑等低温烟气场合,SNCR技术具有投入成本低、操作简便的优点,但脱硝效率相对较低。
烟气脱硫脱硝技术的优缺点,详细!目前烟气脱硫技术种类达几十种,按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。
湿法脱硫技术较为成熟,效率高,操作简单。
一、湿法烟气脱硫技术优点:湿法烟气脱硫技术为气液反响,反响速度快,脱硫效率高,一般均高于90%,技术成熟,适用面广。
湿法脱硫技术比拟成熟,生产运行平安可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80%以上。
缺点:生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高。
系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。
分类:常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。
二、干法烟气脱硫技术优点:干法烟气脱硫技术为气同反响,相对于湿法脱硫系统来说,设备简单,占地面积小、投资和运行费用较低、操作方便、能耗低、生成物便于处置、无污水处理系统等。
缺点:但反响速度慢,脱硫率低,先进的可达60-80%。
但目前此种方法脱硫效率较低,吸收剂利用率低,磨损、结垢现象比拟严重,在设备维护方面难度较大,设备运行的稳定性、可靠性不高,且寿命较短,限制了此种方法的应用。
分类:常用的干法烟气脱硫技术有活性碳吸附法、电子束辐射法、荷电干式吸收剂喷射法、金属氧化物脱硫法等。
三、半干法烟气脱硫技术半干法脱硫包括喷雾枯燥法脱硫、半干半湿法脱硫、粉末一颗粒喷动床脱硫、烟道喷射脱硫等。
A喷雾枯燥法:喷雾枯燥脱硫方法是利用机械或气流的力量将吸收剂分散成极细小的雾状液滴,雾状液滴与烟气形成比拟大的接触外表积,在气液两相之间发生的一种热量交换、质量传递和化学反响的脱硫方法。
一般用的吸收剂是碱液、石灰乳、石灰石浆液等,目前绝大多数装置都使用石灰乳作为吸收剂。
一般情况下,此种方法的脱硫率65%~85%。
其优点:脱硫是在气、液、固三相状态下进行,工艺设备简单,生成物为干态的CaSO、CaSO,易处理,没有严重的设备腐蚀和堵塞情况,耗水也比拟少。
火电厂烟气脱硝烟道尿素直喷热解制氨工艺技术应用摘要】陡河发电厂6台机组已于2014年6月全部完成了脱硝改造。
原脱硝改造依据《火电厂大气污染物排放标准(GB13223-2011)》中氮氧化物浓度不超过100mg/Nm3的标准,排放值达到 80mg/Nm3以下。
根据国家发改委《煤电节能减排升级与改造行动计划(2014-2020)》要求,2020年以前,重点地区 NOx 排放浓度执行50mg/Nm3的排放限值。
根据《河北省燃煤发电机组超低排放升级改造专项行动实施方案》(冀气领办[2015]37号)要求,陡河发电厂环保设施必须进行升级改造。
同时该厂尿素热解制氨工艺所需的电耗较大,与节能降耗的趋势背道而驰,本次改造通过引进烟道尿素直喷制氨工艺,降低脱硝厂用电率。
【关键词】脱硝;尿素热解;高温烟气;烟道直喷1概述陡河发电厂#1、2机组已经关停,现役机组为#3-8共六台机组,总装机容量为1300MW。
#3、4机组为日立成套进口的250MW亚临界再热式汽轮发电机组,锅炉为B&W 单汽包、亚临界参数、自然循环汽包炉,一次中间再热,前后墙对冲燃烧方式,单炉膛平衡通风、固态排渣、全钢悬吊结构、露天布置,最大连续出力850t/h,空预器型式是两分仓回转式。
#5~8机组为哈尔滨电站集团生产的200MW超高压再热式汽轮发电机组,锅炉为单汽包、超高压参数、自然循环汽包炉,一次中间再热,四角切圆燃烧方式,单炉膛平衡通风、固态排渣、全钢悬吊结构、露天布置,最大连续出力670t/h,原空预器型式为高温、低温两级管式空气预热器,在脱硝改造时,为满足脱硝系统运行,将其改造为回转式。
#3~8号机组于2012年12月至2014年6月陆续完成了脱硝改造,脱硝系统采用选择性催化还原法(SCR)脱硝装置,以尿素热解产生氨气制备还原剂。
整个SCR系统分为两大部分,即SCR反应器、尿素储存和供应系统设备。
尿素热解采用高温空气,首先由稀释风机将空预器出口约300℃二次风增压,然后用电加热器将高温空气加热到约600℃。
SCRSNCRSNCR40脱硝技术优缺点首先,SCR(Selective Catalytic Reduction)是一种高效的脱硝技术,其原理是将氨水(NH3)或尿素蒸汽注入废气中,并在催化剂的作用下,使氨和氮氧化物(NOx)发生反应生成氮气(N2)和水蒸气(H2O)。
SCR技术的优点如下:1.高脱硝效率:SCR技术能够将NOx排放物转化为无害的氮气和水蒸气,其脱硝效率通常可达到90%以上。
2.广泛适用性:SCR技术可以适用于各种不同类型的燃烧设备,包括煤炭锅炉、发电机组等。
3.低消耗:SCR技术在脱硝过程中所需的氨水或尿素用量相对较低,因此具有较低的运行成本。
然而,SCR技术也存在一些缺点:1.对催化剂的要求高:SCR技术需要使用催化剂来促进反应,但催化剂的选择和维护较为复杂,且催化剂的失效可能会影响脱硝效率。
2.需要较高的运行温度:SCR脱硝需要在相对较高的温度下进行,因此该技术的适用范围受到温度限制。
SNCR(Selective Non-Catalytic Reduction)是另一种常见的脱硝技术,其原理是在废气中喷射氨水或尿素溶液,使其与NOx发生反应生成氮气和水。
SNCR技术的优点如下:1.简单操作:SNCR技术相对于SCR技术而言,设备结构较为简单,操作和维护相对较为容易。
2.适用范围广:SNCR技术适用于各类燃烧设备,无论是煤炭锅炉、发电机组还是工业炉等。
3.较低的投资和运营成本:相对于SCR技术,SNCR技术的投资和运营成本较低。
然而,SNCR技术也存在一些缺点:1.脱硝效率较低:相对于SCR技术,SNCR技术的脱硝效率较低,通常在60-70%之间。
2.可能产生副产品:在SNCR过程中,由于NOx与氨水或尿素的非选择性反应,可能还会产生有害气体,如亚硝酸和二氧化氮等。
3.受温度和氨浓度的限制:SNCR技术对温度和氨浓度有一定的要求,因此在应用中需要针对不同的工况进行调整。
SNCR40是SNCR技术的改进版本,其主要的区别在于SNCR40在喷射氨水前加入了特殊催化剂,并在反应过程中通过优化喷射量和喷射方式来提高脱硝效率。