SCR脱硝系统尿素热解炉热源技术汇编
- 格式:pptx
- 大小:7.12 MB
- 文档页数:37
SCR烟气脱硝尿素热解炉前烟气加热器技术研究徐威【摘要】在以尿素为还原剂的选择性催化还原(SCR)脱硝系统中,热解炉前电加热器耗电量大.为降低电耗,某电厂在640 MW机组脱硝改造中将电加热器系统改造为旁路做备用,增加高温烟气加热器,利用高温烟气对热一次风进行加热,所用高温烟气(约650 ℃、6 000 m3/h(标准状态))从高温再热器后、低温再热器前的水平烟道引出.分析研究了这一技术路线,并对改造效果进行变负荷性能试验. 数据分析结果表明,此项改造技术可行,且实施方便、运行良好,高温烟气加热器完全可取代电加热器,因而可降低机组厂用电率,节省电厂供电成本.【期刊名称】《中国电力》【年(卷),期】2017(050)001【总页数】4页(P177-180)【关键词】燃煤电厂;SCR烟气脱硝;尿素热解;电加热器;高温烟气加热器【作者】徐威【作者单位】中电华创电力技术研究有限公司,上海 200086【正文语种】中文【中图分类】TM621;TK172目前燃煤机组烟气脱硝多采用SCR法,还原剂制备主要采用液氨蒸发和尿素热解技术[1-3]。
尿素热解的优势在于其系统运行的安全性与稳定性,不足是运行能耗高[4-5]。
以 600 MW 机组为例,SCR烟气脱硝尿素热解的热一次风电加热器功率即达908 kW。
如果以锅炉低压再热器前的烟气替代电加热器对热一次风进行加热,即可解决尿素热解电耗高的问题。
此举对机组运行能耗指标的提高具有实际意义[6-7]。
目前,SCR脱硝系统最常见的尿素制氨方法就是热解法,尿素热解的工艺流程如图1所示。
首先,由斗式提升机将尿素输送到含有除盐水的溶解罐,溶解得到质量分数为50%的尿素溶液。
尿素溶液经输送泵输送到尿素溶液储罐,再经给料泵、尿素溶液计量分配装置和雾化喷枪进入热解炉;稀释风经热解炉前加热器加热后,进入热解炉,为尿素的热解提供热量以及将热解后的产物输送到SCR反应器。
为减少加热器能量损耗,稀释风一般采用经空气预热器(空预器)加热后的一次风(下文简称热一次风)。
浅谈关于SNCR尿素法脱硝系统在层燃炉上的应用技术【摘要】随着国家环保要求的日益提高,供热企业烟气脱硝排放已提到各级部门的议事日程。
对于 NOx 排放则可以根据 NOx 产生的过程,采用燃烧优化调整与燃烧后处理技术相结合的方式。
SNCR是一种无需催化剂的脱硝方式,是 Selective Non-Catalytic Reduction 的缩写,其直译为“选择性非催化还原反应”。
由于不需要催化剂,为得到较强的化学反应活性,SNCR 技术需在较高的炉膛温度(900-1150℃)下,用氨或尿素等氨基还原剂来选择性地还原烟气中的 NOx。
一般来说,大型锅炉由于受到炉膛尺寸的影响,还原剂在炉膛内较难均匀混合,SNCR 的脱硝效率将低于 40%,而需要催化剂的SNCR 的脱硝效率可达到 80% 以上。
由于 SNCR脱硝技术投资成本较低、改造方便,适宜协同应用其他脱硝技术,因而在供热企业,尤其是老厂脱硝改造上还是取得了广泛的应用。
【关键词】SNCR ;烟气脱硝技术;原理;应用一、SNCR脱硝技术方案1.SNCR烟气脱硝技术原理SNCR是用尿素内还原剂喷入炉内与NOx进行选择性反应,不用催化剂。
还原剂喷入炉膛温度为800~1250℃的区域,该还原剂(尿素)迅速热分解成NH3并与烟气中的NOx进行SNCR反应生成N2,该方法是以炉膛为反应器。
从SNCR系统逃逸的氨可能来自两种情况,一是由于喷入点烟气温度低影响了氨与NOx的反应;另一种可能是喷入的还原剂过量或还原剂分布不均匀。
SNCR系统烟气脱硝过程是由下面四个基本过程完成:(1)接收、储存、制备还原剂;(2)还原剂的计量输出、与水混合稀释;(3)在锅炉合适位置注入稀释后的还原剂;(4)还原剂与烟气混合进行脱硝反应。
2.SNCR脱硝技术的特点可使用尿素作为还原剂,安全可靠;不使用催化剂,利用锅炉炉膛作为反应器,反应温度800~1250℃;由于不使用催化剂,不产生SO2/SO3的氧化,导致空预器堵塞或腐蚀的机会很小;NH3 逃逸10~15ppm;不产生新的烟风系统压力损失;燃料可以随意变化,不会影响脱硝效率;3.SNCR法NOx控制机理在高温没有催化剂的条件下,氨基还原剂(如尿素、氨气、氨水)喷入炉膛,热解生成NH3与其它副产物,在800~1250℃温度窗口,NH3与烟气中的NOx进行选择性非催化还原反应,将NOx还原成N2与H2O。
浅谈关于SNCR尿素法脱硝系统在层燃炉上的应用技术从理论上来说,层燃炉是一种燃烧设备,它具有较高的燃烧温度和压力,因此容易产生大量的NOx。
为了降低层燃炉排放的NOx,SNCR尿素法脱硝系统被引入其中。
SNCR尿素法脱硝系统利用尿素作为还原剂,通过在高温烟气中加入适量的尿素溶液,使尿素与NOx发生化学反应,生成氮气和水蒸气,并最终达到脱硝的目的。
一、燃烧工况的影响层燃炉的燃烧工况对SNCR尿素法脱硝系统的性能具有重要影响。
燃烧工况主要包括燃烧温度、氧气浓度、烟气流速等参数。
燃烧温度高、氧气浓度低、烟气流速快的工况有利于SNCR尿素法脱硝系统的工作效果。
在设计和应用SNCR尿素法脱硝系统时,需要充分了解层燃炉的燃烧工况,并根据实际情况调整脱硝系统的操作参数,以达到最佳的脱硝效果。
二、尿素溶液的喷射技术在层燃炉上应用SNCR尿素法脱硝系统,喷射技术是至关重要的。
尿素溶液的喷射位置、喷射角度、喷射速度等参数,都会影响脱硝效果。
一般来说,尿素溶液应该在燃烧区域内均匀喷射,并且要保证与NOx的充分混合,以提高反应效率。
设计合理的尿素喷射系统,保证尿素溶液能够准确、稳定地喷入烟气通道内,是保证SNCR尿素法脱硝系统正常运行的关键。
三、脱硝效率的监测与调整在实际应用中,监测和调整脱硝效率是保证SNCR尿素法脱硝系统正常运行的必要手段。
通过对脱硝效率的实时监测,可以及时发现系统运行中的问题,并采取相应的调整措施。
根据实际监测数据,可以对脱硝系统的操作参数进行调整,以提高脱硝效率,降低NOx排放。
四、脱硝系统的运行管理SNCR尿素法脱硝系统的运行管理对确保系统长期稳定运行至关重要。
在层燃炉上应用SNCR尿素法脱硝系统,需要建立完善的运行管理制度,包括设备日常维护、操作人员的技术培训、系统性能的定期检测等。
只有这样,才能保证脱硝系统的安全、稳定、高效运行。
通过对SNCR尿素法脱硝系统在层燃炉上应用技术的了解和掌握,可以明显降低燃烧排放的NOx,减少大气污染,改善环境质量。
尿素热解技术在锅炉烟气脱硝工程中的应用介绍作者:王莹来源:《科技视界》 2014年第31期王莹(北京洛卡环保技术有限公司,中国北京 100000)【摘要】随着国家环保指标的提高,燃煤电站锅炉烟气排放指标控制的越来越严格,燃煤电站烟气污染物的排放受到了国际和社会的广泛关注。
锅炉烟气脱硝在全国各地全面普及,传统的脱硝还原剂液氨的运用受到了安全、地域等因素的限制,尿素热解技术因其安全可靠,逐步成为许多用户的首选。
本文介绍了尿素热解技术的流程及其工程实例,并针对运行中出现的问题提出了解决的对策。
【关键词】烟气脱硝;选择性催化还原;尿素热解0 背景选择性催化还原烟气脱硝技术最早在美国获得专利,于20世纪70年代末首先在日本应用于燃气和燃油锅炉,于80年代初用于燃煤锅炉低尘与高尘环境,于80年代中后期在欧洲经过示范试验后开始商业推广,于90年代初进入美国市场。
继日本和欧洲之后,美国于上世纪末期开始大范围安装烟气脱硝装置,代表了当前世界范围内烟气脱硝技术水平,其脱硝还原剂制备工艺的选型、设计与应用等方面的经验值得国内借鉴。
液氨、氨水及尿素均可作为烟气脱硝还原剂,随着脱硝还原剂储存、制备及供应技术的日渐成熟,脱硝还原剂的选择主要从安全与经济角度考虑。
尽管国外以液氨为还原剂的电站锅炉烟气脱硝工程至今未出现严重的氨泄漏事故,但由于从地方管理部门获得液氨的使用与运输许可证越来越困难,安全防范要求越来越严,相应的安全成本越来越大,因此,氨水和尿素证越来越多地作为脱硝还原剂使用。
目前,国内已经有多家电厂在脱硝工程中采用尿素热解技术,并且取得了成功的应用经验。
1 尿素热解技术目前通用的尿素热解技术基于美国Fule Tech公司设计的尿素热解制氨技术。
1.1 尿素热解原理尿素热解反应过程是将高浓度的尿素溶液喷入热解炉,在温度为350-650℃的热烟气条件下,液滴蒸发,得到固态或者熔化态的尿素,纯尿素在加热条件下分解和水解,最终生成NH3和CO2,NH3作为脱硝还原剂送入反应器内,在催化剂作用下有选择性地将NOx还原成N2和H2O。
尿素法脱硝热解炉技术资料烟气脱硝改造工程尿素热解装置工艺流程描述、系统运行及控制说明1. 系统概述尿素热解法制氨系统包括尿素储仓、干卸料、螺旋给料机、尿素溶解罐、尿素溶液给料泵、尿素溶液储罐、供液泵、计量和分配装置、背压控制阀、绝热分解室(内含喷射器)、电加热器及控制装置等。
整套系统考虑夏天防晒,冬天防冻措施。
尿素粉末储存于储仓,由螺旋给料机输送到溶解罐里,用去离子水将干尿素溶解成40~55%质量浓度的尿素溶液,通过尿素溶液给料泵输送到尿素溶液储罐;尿素溶液经由供液泵、计量与分配装置、雾化喷嘴等进入绝热分解室内分解,生成NH 3、H 2O 和CO 2,分解产物经由氨喷射系统进入脱硝系统。
所设计的尿素制氨工艺满足:还原剂的供应量能满足锅炉不同负荷的要求,调节方便、灵活、可靠;尿素制氨工艺配有良好的控制系统。
2. 主要设备(1)尿素储仓设置2套锥形底立式尿素筒仓,体积要满足全厂4台机组3天用量要求,碳钢制造,锥体内衬1Cr18Ni9Ti 不锈钢。
筒仓设计考虑配备流化风或振动装置来防止尿素吸潮、架桥及堵塞。
此外,还应配有布袋过滤器,预留气力输送接口。
(2)尿素溶解罐设置两只尿素溶解罐,采用两套螺旋给料机将尿素输送到溶解罐。
在溶解罐中,用去离子水(也可使用反渗透水和冷凝水,不使用软化水)制成40~55%的尿素溶液。
当尿素溶液温度过低时,蒸汽加热系统启动使溶液的温度高于82℃(确保不结晶)。
材料采用1Cr18Ni9Ti 不锈钢,内衬防腐材质。
尿素溶液配制采用计量罐方式。
溶解罐除设有水流量和温度控制系统外,还采用输送泵将化学剂从储罐底部向侧部进行循环,使化学剂更好地混合。
(3)尿素溶液混合泵尿素溶液混合泵为不锈钢本体,碳化硅机械密封的离心泵,每只尿素溶解罐设两台泵一运一备,并列布置。
此外,溶液混合泵还利用溶解罐所配置的循环管道将尿素溶液进行循环,以获得更好混合。
(4)尿素溶液储罐尿素溶液经由尿素溶液给料泵进入尿素溶液储罐。
浅谈关于SNCR尿素法脱硝系统在层燃炉上的应用技术SNCR尿素法脱硝技术是一种常用的烟气脱硝方法,主要适用于层燃煤炉的脱硝系统。
本文将从SNCR尿素法脱硝技术的原理和特点、在层燃炉上的应用技术以及存在的问题和发展趋势等方面进行探讨,以期为相关领域的学者和工程技术人员提供参考。
一、SNCR尿素法脱硝技术的原理和特点1. 原理SNCR尿素法脱硝技术是通过在高温烟气中喷射尿素溶液,使其与烟气中的氮氧化物(NOx)发生反应,生成氮气和水,从而实现烟气中NOx的脱除。
尿素在高温烟气中分解生成氨和氰酸酯,氰酸酯与NOx反应生成氮气和二氧化碳。
这种脱硝反应是一个非催化的瞬发式反应,其反应速度随着温度的升高而增加。
2. 特点SNCR尿素法脱硝技术不需要在烟气中加入催化剂,因此具有操作简单、投资成本低、维护费用低等优点。
该技术可以实现对NOx的高效脱除,对SOx和颗粒物的影响较小,不会产生二次污染。
SNCR尿素法脱硝技术可根据燃烧工况和NOx排放要求进行调节,具有较大的灵活性。
1. 不同类型层燃炉的特点层燃炉是一种常见的煤电厂锅炉,其特点是燃烧温度高、烟气中含有大量NOx等特点。
根据不同的炉型和工况,SNCR尿素法脱硝系统需要进行针对性的设计和调整。
2. 应用技术在层燃炉上采用SNCR尿素法脱硝系统,首先需要进行烟气分析,了解烟气中NOx的含量和分布情况,然后确定喷射尿素溶液的位置和喷射参数。
由于层燃炉烟气温度较高,一般在1200℃以上,因此需要选择适合高温环境下使用的喷射设备和尿素喷射系统。
由于层燃炉的燃烧工况可能会发生变化,因此SNCR尿素法脱硝系统需要具有一定的调节能力,能够根据燃烧工况的变化进行实时调整。
为了保证脱硝效果和系统稳定运行,需要对尿素溶液的配比、喷射位置、喷射时间等参数进行定期检查和调整。
三、存在的问题和发展趋势1. 存在的问题尽管SNCR尿素法脱硝技术在层燃炉上应用具有一定的优势,但也存在一些问题。
车辆工程技术286理论研究 随着我国工业化进程加快,工业生产规模越来越大,生产技术也越来越高。
工业制造领域中,各产业对于工业生产均起到了至关重要的作用。
在传统的工业制造领域,由于在生产过程中,会产生大量的含氮气体,如NO、NO2等。
这些气体不但会对周围环境造成一定的负面影响,还会对人体造成危害。
因此,在生产过程中,需要利用脱硝技术来去除含氮有害气体。
目前应用的最广泛的脱硝技术有SCR技术(即选择性催化还原法),SNCR(选择性非催化还原法)吸附法等。
对于一些对安全性要求较高的系统,SCR技术的应用最为普遍。
本文也将重点介绍SCR技术的脱硝过程相关工艺。
1 尿素热解工艺简介 随着社会经济的快速发展以及人们的日常水平的不断提高,环境质量问题逐渐走进大众的视野。
工业生产过程会产生大量的废气,而这些废弃当中有部分其他成分是对环境有害的。
因此,在生产过程中需要利用相关技术对这些有毒有害气体进行回收,以降低对环境的影响。
工业生产制造过程中,对尾气进行排放前处理是一个非常重要的过程。
传统工业生产制造过程中会产生大量的含氮有毒气体,如果缺少对排放气体的后期处理,那么这些有毒有害气体会对大气及环境造成严重危害。
SCR脱硝技术在实际应用过程中,主要是利用了含有氨基的化合物所具有的还原性,以液态氨、氨水、尿素等主要原材料,来对废气中的化合物NO、NO2进行吸收和还原。
为了安全起见,现如今,一般的工业制造领域未选择利用尿素作为原料而不是氨水或液氨,主要在于尿素作为一种稳定的固态化合物,与液氨和氨水的脱硝能力基本相同,且化学性质稳定,易于运输储存,安全性更有保证。
2 尿素热解风制取工艺类别 在工业领域中,尿素热解风制取工艺在一些大中型企业当中得到了广泛使用,如一些排放尾气较多的生产企业:热电厂、垃圾焚烧厂、熔炉产业、冶炼企业等。
尿素热解风制取工艺的原理为:将一定配比的尿素水溶液经高温处理后,热解生成含有氨、水、二氧化碳等成分的气体,将这些气体通过SCR脱硝系统的管道进行输送,并喷射到含有有毒有害气体的烟气当中,利用具有还原性质的氨来和气体当中的含氮氧化物进行反应,最终生成氮气和水等无害气体。