上海各区第一学期九年级数学期中考试试卷
- 格式:doc
- 大小:2.60 MB
- 文档页数:56
上海市徐汇中学2024-2025学年九年级上学期数学期中考试试卷一、单选题1.下列各组线段中,成比例线段的组是()A .0.2cm,0.3cm,4cm,6cmB .1cm,3cm,4cm,8cmC .3cm,4cm,5cm,8cmD .1.5cm,2cm,4cm,6cm2.下列命题一定正确的是()A .两个等腰三角形一定相似B .两个等边三角形一定相似C .两个直角三角形一定相似D .两个含有30°角的三角形一定相似3.把抛物线y=﹣x 2+1向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A .y=﹣(x+3)2+1B .y=﹣(x+1)2+3C .y=﹣(x ﹣1)2+4D .y=﹣(x+1)2+44.如图,在ABC V 中,DE BC ∥,2AD =,3BD =,10AC =,则AE 的长为()A .3B .6C .5D .45.如图,梯形ABCD 中,AB CD ∥,AC ,BD 交于O ,下列等式正确的是()A .AOD AOB S ADS AB=△△B .COD AOB S CDS AB=△△C .AOD BOA S DOS OB= D .AOD BOC S DOS OC=△△6.如图,是二次函数2y ax bx c =++图象的一部分,直线1x =-是对称轴,且经过点(2,0).有下列判断:①20a b -=;②1640a b c -+<;③9a b c a -+=-;④若1(3,)A y -,2(1.5,)B y 是抛物线上两点,则12y y >.其中正确的是()A .①③B .①④C .①③④D .②③④二、填空题7.已知:1:3x y =,那么():x y y +=.8.如果地图上A 、B 两处的图距是4cm ,表示这两地的实际距离是200km ,那么实际距离是500km 的两地在地图上的图距是cm .9.已知点P 是线段AB 上的一点,且2AP AB PB =⋅,如果2AB =,那么AP =.10.若两个相似三角形的周长比为2:3,则它们的面积比是.11.如图,直线AD ,BC 交于点O ,AB EF CD ∥∥,若5AO =,2OF =,3FD =,则BE EC的值为.12.抛物线()212y x =-+与y 轴交点的坐标为.13.已知抛物线y=ax 2+bx+c (a >0)的对称轴是直线x=2,且经过点P (3,1),则a+b+c 的值为.14.如图,DE 是ABC V 的中位线,点F 在DB 上,2DF BF =,连接EF 并延长,与CB 的延长线交于点M .若8BC =,则线段CM 的长为.15.如图1是装了液体的长方体容器的主视图(数据如图),将该容器绕地面一棱进行旋转倾斜后,水面恰好接触到容器口边缘,如图2所示,此时液面宽度AB.16.如图,点P 是ABC V 的重心,点D 是边AC 的中点,PE AC ∥交BC 于点E ,DF BC ∥交EP 于点F .若四边形CDFE 的面积为6,则ABC 的 面积为17.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y =ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为.18.如图,在等腰直角ABC V 中,2AC =,M 为边BC 上任意一点,连接AM ,将ACM △沿AM 翻折得到AC M '△,连接BC '并延长交AC 于点N ,若点N 为AC 的中点,则CM 的长为.三、解答题19.如图,AD BE ,BD CE .(1)试说明OA OBOB OC=;(2)若4OA =,12AC =,求OB 的长.20.在ABC 中,2AB =,将ABC 绕点B 逆时针旋转得到MBN ,且CN BM ∥,MA 的延长线与CN 交于点P ,若3AM =,152CN =.(1)求证:ABM CBN ∽;(2)求AP 的长.21.如图,抛物线2y a(x 1)4=-+与x 轴交于点A ,B ,与轴交于点C ,过点C 作CD ∥x轴,交抛物线的对称轴于点D ,连结BD ,已知点A 坐标为(-1,0).(1)求该抛物线的解析式;(2)求梯形COBD 的面积.22.在初中物理中我们学过凸透镜的成像规律.如图MN 为一凸透镜,F 是凸透镜的焦点.在焦点以外的主光轴上垂直放置一小蜡烛AB ,透过透镜后呈的像为CD .光路图如图所示:经过焦点的光线AE ,通过透镜折射后平行于主光轴,并与经过凸透镜光心的光线AO 汇聚于C 点.若焦距4OF =,物距6OB =,小蜡烛的高度1AB =,求蜡烛的像CD 的长度以及像CD 与透镜MN 之间的距离.23.已知,如图,在梯形ABCD 中,AD BC ∥,90BCD ∠=︒,对角线AC 、BD 相交于点E ,且AC BD ⊥.(1)求证:2CD BC AD =⋅;(2)点F 是边BC 上一点,连接AF ,与BD 相交于点G ,如果BAF DBF ∠=∠,求证:22AG BGBDAD =.24.如图,在平面直角坐标系xOy 中,抛物线()20y ax bx c a =++>与x 轴相交于点()1,0A -和点B ,与y 轴交于点C ,对称轴为直线1x =.(1)求点C 的坐标(用含a 的代数式表示);(2)连接AC 、BC ,若ABC V 的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q 为x 轴正半轴上一点,点G 与点C ,点F 与点A 关于点Q 成中心对称,当CGF △为直角三角形时,求点Q 的坐标.25.在ABC V 中,45ACB ∠=︒,点D (与点B 、C 不重合为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB AC =.如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB AC ≠,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =3BC =,CD x =,求线段CP 的长.(用含x 的式子表示)。
上海市浦东新区多校联考2024-2025学年九年级上学期期中考试数学试卷一、单选题1.关于相似三角形,下列命题中不正确的是()A .两个等腰直角三角形相似B .相似三角形的面积比等于相似比C .含有30°角的两个直角三角形相似D .相似三角形的对应中线的比等于相似比2.在Rt ABC △中,90 54C AB AC ∠=︒==,,,那么sin A 的值等于()A .34B .43C .35D .453.在ABC 中,点D ,E 分别在边A ,AC 上,:1:2AD BD =,那么下列条件中能够判断//DE BC 的是()A .12DE BC =B .31DE BC =C .12AE AC =D .31AE AC =4.已知3,a b =下列判断正确的是()A .a 与b,方向相同B .30a b +=C .a与b不平行D .a b=5.如图,在ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,如果3DEF S =V ,那么ABCD 的面积为()A .6B .12C .24D .366.在平面直角坐标系xOy 中,已知点()00O ,,点()0A 1,,()02B ,,()30C ,,点D 在第一象限内,如果以点D 、O 、C 为顶点的三角形与AOB V 相似,那么这样的点D 有()个A .1个B .2个C .3个D .4个二、填空题7.已知0,1089x y z==≠则x y z x y ++=+.8.已知线段b 是线段a 、c 的比例中项,如果49a c ==,,那么b =.9.如果两地相距250km ,那么在1:10000000的地图上它们相距cm .10.长为2的线段A 上有两点C 、D ,点C 是靠近点A 的黄金分割点,点D 是靠近点B 的黄金分割点,则C 的长为.11.如图,已知AB CD EF ∥∥,它们依次交直线l l ₁、₂于点A 、D 、F 和点B 、C 、E ,如果23AD DF =,20BE =,那么线段CE 的长是.12.在ABC V 中,90ACB ∠=︒,CD AB ⊥垂足为点D ,若915AD AC ==,,则DB =.13.点G 是ABC 的重心,设,AB a AC b == ,那么AG 关于a 和b的分解式是.14.△ABC 中,AB =8,AC =6,点D 在AC 上且AD =2,如果要在AB 上找一点E ,使△ADE 与原三角形相似,那么AE =15.如图,图中提供了一种求cot15︒的方法,作Rt ABC ,使90C ∠=︒,30ABC ∠=︒,再延长CB 到点D ,使BD BA =,联结AD ,即可得15D ∠=︒,如果设AC t =,则可得(2CD t =,那么cot15cot 2CDD AC=== ,运用以上方法,可求得cot 22.5︒的值是.16.秦九韶的《数书九章》中有一个“峻积验雪”的例子,其原理为:如图,在Rt ABC 中,∠C=90°,AC=12,BC=5,AD ⊥AB ,AD=0.4,过点D 作DE //AB 交CB 的延长线于点E ,过点B 作BF ⊥CE 交DE 于点F ,那么BF=.17.如图,在 ABC 中,点D 是边BC 的中点,直线DF 交边AC 于点F ,交AB 的延长线于点E ,如果CF ∶CA=a ∶b ,那么BE ∶AE 的值为.(用含a 、b 的式子表示)18.如图,在△ABC 中,∠C =90°,AB =10,tan B =34,点M 是AB 边的中点,将△ABC 绕着点M 旋转,使点C 与点A 重合,点A 与点D 重合,点B 与点E 重合,得到△DEA ,且AE 交CB 于点P ,那么线段CP 的长是.三、解答题19.计算:2sin 45tan 452cot 30sin 60cos 60︒-︒+︒⋅︒︒.20.如图,在等腰梯形ABCD 中,AD BC ∥,AB CD =.:1:3AD BC =.设AB a = ,AD b=.(1)填空:CB = ;BD = ;CD = ;(用a、b 表示)(2)作AC 在a 、b方向上的分向量(不要求写作法,但要指出明确的结论).21.如图,已知在ABC V 中,CD AB ⊥,垂足为点2,2,6,tan 3D AD BD B ∠===,点E 是边BC 的中点.(1)求边AC 的长;(2)求EAB ∠的正弦值.22.如图,为了测量河宽,在河的一边沿岸选取B 、C 两点,对岸岸边有一块石头A ,在ABC V 中,测得64B ∠=︒,45C ∠=︒,50BC =米,求河宽(即点A 到边BC 的距离)(结果精确到0.1米).1.41≈,sin 640.90︒=,cos640.44︒=,tan 642.05︒=)23.如图,在梯形ABCD 中,90ABC ∠=︒,AD BC ∥,2BC AD =,对角线AC 与BD 交于点E .点F 是线段EC 上一点,且BDF BAC ∠=∠.(1)求证:2EB EF EC =⋅;(2)如果6BC =,2sin 3BAC ∠=,求FC 的长.24.如图,在平面直角坐标系xOy 中,已知点()2,0A 和点()1,3B -,点()1,1D -.(1)求直线BD 的表达式和线段AB 的长度;(2)连接线段BD AD 、,求tan ABD ∠的值;(3)设线段BD 与x 轴交于点P ,如果点C 在x 轴上,且ABC V 与ABP 相似,求点C 的坐标.25.在平行四边形ABCD 中,对角线AC 与边CD 垂直,34AB AC =,四边形ABCD 的周长是16,点E 是在AD 延长线上的一点,点F 是在射线AB 上的一点,CED CDF ∠=∠.(1)如图1,如果点F 与点B 重合,求AFD ∠的余切值;(2)如图2,点F 在边AB 上的一点.设AE x =,BF y =,求y 关于x 的函数关系式并写出它的定义域;(3)如果:1:2BF FA =,求CDE 的面积.。
2023_2024学年上海市闵行区九年级上册期中考试数学模拟测试卷★考生注意∶1.本试卷含五个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、试卷上答题一律无效。
2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤。
3.本次考试不能使用计算器。
一、选择题(本大题共6题,每题4分,满分24分)1.在比例尺为1:6000的地图上测得A 、B 两地间的图上距离为3cm,则A 、B 两地间的实际距离为…………………………………………………………………(▲ )(A )18000 m(B )1800 m(C )180 m(D )18 m2.如果两个相似三角形对应周长之比是2∶3,那么它们的对应边之比是( ▲ )(A )2∶3(B )4∶9 (C )3∶2(D )9∶43.已知在Rt △ABC 中,,,,那么∠B 的度数为( ▲ )90=∠C 1BC =AC =(A )(B ) (C ) (D)15 30 45 604.在△ABC 中,点D 、E 分别在边AB 、AC 上,AD :BD=2:3,那么下列条件中能够判断DE//BC 的是……………………………………………………( ▲ )(A )(B )(C )(D ) 32=BC DE 52=BC DE 32=AC AE 52=AC AE 5.给出下列四个命题,其中真命题有…………………………………………( ▲ ) (1)等腰三角形都是相似三角形(2)直角三角形都是相似三角形(3)等腰直角三角形都是相似三角形 (4)等边三角形都是相似三角形 (A)1个(B)2个(C)3个(D)4个6.如图,已知在梯形ABCD 中,AD ∥BC ,BC =2AD ,如果对角线AC 与BD 相交于点O ,△AOB 、△BOC 、△COD 、△DOA 的面积分别记作S 1、S 2、S 3、S 4,那么下列结论中,不正确的是………………………………………………( ▲)(A )S 1=S 3(B )S 2=2S 1(C )S 2=2S 4(D )4231S S S S ⋅=⋅二、填空题(本大题共12题,每题4分,满分48分)7.如果,那么▲ .b a 53==-bba 8. 已知:点P 是线段AB 的黄金分割点, 其中AP 较短,若AB =10,则AP = ▲.9.已知两个三角形相似,其中一个三角形的两个角分别为72、63,则另一个三角形中最小的内角为 ▲ .10.已知,向量与单位向量的方向相反且长度为5,那么用表示向量= ▲ .a e ea 11.如图,已知,cm ,cm ,cm ,那么_ ▲ _cm .321////l l l 6CH =8DH =12AB =BG =12.已知在中,,那么▲.ABC △4tan 3A =sin A =13.如图,已知在△中,是边上的一点,连结.当满足▲条件时,△∽△ABC P AB CP ABC (写一个即可).ACP 14.如图,已知小丽的身高是1.6米,他在路灯下的影长为2米,小丽距路灯灯杆的底部3米,那么路灯灯泡距地面的高度是▲米.15.如图,△中,点D 、E 分别在边AB 、AC 上,CD 平分∠ACB ,DE ∥BC ,若ABC AC=12,AE =4,则BC16.边长为217.如图,在△ABC ∠C=90°,AC=6,BC=3,边AB 的垂直平分线交AB 边于点E ,联结DB ,那么∠的值是▲.tan DBC 18.如图,△ABC 是面积为3的等边三角形,△ADE ∽△ABC ,AB =2AD ,∠BAD =45°,G C A HDB O l 1l 2l 3(第11题图)PCB(第13题图)A(第15题图)(第17题图)C(第14题图)AC 与DE 相交于点F ,则△AEF 的面积是▲.三、简答题(本大题共7题,第19、20、21、22每题10分,23、24每题12分,25题14分,满分78分)19.计算:cos 45tan 60cot 451sin 30︒︒︒︒---20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在梯形ABCD 中,AD ∥BC ,AC 与BD 交于点O ,.2:1:=OC AO (1)设,,试用向量、表示向量;AB = a AD =b a b OD (2)先化简,再求作:(直接作在右图中)()7322a b a b⎛⎫+-+ ⎪⎝⎭r r r r 21.(本题满分10分,第(1)小题5分,第(2)小题5分)已知:如图,在△ABC 中,∠ABC =45°,,AB =14,BD 是AC 边上的中线.3sin 5A =(1)求△ABC 的面积;(2)求∠ABD 的余切值.22.(本题满分10分,第(1)小题5分,第(2)小题5分)已知:如图,斜坡AP 的坡度为1∶2.4,坡长AP 为26米,在坡顶A 处的同一水平面上有一座古塔BC ,在斜坡底P 处测得该塔的塔顶B 的仰角为45°,在坡顶A 处测得该塔的塔顶B 的仰角为76°.(1)求坡顶A 到地面PQ 的距离;(2)计算古塔BC 的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)23. (本题满分12分,第(1)小题5分,第(2)小题7分)(第22题图)ABCEF(第23题图)B(第20题图)(第21题图)如图,已知在△ABC 中,点E 、F 在边BC 上.(1)如果△AEF 是等边三角形,且∠BAC = 120º,求证:△ABE ∽△ACF ;(2)如果AB = AC ,,求证:.2AE EF EC =⋅22BF AF CE AE =24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,在等腰直角△中,,已知、,M 为中点.ABC 90BAC ∠=︒(1,0)A (0,3)B BC (1)求点的坐标:C (2)求的大小;MOA ∠(3)在x 轴上是否存在点,使得以为P O P M 、、顶点的三角形与△相似,若存在,请求出点的坐标,若不存在,请说明理由.OBM P 25.(本题满分14分,第(1)小题①4分,第(1)小题②5分,第(2)小题5分)如图,在菱形ABCD 中,BC =10,E 是边BC 上一点,过点E 作EH ⊥BD ,垂足为点H ,点G 在边AD 上,且GD =CE ,联结GE ,分别交BD 、CH 于点M 、N .(1)已知,53sin =∠DBC ①当EC =4时,求△BCH 的面积:②当时,求CE 的值;1CH HM =+(2)延长AH 交边BC 于点P ,当设CE =x ,请用含x 的代数式表示的值.CNHP (第24题图)备用图(第25题图)答案及评分说明一、选择题(本大题共6题,每题4分,满分24分)1.C ;2.A ;3.D ;4.D ;5.B ;6.C 二、填空题(本大题共12题,每题4分,满分48分)7.;8.; 9.;10.;11.;2315−5545°5a e →→=-48712.;13.∠B=∠ACP(或,答案不唯一);14.;15.24;16.452AC AP AB =⋅4;17.;34三、解答题(本大题共7题,共78分)19. 解:原式--------(每个值得2分,共8分)1----------------------(结果2分)120.解:(1)12AO OC =----------------------------------(1分)13AO AC ∴=//AD BC----------------------------------(1分)13OD AO BD AC ∴==∴----------------------------------(1分)OD =BD =(BA +AD )=----------------------------------(1分)13(−a +b )(第20题图)=----------------------------------(1分)b−a(2)73()()22a b a b →→→→+-+=----------------------------------(1分)733222a b a b →→→→+--=----------------------------------(1分)122a b →→-画图(图略)及标注各向量----------------------------------2分写结论----------------------------------(1分)21.解(1)过点C 作,点H 为垂足------------------(1分)CH AB ⊥在Rt △BCH 中,∠BHC =90°,∠CBH =45°△BCH 是等腰直角三角形∴------------------(1分)CH BH ∴=在Rt △ACH 中,∠AHC =90°sin CH A AC ∴=3sin 5A =设,则∴3CH BH x ==5AC x=222AH CH AC += ------------------(1分)4AH x ∴=,解得------------------(1分)∴4314AB AH BH x x =+=+=2x =6CH ∴=.------------------(1分)111464222ABC S AB CH ∆∴=⋅=⨯⨯=(2)过点D 作,点M 为垂足-------------------(1分)DM AB ⊥//DM CH∴------------------(1分)AD AM DMAC AH CH ∴==D 为AC 中点12AD AC ∴=由(1)知:CH=6,AH=8------------------(1分)3,4DM AM ∴==------------------(1分)10BM AB AM ∴=-=在Rt △BDM 中,∠DMB =90°.------------------(1分)10cot 3ABD BM DM ∴==∠22.解(1)过点A 作,点H 为垂足-------------------(1分)AH PQ ⊥由题意知:-------------------(1分)152.412AH PH ==设,则5AH x =12PH x =在Rt △APH 中,∠AHP =90°222AH PH AP ∴+=即22(5x)(12x)26+=解得-------------------(1分)2x =-------------------(1分)510AH x ∴==答:坡顶A 到地面PQ 的距离为10米.-------------------(1分)(2)过点C 作,点M 为垂足CM PQ ⊥在Rt △BMP 中,∠BMP =90°,∠BPM =45°-------------------(1分)PM BM ∴=由(1)知1224PH x ==设,则AC HM a ==24PM BM a==+-------------------(1分)14BC a ∴=+在Rt △ABC 中,∠ACB =90°,∠BAC =76°∠BAC =-------------------(1分)tan ∴BCAC即,解得14 4.01aa+≈ 4.6a ≈-------------------(1分)1414 4.619BC a ∴=+≈+≈答:古塔BC 的高度为19米-------------------(1分)23.证明(1)△AEF 是等边三角形∴60AEF AFE EAF ∠=∠=∠=180120AEB AEF ∠=-∠=∴ 180120AFC AFE ∠=-∠=-------------------(2分)AEB AFC ∠=∠∴∠BAC = 120º60BAE CAF ∴∠+∠=在△ABE 中,120AEB ∠=(第22题图)60B BAE ∴∠+∠=-------------------(2分)B CAF ∴∠=∠△ABE ∽△ACF -------------------(1分)∴(2)2AE EF EC=⋅ AE EFEC AE∴=AEF CEA∠=∠ △AEF ∽△CEA∴-------------------(1分)EAF C ∴∠=∠AB = ACB C∴∠=∠B EAF ∴∠=∠BFA AFE∠=∠ △BAF ∽△CEA -------------------(1分)∴-------------------(2分)22BAFCEAS AF AE S ∆∆∴=过点A 作,点H 为垂足AH BC ⊥则-------------------(2分)1212BAF CEABF AHS BFS CE CE AH ∆∆⋅==⋅-------------------(1分)∴22BF AF CE AE =24.解(1)过点C 作轴,点D 为垂足CD x ⊥90CDA =∴∠在等腰直角△ABC 中,90BAC ∠=,90BAO C AB AC AD ∠+∠=∴= 90BAO OBA ∠+∠= OBA CAD∠=∠∴(1,0),B(0,3)A 1,3OA OB ∴==在△OAB 和△DCA 中:90OBA CAD BOA CD AB AC A ∠=∠∠=∠⎪==⎧⎪⎨⎩∴△OAB ≌△DCA (A.A.S )-------------------(2分)-------------------(1分)3,1AD OB CD OA ∴====-------------------(1分)(4,1)C ∴(2)过点M 作轴,点H 为垂足MH x ⊥则//MH CD-------------------(1分)CM DHBM OH∴=M 为BC 中点∴H 为OD 中点,-------------------(1分)122OH OD ==∴MH 为梯形CDOB 的中位线-------------------(1分)11(CD OB)(13)222MH ∴=+=+=,△OMH 为等腰直角三角形MH OH ∴=-------------------(1分)45MOA =∴∠ (3)由(2)知45BOM MOD ∠=∠=∴点P 只能在轴正半轴x 设,则(m,0)P OM m =①OM OM OB OP=3OP OB ∴==-------------------(2分)(3,0)P ∴②OM OPOB OM=,解得=83m =-------------------(2分)8(,0)3P ∴25.解(1)①联结AC 交BD 于点O 在菱形ABCD 中,AC BD ⊥在Rt △OBC 中,∠BOC =90°5sin 3OC MBC BC ∠==∴∵BC =10-------------------(1分)6OC ∴=∵EC=4∴BE=BC-EC=6在Rt △OBC 中,∠BOC =90°5sin 3HE HBE BE ∠==∴∴HE=185∴-------------------(1分)245=-------------------(2分)11247262255BCH S BH OC ∆∴=⋅=⨯⨯=(1) 在菱形ABCD 中,BC=CD=AD ∵GD=CE∴GD CE AD BC =∴EG//CD ∴BE EMBC CD=∴BE=EM ∵EH ⊥BD∴BH=MH-------------------(1分)∵1CH HM =+∴1CH BH =+过点H 作轴,点R 为垂足-------------------(1分)HR BC ⊥设HR=,则BR=, BH=,CH=, CR=3a 4a 5a 51a +104a -在Rt △HRC 中,∠HRC =90°222HR CR CH ∴+=即,解得-------------------(1分)222(3)(104)(51)a a a +-=+1110a =-------------------(1分)1152BH a ∴==558BE ∴=-------------------(1分)25108CE BE ∴=-=(2)延长CH 交AB 于点Q-------------------(1分)设,则BE=10-CE x =x根据以上可知:BH=MH ,EG//CD BH HQMH HN∴=∴HQ=HN-------------------(1分)易得HQ=HP∴HP=HN-------------------(1分)//ME CD HN HMCN DM∴=//BCAD -------------------(1分)10BM BE x DM DG x -∴==102HM x DM x-∴=102HN xCN x-∴=即-------------------(1分)102HP x CN x -=。
(答题时上海复旦五浦汇实验中学2024学年度第一学期九年级数学学科期中试卷间100分钟)一、选择题:(本大题共6题,每题4分,满分24分)1.下列说法正确的是……………………………………………………………………………()A .所有的菱形都是相似形B .对应边成比例的两个多边形相似C .对应角相等的两个多边形相似D .所有的正方形都是相似形2.在△ABC 中,90C ∠= ,A B C ∠∠∠、、的对边分别为a b c 、、,下列等式中错误的是()A .sin ac A =B .cos c a B =⋅C .tan ba B =D .cotb a A=⋅3.已知P 是ABC V 的边AC 上一点,联结BP ,则下列不能判定ABP ACB ∽的是……()A .ABP C ∠=∠B .APB ABC ∠=∠C .AB AC AP AB =D .AB AC BP BC =4.已知一个单位向量e ,设a 、b 是非零向量,那么下列等式中一定正确的是…………()A .e a a =r r r B .b e b =r r r C .1b e b = D .11a b a b=r r r r 5.有下列五个命题:①等弧所对的圆心角相等;②经过三个点一定可以作圆;③三角形的外心到三角形各边的距离都相等;④同圆或等圆中,等弦所对的弧相等;⑤直径平分弦,则垂直于弦.其中正确的有…………………………………………………………………………………()A .4个B .3个C .2个D .1个6.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列结论:①0abc >;②420a b c -+>;③30a c +>;④2am bm a b +≥+(m 为任意实数);⑤若()15,y -,()22,y -,()33,y 是抛物线上三点,则123y y y >>;⑥关于x 的一元二次方程210(0)ax bx c a ++-=≠有两个不相等的实数根;其中正确的个数是()A .6B .5C .4D .3二、填空题:(本大题共12题,每题4分,满分48分)7.若37m n =,那么m n m n+=-8.已知点P 是线段AB 的黄金分割点(AP BP <),如果10AB =,那么BP =9.将抛物线()2225y x =++向左平移2个单位后,所得抛物线的表达式为10.有一斜坡的坡角为α,坡长为100米,那么斜坡的高为11.已知⊙O 的半径长r 为5,弦AB 与弦CD 平行,AB =6,CD =8,则弦AB 和弦CD 之间的距离为12.在校运动会上,小华在某次试投中铅球所经过的路线是如图所示的抛物线的一部分.已知铅球出手处A 距离地面的高度是53米,当铅球运行的水平距离为4米时,达到最大高度3米的B 处,小华此次投掷的成绩是米.13.已知函数()22211y a x a x =+++,在1x <-范围内,函数y 的值随x 的值的增大而14.下列说法:①如果a k b =⋅ (k 是实数),那么//a b ;②若//a b ,//b c ,则//a c ;③单位向量都相等;④一个向量与零相乘,乘积为零;其中正确的是15.如图,在△ABC 中,点G 是△ABC 的重心,过点G 作DE BC ∥分别交边AB 、AC 于点D E 、,联结DC ,那么:DCE DBC S S =△△________.第12题第15题第16题16.如图,点D 、E 分别位于△ABC 边BC 、AB 上,AD 与CE 交于点F ,若AF ︰FD =1︰1,EF ︰FC =1︰4,则BD ︰CD =.17.如图,在△ABC 中,E 为边AC 上一点且满足∠ABE =∠C ,过点A 作BC 的平行线且交BE 延长线于点D ,若BC =4,BE =3,则AD 的长为___________.第17题第18题18.如图,在Rt △ABC 中,90C =︒∠,10AB =,8AC =,点D 是AC 的中点,点E 在边AB 上,将ADE △沿DE 翻折,使得点A 落在点A '处,当A E AB '⊥时,那么A A '的长为.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:22cos30cot 45tan 60sin 452sin 30︒+︒︒+-︒︒.20.(本题满分10分,其中每小题各5分)如图,已知在△ABC 中,点D 、E 分别在边AB 、AC 上,且AD =2,DB =4,AE =3,EC =6,DE a = ,DA b = ;(1)用a 、b 表示向量EC ,则EC =;(2)画出CD 在a 、b 方向上的分向量(不要求写出作法,只需写出结论即可)21.(本题满分10分)如图,AC =CD ,AE =BE ,∠ACD =∠AEB =90°,BD 、CE 交于点F ,求∠EFD 的度数.22.(本题满分10分,其中每小题各5分)如图,已知O e 经过ABC ∆顶点A B 、,交BC 边于点D ,交AC 边于点E(1)如果AE BD =,求证:CA CB =.(2)如果点A 是弧¼BAD 的中点,2812sin 3BD AC C ===,,,求O e 的半径.(第20题图)23.(本题满分4+3+5=12分)【问题背景】由光的反射定律知:反射角等于入射角(如图①,即∠CEF=∠AEF).小军测量某建筑物高度的方法如下:在地面点E处平放一面镜子,经调整自己位置后,在点D处恰好通过镜子看到建筑物AB的顶端A.经测得,小军的眼睛离地面的距离CD=1.7m,BE=20m,DE=2m,则建筑物的高度AB=;【活动探究】观察小军的操作后,小明提出了一个测量广告牌高度的做法(如图②):他让小军站在点D处不动,将镜子移动至E1处,小军恰好通过镜子看到广告牌顶端G,测出DE1=2m;再将镜子移动至E2处,恰好通过镜子看到广告牌的底端A,测出DE2=3.4m.经测得,小军的眼睛离地面距离CD=1.7m,BD=10m,则这个广告牌的高度AG=;【应用拓展】小军和小明讨论后,发现用此方法也可测量出斜坡上信号塔AB的高度.他们给出了如下测量步骤(如图③):①让小军站在斜坡的底端D处不动(小军眼睛离地面距离CD=1.7m),小明通过移动镜子(镜子平放在坡面上)位置至E处,让小军恰好能看到塔顶B;②测出DE=2.8m;③测出坡长AD=17m;④测出坡比为8:15(即8tan15ADG∠=),通过他们给出的方案,请你算出信号塔AB的高度(结果保留整数).24.(本题满分12分)定义:已知一次函数()()0f x kx m k =+≠与二次函数()()20g x ax bx c a =++≠,我们把函数()()()2h x a f x bf x c ⎡⎤=++⎣⎦称为()f x 与()g x 的“复合函数”.例如:一次函数()1f x x =+与二次函数()21g x x x =++的“复合函数”为()()()2211133h x x x x x =++++=++已知一次函数()1f x x =-与二次函数()()20g x ax bx c a =++≠,函数()h x 为()f x 与()g x 的“复合函数”(1)如果()h x 的图像上存在不同的两点(),m n 与()2,m n -,求b 的值;(2)如果()h x 的图像经过原点,那()g x 的图像是否经过某一定点P ?若经过,求出点P 坐标,若不经过,请说明理由;(3)如果()h x 的图像同时满足(1)(2)的条件,记()h x 的图像与x 轴的另一个交点为点A ,记()g x 的图像与y 轴的交点为点B ,则()f x 的图像上是否存在点C ,使得以A B C P 、、、四点为顶点所组成的凸四边形为中心对称图形?若存在,求出所有满足条件的中心对称图形的对称中心坐标,若不存在,请说明理由.25.(本题满分14分)如图,已知AD ∥BC ,∠DAB =∠ABC =90°,AD =8,AB =4,点P 是射线BC 上一个动点,联结AP ,作DE⊥AP于点E,联结BE,过点E作BE垂线交线段AD于点F.(1)设BP=x,FD=y,求y关于x的函数解析式,并写出定义域;(2)当BP>AD时,若∠AEB=∠DPB,求x的值;(3)若△FED是等腰三角形,直接写出x的值.。
新九年级(上)数学期中考试一试题( 含答案 )(1)一、选择题(本大题共 10 小题,共 30.0 分)1.以下运算中,结果正确的选项是()A.B. C.D.2.若是对于 x . y 的方程 2x-y+2a=0 的一个解,则常数 a 为()A. 1B. 2C. 3D. 43.以下由左到右边的变形中,是因式分解的是()A.B.C.D.4. 如图,直线 a ∥b , ∠1=120 °,则 ∠2 的度数是()A. B. C. D.5.m n m n 的值为()已知 a =6 , a =3,则 a 2 -3A.B.C. 2D. 96.以下代数式变形中,是因式分解的是()A. B.C.D.7.已知 4y 2 +my+9 是完整平方式,则 m 为()A. 6B.C.D. 128.3)整除.80 -80 能被(A. 76B. 78C. 79D. 829.假如 x=3m +1 ,y=2+9 m ,那么用 x 的代数式表示y 为()A.B.C.D.10. 已知对于 x , y 的方程组,则以下结论中正确的选项是( )① 当 a=5 时,方程组的解是;② 当 x ,y 的值互为相反数时, a=20 ;③ 不存在一个实数 a 使得 x=y ;2a-3y7,则 a=2.④ 若 2 =2A.B.C.D.二、填空题(本大题共 6 小题,共24.0 分)11. 在方程 4x-2y=7 中,假如用含有 x 的式子表示 y ,则 y=______. 12. 将方程 3x+2 y=7 变形成用含 y 的代数式表示 x ,获取 ______ .13. 若要( a-1) a-4 =1 成立,则 a=______.14.如图,将△ABC 平移到△A′B′C′的地点(点 B′在 AC 边上),若∠B=55 °,∠C=100 °,则∠AB′A′的度数为 ______ °.15.有若干张以下图的正方形 A 类、 B 类卡片和长方形 C 类卡片,假如要拼成一个长为( 2a+b),宽为( a+2 b)的大长方形,则需要 C 类卡片 ______张.16.若x+y+z=2,x2-(y+z)2=8时,x-y-z=______.三、计算题(本大题共 2 小题,共20.0 分)17.计算:(1)( 8a3b-5a2b2)÷4ab(2)( 2x+y)2-( 2x+3y)( 2x-3y)18.我县某包装生产公司承接了一批上海世博会的礼物盒制作业务,为了保证质量,该公司进行试生产.他们购得规格是170cm×40cm 的标准板材作为原资料,每张标准板材再按照裁法一或裁法二裁下 A 型与 B 型两种板材.如图 1 所示,(单位:cm)( 1)列出方程(组),求出图甲中 a 与 b 的值.( 2)在试生产阶段,若将30 张标准板材用裁法一裁剪, 4 张标准板材用裁法二裁剪,再将获取的 A 型与 B 型板材做侧面和底面,做成图 2 的竖式与横式两种无盖礼物盒.①两种裁法共产生 A 型板材 ______张, B 型板材 ______张;② 设做成的竖式无盖礼物盒x 个,横式无盖礼物盒的y 个,依据题意达成表格:竖式无盖(个)横式无盖(个)礼物盒板材x yA 型(张)4x3yB 型(张)x③做成的竖式和横式两种无盖礼物盒总数最多是______个;此时,横式无盖礼物盒可以做 ______个.(在横线上直接写出答案,无需书写过程)四、解答题(本大题共 5 小题,共36.0 分)19.化简:(1)( 2a2)4÷3a2(2)( 1+a)( 1-a) +a( a-3)20.先化简,再求值:(2x+3)( 2x-3) -( x-2)2-3x( x-1),此中x=2.21.已知 a-b=7, ab=-12 .(1)求 a2b-ab2的值;(2)求 a2+b2的值;(3)求 a+b 的值.22.如图 a 是长方形纸带,∠DEF =20°,将纸带沿 EF 折叠成图 b,再沿 BF 折叠成图 c,则图 c中的∠CFE 的度数.23.已知:如图, AB∥CD , BD 均分∠ABC,CE 均分∠DCF ,∠ACE=90°.(1)请问 BD 和 CE 能否平行?请你说明原因.(2)AC 和 BD 的地点关系如何?请说明判断的原因.答案和分析1.【答案】 A【分析】解:A 、x 3?x 3=x6,本选项正确;B 、3x 2+2x 2=5x 2,本选项错误 ;23 6选项错误;C 、(x )=x ,本 222D 、(x+y )=x +2xy+y ,本选项错误 ,应选:A .A 、利用同底数幂的乘法法 则计算获取结果,即可做出判断;B 、归并同类项获取结果,即可做出判断;C 、利用幂的乘方运算法 则计算获取结果,即可做出判断;D 、利用完整平方公式睁开获取 结果,即可做出判断.本题考察了完整平方公式,归并同 类项,同底数幂的乘法,以及 幂的乘方,娴熟掌握公式及法 则是解本题的重点.2.【答案】 B【分析】解:将x=-1,y=2 代入方程 2x-y+2a=0 得:-2-2+2a=0, 解得:a=2.应选:B .将 x=-1,y=2 代入方程中 计算,即可求出 a 的值 .本题考察了二元一次方程 组的解,方程组的解即 为能使方程 组中双方程成立的未知数的 值.3.【答案】 D【分析】解:A 、(x+2)(x-2)=x 2-4,是多项式乘法,故此选项错误 ;B 、x 2-1=(x+1)(x-1),故此选项错误 ;C 、x 2-4+3x=(x+4)(x-1),故此选项错误 ;2D 、x -4=(x+2)(x-2),正确.直接利用因式分解的意 义分别判断得出答案.本题主要考察了因式分解的意 义,正确掌握定义是解题重点.4.【答案】 C【分析】解:∵a ∥b ∴∠3=∠2,∵∠3=180 °-∠1,∠1=120 °, ∴∠2=∠3=180 °-120 =60° °,应选 C .如图依据平行 线的性质能够 ∠2=∠3,依据邻补角的定义求出 ∠3 即可.本题考察平行线的性质,利用两直线平行同位角相等是解 题的重点,记着平行 线的性质,注意灵巧应用,属于中考常考题型.【答案】 A5.【分析】a m n解:∵ =6 ,a =3,m 2n 3∴原式 =(a )),÷(a =36÷27= 应选:A .原式利用同底数 幂的除法法 则及幂的乘方运算法 则变形,将已知等式代入 计算即可求出 值.本题考察了同底数 幂的除法,以及幂的乘方与 积的乘方,娴熟掌握运算法 则是解本题的重点.6.【答案】 D【分析】解:A 、是整式的乘法,故 A 错误;B 、左侧不等于右 边,故B 错误;C 、没把一个多项式转变成几个整式乘 积的形式,故 C 错误;D 、把一个多项式转变成几个整式乘 积的形式,故 D 正确;应选:D .依据因式分解是把一个多 项式转变成几个整式乘 积的形式,可得答案.本题考察了因式分解的意 义,把一个多项式转变成几个整式乘 积的形式是解 题重点.7.【答案】 C【分析】2解:∵4y +my+9 是完整平方式,应选:C .原式利用完整平方公式的 构造特色求出 m 的值即可.本题考察了完整平方式,娴熟掌握完整平方公式是解本 题的重点.8.【答案】 C【分析】解:∵803-80=80 ×(802-1)=80×(80+1)×(80-1)=80×81×79.∴803-80 能被 79 整除.应选:C .先提取公因式80,再依据平方查公式进行二次分解,即可得803-80=80 ×81×79,既而求得答案.本题考察了提公因式法,公式法分解因式.注意提取公因式后,利用平方差公式进行二次分解是关 键.9.【答案】 C【分析】解:x=3m +1,y=2+9m,3m=x-1,m 2y=2+(3 ),2y=(x-1 )+2, 应选:C .依据移项,可得3m 的形式,依据幂的运算,把 3m代入,可得答案.本题考察了幂的乘方与 积的乘方,先化成要求的形式,把 3m代入得出答案.10.【答案】 D【分析】解: 把 a=5 代入方程 组得:,解得:选项错误 ;,本由 x 与 y 互为相反数,获取 x+y=0 ,即y=-x ,代入方程 组得:,选项 正确;解得:a=20,本若 x=y ,则有 ,可得 a=a-5,矛盾,故不存在一个实数 a 使得 x=y ,本选项正确;方程组解得:,由题意得:2a-3y=7,把 x=25-a ,y=15-a 代入得:2a-45+3a=7,解得:a= ,本选项错误 ,则正确的选项有,应选:D .把 a=5代入方程组求出解,即可做出判断;依据题意获取 x+y=0 ,代入方程组求出 a 的值,即可做出判断;若是 x=y,获取 a 无解,本选项正确;依据题中等式获取 2a-3y=7,代入方程组求出 a 的值,即可做出判断.本题考察了二元一次方程组的解,方程组的解即为能使方程组中双方程都成立的未知数的值.11.【答案】【分析】解:4x-2y=7,解得:y=.故答案为:将 x 看做已知数求出y 即可.本题考察认识二元一次方程,解题的重点是将 x 看做已知数求出y.12.【答案】x=【分析】解:由题意可知:x=故答案为:x=依据等式的性质即可求出答案.本题考察等式的性质,解题的重点是娴熟运用等式的性质,本题属于基础题型.13.【答案】4,2,0【分析】a-4解:a-4=0,即a=4 时,(a-1) =1,a-1=1a=2时a-1 a-4当,即,()=1.时a-4当 a-1=-1,即a=0 ,(a-1) =1故 a=4,2,0.故答案为:4,2,0.依据任何非 0 的数的 0 次幂等于 1,以及 1 的任何次 幂等于 1、-1 的偶次幂等于 1即可求解.本题考察了整数指数 幂的意义,正确进行议论是重点.14.【答案】 25【分析】解:∵∠B=55°,∠C=100°,∴∠A=180 °-∠B- ∠C=180 °-55 °-100 =25° °, ∵△ABC 平移获取 △A ′ B ′,C ′ ∴AB ∥A ′ B ,′∴∠AB ′ A ′=∠A=25 °.故答案为:25.依据三角形的内角和定理求出 ∠A ,再依据平移的性 质可得 AB ∥A ′B ,′而后依据两直线平行,内错角相等可得 ∠AB ′A ′=∠A .本题考察了平移的性 质,三角形的内角和定理,平行 线的性质,熟记平移的性 质获取 AB ∥A ′B 是′解题的重点.15.【答案】 5【分析】解:长方形的面 积=(2a+b )(a+2b )=2a 2+5ab+b 2,所以要拼成一个 长为(2a+b ),宽为(a+2b )的大长方形,则需要 A 类卡片 2 张,B 类卡片 1张,C 类卡片 5 张.故答案为 5.计算长方形的面 积获取(2a+b )(a+2b ),再利用多项式乘多 项式睁开后归并,而后确立 ab 的系数即可获取需要 C 类卡片的张数.本题考察了多项式乘多 项式相乘:多项式与多项式相乘,先用一个多 项式的每一项乘此外一个多 项式的每一 项,再把所得的积相加.16.【答案】 4【分析】解:∵x 2 ( 2,)- y+z =8 ∴(x-y-z )(x+y+z )=8, ∵x+y+z=2,∴x-y-z=8 2=4÷,故答案为:4.第一把 x 2 ( 2 的左侧 分解因式,再把 x+y+z=2 代入即可获取答案.)- y+z =8此 题主要考 查了因式分解的 应键 练掌握平方差公式分解因式.平方差用,关 是熟公式:a 2-b 2=(a+b )(a-b ).217.【答案】 解:( 1)原式 =2a - ab ;( 2)原式 =4 x 2+4xy+y 2-4x 2+9y 2=10y 2+4xy .【分析】(1)原式利用多项式除以单项式法例计算即可求出 值;(2)原式利用完整平方公式,以及平方差公式 计算,去括号归并即可获取 结果.本题考察了整式的混淆运算,熟 练掌握运算法 则是解本题的重点.18.38 20 16或 17或 18【答案】 64 【分析】题,解:(1)由 意得: 解得:,答:图甲中 a 与 b 的值分别为:60、40.(2)由图示裁法一 产生 A 型板材为:2×30=60,裁法二产生 A 型板材为:1×4=4,所以两种裁法共 产生 A 型板材为 60+4=64(张),由图示裁法一 产生 B 型板材为:1×30=30,裁法二产生 A 型板材为,2×4=8,所以两种裁法共 产生 B 型板材为 30+8=38(张),故答案为:64,38.由已知和 图示得:横式无盖礼物盒的 y 个,每个礼物盒用 2张 B 型板材,所以用B 型板材 2y 张 .竖 横式无盖(个)礼物盒板 材式无盖(个)x y 张4x 3y A 型()B 型(张)x2y由上表可知横式无盖样式共 5y 个面,用 A 型 3y 张,则 B 型需要 2y 张 .则做两款盒子共需要 A 型 4x+3y 张,B 型 x+2y 张.则 4x+3y ≤64;x+2y ≤38.两式相加得 5x+5y ≤102.则 x+y ≤20.4.所以最多做 20 个.两式相减得 3x+y ≤26.则 2x ≤5.6,解得 x ≤2.8.则 y ≤18.则横式可做 16,17 或 18 个.故答案为:20,16 或 17 或 18.(1)由图示列出对于 a 、b 的二元一次方程 组求解.(2)依据已知和图示计算出两种裁法共产生 A 型板材和 B 型板材的 张数,相同由图示达成表格,并达成 计算.本题考察的知识点是二元一次方程 组的应用,重点是依据已知先列出二元一次方程组求出 a 、b 的值,再是依据图示解答.4 82.19.【答案】 解:( 1)原式 =2 a ÷3a =22(2)原式 =1- a +a -3a=1-3a .(1)依据单项式的幂的乘方法 则和除法法 则进行计算.(2)依据多项式的乘法法 则以及单项式乘多项式的法例进行计算.本题考察单项 式的乘方法 则、单项式除以 单项式的法 则、乘法公式等知 识,正确运用法例是解题的重点.20.【答案】 解:( 2x+3)( 2x-3) -( x-2) 2-3x ( x-1)2 2 2=4x -9- x +4x-4-3x +3x =7x-13,当 x=2 时,原式 =7×2-13=1.【分析】利用平方差及完整平方公式化 简,再把x=2 代入求解即可.本题主要考察了整式的化 简求值,解题的重点是正确的化 简.21.【答案】 解:( 1) ∵a-b=7, ab=-12 ,2 2∴ab-ab =ab (a-b ) =-12 ×7=-84;( 2) ∵a-b=7 , ab=-12 ,2∴(a-b ) =49 ,22∴a +b -2ab=49,( 3) ∵a 2+b 2=25 ,2∴(a+b ) =25+2ab=25-24=1 ,【分析】(1)直接提取公因式 ab ,从而分解因式得出答案;(2)直接利用完整平方公式从而求出答案;(3)直接利用(2)中所求,联合完整平方公式求出答案.本题主要考 查了完整平方公式以及提取公因式法分解因式,正确应用完整平方公式是解 题重点.22.【答案】 解: ∵AD ∥BC ,∴∠DEF =∠EFB=20 °,在图 b 中 ∠GFC =180°-2∠EFG =140°, 在图 c 中 ∠CFE =∠GFC -∠EFG=120°.【分析】由平行线的性质知∠DEF=∠EFB=20°,从而获取图 b 中∠GFC=140°,依照图 c 中的∠CFE=∠GFC-∠EFG 进行计算.本题考察图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,依据轴对称的性新人教版九年级第一学期期中模拟数学试卷(含答案)一、选择题 ( 本大题共 10 个小题,每题 3 分,共 30 分.在每个小题给出的四个选项中,只有一项切合题目要求)题号12345678910答案A D B B C C D D D A1.抛物线 y=2x2- 1 的极点坐标是 (A)A. (0 ,- 1)B.(0 , 1)C.( -1,0)D.(1,0)2.假如A. 2x=- 1 是方程 x2- x+ k= 0 的解,那么常数B .1 C.-1D.-2k 的值为 (D)3.将抛物线y= x2 向右平移 2 个单位长度,再向上平移 1 个单位长度,所得抛物线的分析式是 (B)A. y= (x +2)2+1B.y=(x-2)2+1C.y=(x+2)2-1D.y=(x-2)2-14.小明在解方程x2- 4x-15= 0 时,他是这样求解的:移项,得 x2- 4x= 15,两边同时加4,2+ 4=19,∴ (x - 2)2∴ x- 2=±1= 2+2=2-19. 这类解方得 x - 4x= 19.19. ∴ x19, x程的方法称为 (B)A.待定系数法 B .配方法C.公式法D.因式分解法5.以下图形中,既是轴对称图形,又是中心对称图形的是(C)A B C D6.已知抛物线y=- 2x2+ x 经过 A( - 1,y1) 和 B(3 ,y2) 两点,那么以下关系式必定正确的是(C)A. 0< y2< y1B.y1<y2<0C.y2<y1<0D.y2<0<y17.已知 a, b, c 分别是三角形的三边长,则方程(a +b)x 2+ 2cx +(a + b) =0 的根的状况是(D)A.有两个不相等的实数根B.有两个相等的实数根C.可能有且只有一个实数根D.没有实数根8.如图,将矩形ABCD绕点 A 顺时针旋转到矩形 AB′ C′D′的地点,旋转角为α (0°<α<90° ) .若∠ 1= 112°,则∠ α的大小是 (D)A. 68° B .20° C .28° D .22°29.已知二次函数y= ax + bx+ c 的图象以下图,则以下结论正确的选项是(D)10.如图,将△ ABC绕着点 B 顺时针旋转60°获取△ DBE,点 C 的对应点 E 恰巧落在AB的延PB2长线上,连结AD, AC与 DB交于点 P,DE与 CB交于点 Q,连结 PQ.若 AD= 5 cm,AB=5,则PQ的长为 (A)A. 2 cm B.57cm C . 3 cm D.cm 22二、填空题 ( 本大题共 5 个小题,每题 3 分,共 15 分)11.在平面直角坐标系中,点A(0, 1)对于原点对称的点是(0,- 1).12.方程 x(x + 1) = 0 的根为 x1=0, x2=- 1.13.某楼盘2016 年房价为每平方米8 100元,经过两年连续降价后,2018 年房价为7 600元.设该楼盘这两年房价均匀降低率为x,依据题意可列方程为8__100(1 -x) 2= 7__600.14.二次函数y= ax2+bx+c(a≠0) 中x,y的部分对应值以下表:x- 1012y6323则当 x=- 2 时, y 的值为 11.15. 如图,射线 OC与 x 轴正半轴的夹角为30°,点 A 是 OC上一点, AH⊥ x 轴于 H,将△AOH绕着点 O逆时针旋转 90°后,抵达△ DOB的地点,再将△ DOB沿着 y 轴翻折抵达△ GOB的地点.若点 G恰幸亏抛物线 y=x2 (x > 0) 上,则点 A 的坐标为 (3 , 3) .三、解答题 ( 本大题共 8 个小题,共75 分.解答应写出文字说明,证明过程或演算步骤) 16. ( 共题共 2 个小题,每题 5 分,共 10 分 )(1) 解方程: x(x + 5) = 5x+ 25;解: x(x + 5) = 5(x +5) , x(x + 5) - 5(x + 5) = 0,∴(x - 5)(x + 5) = 0. ∴ x- 5=0 或 x+5= 0.∴x1= 5, x2=- 5.(2)已知点 (5 , 0) 在抛物线 y=- x2+ (k +1)x - k 上,求出抛物线的对称轴.解:将点 (5 , 0) 代入 y=- x2+ (k + 1)x -k,得 0=- 52+ 5× (k + 1) - k,解得 k= 5. ∴ y=- x2+6x- 5.6∴该抛物线的对称轴为直线x=-2×(- 1)=3.17.( 本题 6分) 以下图的是一桥拱的表示图,它的形状近似于抛物线,在正常水位时,该桥下边宽度为20 米,拱顶距离水面 4 米,成立平面直角坐标系以下图.求抛物线的分析式.解:设该抛物线的分析式为2 y=ax .由图象可知,点 B(10,- 4) 在函数图象上,代入y= ax2,得1,100a=- 4,解得 a=-25∴该抛物线的分析式为 y=-1x2.2518. ( 本题 7 分 ) 如图,在平面直角坐标系中,有一Rt △ABC,已知△ A1AC1是由△ ABC绕某点顺时针旋转 90°获取的.(1) 请你写出旋转中心的坐标是(0 ,0);(2)以 (1) 中的旋转中心为中心,画出△ A1AC1顺时针旋转 90°, 180°后的三角形.解:如图,△ B1A1C2,△ BB1C3即为所求作图形.19. ( 本题 7 分 )(1) 求二次函数y= x2+ x- 2 与 x 轴的交点坐标;(2) 若二次函数y=- x2+ x+ a 与 x 轴只有一个交点,求 a 的值.2解: (1) 令 y= 0,则有 x + x- 2= 0.∴二次函数y= x2+ x-2 与 x 轴的交点坐标为(1 , 0) , ( - 2,0) .(2)∵二次函数 y=- x2+ x+ a 与 x 轴只有一个交点,∴令 y= 0,即- x2+ x+a= 0 有两个相等的实数根.1∴Δ= 1+ 4a= 0,解得 a=- .420.( 本题 7 分) 如图,已知在 Rt △ABC中,∠ ABC= 90°,先把△ ABC绕点 B顺时针旋转 90°至△ DBE后,再把△ ABC沿射线 AB 平移至△ FEG, DE, FG订交于点 H.(1)判断线段 DE, FG的地点关系,并说明原因;(2)连结 CG,求证:四边形 CBEG是正方形.解: (1)FG ⊥ DE,原因以下:∵把△ ABC绕点 B 顺时针旋转 90°至△ DBE,∴∠ DEB=∠ ACB.∵把△ ABC沿射线平移至△FEG,∴∠ GFE=∠ A.∵∠ ABC= 90°,∴∠ A+∠ ACB= 90° . ∴∠ DEB+∠ GFE= 90° . ∴∠ FHE= 90° .∴FG⊥ DE.(2)证明:依据旋转和平移可得∠ GEF=90°,∠ CBE= 90°, CG∥ EB, CB= BE,∵CG∥ EB,∴∠ BCG=∠ CBE=90° . ∴四边形 CBEG是矩形.又∵ CB= BE,∴四边形 CBEG是正方形 .21.( 本题 12 分)我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为 60 元,每日可售出 20 件,为迎接“双十一” ,专卖店决定采纳适合的降价举措,以扩大销售量,经市场检查发现,假如每件童装降价 1 元,那么均匀每日可多售出2件.设每件童装降价x 元 (x > 0)时,均匀每日可盈余 y元.(1)写出 y 与 x 的函数关系式;(2)依据 (1) 中你写出的函数关系式,解答以下问题:①当该专卖店每件童装降价 5 元时,均匀每日盈余多少元?②当该专卖店每件童装降价多少元时,均匀每日盈余400 元?③该专卖店要想均匀每日盈余600 元,可能吗?请说明原因.解: (1) 依据题意,得 y=2 (20 + 2x)(60 - 40- x) = (20 + 2x)(20 - x) = 400+40x - 20x - 2x=- 2x2+ 20x+ 400.2∴y=- 2x +20x + 400.(2) ①当 x= 5 时, y=- 2× 52+20× 5+ 400= 450,∴当该专卖店每件童装降价5 元时,均匀每日盈余450 元.②当 y= 400 时, 400=- 2x2+ 20x+ 400,整理,得x2-10x = 0,解得 x1= 10, x2= 0( 不合题意,舍去) ,∴当该专卖店每件童装降价10 元时,均匀每日盈余400 元.③该专卖店均匀每日盈余不行能为600 元.原因:当y= 600 时, 600=- 2x2+20x+400,整理,得x2- 10x+ 100=0,∵Δ= ( - 10) 2- 4× 1×100=- 300< 0,∴方程没有实数根.故该专卖店均匀每日盈余不行能为600 元.22. ( 本题12 分 ) 综合与实践:问题情境:(1) 如图1,两块等腰直角三角板△ABC和△ ECD以下图摆放,此中∠ACB=∠ DCE= 90°,点 F,H, G分别是线段 DE, AE,BD的中点, A,C, D 和 B, C, E 分别共线,则 FH 和 FG 的数目关系是 FH= FG,地点关系是 FH⊥FG;合作研究:(2)如图 2,若将图 1 中的△ DEC绕着点 C顺时针旋转至 A,C,E 在一条直线上,其余条件不变,那么 (1) 中的结论还成立吗?若成立,请证明;若不行立,请说明原因;(3) 如图 3,若将图 1 中的△ DEC绕着点 C 顺时针旋转一个锐角,那么(1) 中的结论能否还成立?若成立,请证明;若不行立,请说明原因.解: (2)(1)中的结论还成立.证明:延伸AD交 BE于点 M.∵CD= CE,AC= BC,∠ ACD=∠ BCE= 90°,∴△ ACD≌△ BCE(SAS).∴ AD= BE,∠ CAD=∠ CBE.∵∠ CBE+∠ CEB= 90°,∴∠ CAD+∠ CEB= 90° . ∴∠ AME= 90° . ∴AD⊥ BE.∵F, H, G分别是 DE, AE, BD的中点,11∴F H=2AD, FH∥ AD,FG=2BE, FG∥ BE.∴ FH= FG.∵AD⊥ BE,∴ FH⊥ FG.∴ (1) 中结论还成立.(3)(1)中的结论仍成立.证明:连结AD, BE,两线交于点Z, AD交 BC于点 X.11同(2) 可得 FH=2AD,FH∥ AD,FG=2BE, FG∥ BE.∵△ ECD,△ ACB都是等腰直角三角形,∠ECD=∠ ACB= 90°,∴ CE= CD, AC= BC.∴∠ ACD =∠ BCE.∴△ ACD ≌△ BCE(SAS).∴ AD = BE ,∠ EBC =∠ DAC.∴FH = FG.∵∠ DAC +∠ CXA = 90°,∠ CXA =∠ DXB ,∴∠ DXB +∠ EBC = 90° . ∴∠ BZA = 180°- 90°= 90° . ∴ AD ⊥ BE.∵ F H ∥ AD ,FG ∥ BE ,∴ FH ⊥ FG.∴ (1) 中的结论仍成立.23. ( 本题 14 分 ) 综合与研究:如图,二次函数 y =-14x2+32x + 4 的图象与x 轴交于点 B新人教版九年级数学上册期中考试一试题(含答案)一. 选择题(每题3 分,总分 36 分)1.以下方程中,对于 x 的一元二次方程是( )A .( x +1) 2= 2( x +1)B .C . ax 2+bx +c = 0D . x 2+2x = x 2﹣ 12.若对于 x 的一元二次方程( m ﹣ 2)x 2﹣ 2x +1= 0 有实根,则 m 的取值范围是()A . <3B . ≤3C . <3且 ≠2D . ≤3且 ≠2mm mmmm3.方程 ( ﹣ 1)= x 的根是()x xA . x =2B . x =﹣ 2C . x 1=﹣ 2, x 2= 0D .x 1= 2, x 2 =04.以下方程中以 1,﹣ 2 为根的一元二次方程是()A .( x +1)( x ﹣ 2)= 0B .( x ﹣ 1)( x +2 )= 1C .( x +2 ) 2= 1D .5.把二次函数 y = 3x 2 的图象向左平移 2 个单位,再向上平移1 个单位,所获取的图象对应的二次函数表达式是( )A . y =3( x ﹣ 2) 2 +1B . y = 3( x +2) 2﹣ 1C . y =3( x ﹣ 2) 2 ﹣ 1D . y = 3( x +2) 2+1 6.函数 y =﹣ x 2﹣ 4x +3 图象极点坐标是()A .( 2,﹣ 7)B .( 2, 7)C .(﹣ 2,﹣ 7)D .(﹣ 2, 7)7.抛物线 y = (x +2) 2+1 的极点坐标是()A .( 2, 1)B .(﹣ 2, 1)C .( 2,﹣ 1)D .(﹣ 2,﹣ 1)8.y=(x﹣ 1)2+2 的对称轴是直线()A.x=﹣ 1B.x=1C.y=﹣ 1D.y= 1 9.假如x1, x2是方程x2﹣2x﹣1=0的两个根,那么x1+x2的值为()A.﹣ 1B. 2C.D.10.当a>0, b<0, c>0时,以下图象有可能是抛物线y= ax2+bx+c 的是()A.B.C.D.11.无论x 为什么值,函数y=ax2++(≠0)的值恒大于0 的条件是()bx c aA.a>0,△> 0B.a>0,△< 0C.a< 0,△< 0D.a< 0,△> 0 12.某班同学毕业时都将自己的照片向全班其余同学各送一张表示纪念,全班共送1035 张照片,假如全班有 x 名同学,依据题意,列出方程为()A.x(x+1)= 1035B.x(x﹣ 1)= 1035× 2C.x(x﹣ 1)= 1035D. 2x(x+1)= 1035二. 填空题(每题 3 分,总分18 分)13.若对于x的一元二次方程x2﹣3x+m=0有实数根,则m的取值范围是.14.方程x 2﹣ 3 +1= 0 的解是.x15.以下图,在同一坐标系中,作出①y=3x2② y=x2③ y= x2的图象,则图象从里到外的三条抛物线对应的函数挨次是(填序号).16.抛物线y=﹣ x2+15有最点,其坐标是.17.水稻今年一季度增产 a 吨,此后每季度比上一季度增产的百分率为x,则第三季度化肥增产的吨数为.18.已知二次函数y=+5x﹣ 10,设自变量的值分别为x1, x2, x3,且﹣3<x1<x2< x3,则对应的函数值y1,y2, y3的大小关系为三. 解答题(本大题共8 个小题,)19.( 6 分)解方程x2﹣4x+1=0x( x﹣2)=4﹣2x;20.( 6 分)抛物线y= ax2+bx+c 的极点为(2,4),且过(1,2)点,求抛物线的分析式.21.( 8 分)已知对于x 的一元二次方程x2﹣3x+m=0有两个不相等的实数根x1、 x2.(1)求m的取值范围;(2)当x1= 1 时,求另一个根x2的值.22.( 8 分)已知:抛物线y=﹣x2+x﹣(1)直接写出抛物线的张口方向、对称轴、极点坐标;(2)求抛物线与坐标轴的交点坐标;(3)当x为什么值时,y随x的增大而增大?23.( 9 分)百货商铺服饰柜在销售中发现:某品牌童装均匀每日可售出20 件,每件盈余40元.为了迎接“六一”国际小孩节,商场决定采纳适合的降价举措,扩大销售量,增添盈余,减少库存.经市场检查发现:假如每件童装降价 1 元,那么均匀每日便可多售出2件.要想均匀每日销售这类童装盈余1200元,那么每件童装应降价多少元?24.( 9分)某广告公司要为客户设计一幅周长为12m的矩形广告牌,广告牌的设计费为每平方米1000元.请你设计一个广告牌边长的方案,使得依据这个方案所确立的广告牌的长和宽能使获取的设计费最多,设计费最多为多少元?25.( 10分)如图,对称轴为直线x=2的抛物线y= x2+bx+c与x 轴交于点 A 和点B,与y 轴交于点 C,且点 A 的坐标为(﹣1,0)(1)求抛物线的分析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)26.(10 分)某片果园有果树80 棵,现准备多种一些果树提升果园产量,可是假如多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果 y(千克),增种果树x(棵),它们之间的函数关系以下图.(1)求y与x之间的函数关系式;(2)在投入成本最低的状况下,增种果树多少棵时,果园能够收获果实6750 千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?参照答案一. 选择题1.以下方程中,对于x 的一元二次方程是()A.(x+1)2= 2(x+1)B.C.ax2+bx+c= 0D.x2+2x=x2﹣ 1【剖析】利用一元二次方程的定义判断即可.解:以下方程中,对于x 的一元二次方程是(x+1)2=2( x+1),应选: A.【评论】本题考察了一元二次方程的定义,娴熟掌握一元二次方程的定义是解本题的重点.2.若对于x 的一元二次方程(﹣ 2)x2﹣ 2 +1= 0 有实根,则的取值范围是()m x mA.<3B.≤3C.<3且≠2D.≤3且≠2 m m m m m m【剖析】因为x 的一元二次方程(﹣ 2)2﹣2x+1= 0 有实根,那么二次项系数不等于0,m x而且其鉴别式△是非负数,由此能够成立对于m的不等式组,解不等式组即可求出m的取值范围.解:∵对于x 的一元二次方程(m﹣2) x2﹣2x+1=0有实根,∴m﹣2≠0,而且△=(﹣2)2﹣ 4(m﹣ 2)= 12﹣ 4m≥ 0,∴m≤3且 m≠2.应选: D.【评论】本题考察了根的鉴别式的知识,总结:一元二次方程根的状况与鉴别式△的关系:(1)△> 0? 方程有两个不相等的实数根;(2)△= 0? 方程有两个相等的实数根;(3)△< 0? 方程没有实数根.本题牢记不要忽视一元二次方程二次项系数不为零这一隐含条件.3.方程x( x﹣1)= x 的根是()A.x=2B.x=﹣ 2C.x1=﹣ 2,x2= 0D.x1= 2,x2=0【剖析】先将原方程整理为一般形式,而后利用因式分解法解方程.解:由原方程,得x2﹣2x=0,∴x( x﹣2)=0,∴x﹣2=0或 x=0,解得, x1=2, x2=0;应选: D.【评论】本题考察了一元二次方程的解法﹣﹣因式分解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要依据方程的特色灵巧采纳适合的方法.4.以下方程中以1,﹣ 2 为根的一元二次方程是()A.(x+1)(x﹣ 2)= 0B.(x﹣ 1)(x+2)= 1C.(x+2)2= 1D.【剖析】依据因式分解法解方程对 A 进行判断;依据方程解的定义对 B 进行判断;依据直接开平方法对C、 D进行判断.解: A、 x+1=0或 x﹣2=0,则 x1=﹣1, x2=2,所以 A 选项错误;B、 x=1或 x=﹣2不知足( x﹣1)( x+2)=1,所以 B 选项错误;C、 x+2=±1,则 x1=﹣1, x2=﹣3,所以 C选项错误;、+=±,则x1= 1,=﹣ 2,所以D选项正确.D x x2应选: D.【评论】本题考察认识一元二次方程﹣因式分解法:先把方程的右边化为0,再把左侧经过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转变为解一元一次方程的问题了(数学转变思想).也考察了直接开平方法解一元二次方程,5.把二次函数y= 3x2的图象向左平移 2 个单位,再向上平移 1 个单位,所获取的图象对应的二次函数表达式是()A.y=3(x﹣ 2)2 +1B.y= 3(x+2)2﹣ 1C.y=3(x﹣ 2)2﹣ 1D.y= 3(x+2)2+1【剖析】变化规律:左加右减,上加下减.解:依照“左加右减,上加下减”的规律,y = 3 2的图象向左平移 2 个单位,再向上平移 1 x个单位获取y = 3(x+2)2+1.应选.D【评论】考察了抛物线的平移以及抛物线分析式的性质.6.函数=﹣2﹣ 4+3 图象极点坐标是()y xxA.( 2,﹣ 7)B.( 2, 7)C.(﹣ 2,﹣ 7)D.(﹣ 2, 7)【剖析】先把二次函数化为极点式的形式,再得出其极点坐标即可.解:∵原函数分析式可化为:y=﹣( x+2)2+7,∴函数图象的极点坐标是(﹣2, 7).应选: D.【评论】本题考察的是二次函数的性质,依据题意把二次函数的分析式化为极点式的形式是解答本题的重点.7.抛物线y=(x+2)2+1的极点坐标是()A.( 2, 1)B.(﹣ 2, 1)C.( 2,﹣ 1)D.(﹣ 2,﹣ 1)【剖析】已知分析式是抛物线的极点式,依据极点式的坐标特色,直接写出极点坐标.解:因为 y=(x+2)2+1是抛物线的极点式,由极点式的坐标特色知,极点坐标为(﹣2,1).应选: B.【评论】考察极点式y= a( x﹣h)2+k,极点坐标是(h, k),对称轴是x=h.要掌握极点式的性质.8.y=(x﹣ 1)2+2 的对称轴是直线()A.x=﹣ 1B.x=1C.y=﹣ 1D.y= 1【剖析】二次函数的一般形式中的极点式是:y= a( x﹣ h)2+k( a≠0,且 a,h,k 是常数),它的对称轴是x= h,极点坐标是(h, k).解: y=( x﹣1)2+2的对称轴是直线x=1.应选:B.【评论】本题主要考察二次函数极点式中对称轴的求法.9.假如x1, x2是方程x2﹣2x﹣1=0的两个根,那么x1+x2的值为()A.﹣ 1B. 2C.D.【剖析】能够直接利用两根之和获取所求的代数式的值.解:假如 x1, x2是方程 x2﹣2x﹣1=0的两个根,那么 x1+x2=2.应选: B.【评论】本题考察一元二次方程ax2+bx+c=0的根与系数的关系即韦达定理,两根之和是,两根之积是.10.当a>0,b< 0,c> 0 时,以下图象有可能是抛物线y= ax2+bx+c 的是()A.B.C.D.【剖析】依据二次函数的图象与系数的关系可知.解:∵ a>0,∴抛物线张口向上;∵b<0,∴对称轴为x=>0,∴抛物线的对称轴位于y 轴右边;∵c>0,∴与 y 轴的交点为在 y 轴的正半轴上.应选: A.【评论】本题考察二次函数的图象与系数的关系.11.无论x 为什么值,函数y=ax2+bx+c( a≠0)的值恒大于0 的条件是()A.a>0,△> 0 B.a>0,△< 0 C.a< 0,△<【剖析】依据二次函数的性质可知,只需抛物线张口向上,且与0D.a< 0,△>x 轴无交点即可.解:欲保证x 取一确实数时,函数值y 恒为正,则一定保证抛物线张口向上,且与x 轴无交点;则 a>0且△<0.应选:B.【评论】当 x 取一确实数时,函数值y 恒为正的条件:抛物线张口向上,且与x 轴无交点;当 x 取一确实数时,函数值y 恒为负的条件:抛物线张口向下,且与x 轴无交点.12.某班同学毕业时都将自己的照片向全班其余同学各送一张表示纪念,全班共送1035张照片,假如全班有x 名同学,依据题意,列出方程为()A.x(x+1)= 1035B.x(x﹣ 1)= 1035× 2C.x(x﹣ 1)= 1035D. 2x(x+1)= 1035【剖析】假如全班有x 名同学,那么每名同学要送出(x﹣1)张,共有 x 名学生,那么总合送的张数应当是x( x﹣1)张,即可列出方程.解:∵全班有x 名同学,∴每名同学要送出( x﹣1)张;又∵是互送照片,∴总合送的张数应当是x( x﹣1)=1035.应选: C.【评论】本题考察一元二次方程在实质生活中的应用.计算全班共送多少张,第一确立一个人送出多少张是解题重点.二. 填空题(每题 3 分,总分18 分)13.若对于x 的一元二次方程x2﹣3x+m=0有实数根,则 m的取值范围是m≤.【剖析】在与一元二次方程相关的求值问题中,一定知足以下条件:在有实数根下一定知足△= b2﹣4ac≥0.解:一元二次方程x 2﹣ 3+ = 0 有实数根,x m△= b2﹣4ac=9﹣4m≥0,解得 m.【评论】总结:一元二次方程根的状况与鉴别式△的关系:(1)△> 0? 方程有两个不相等的实数根;(2)△= 0? 方程有两个相等的实数根;(3)△< 0? 方程没有实数根.14.方程x2﹣ 3x+1= 0 的解是x1=,x2=.【剖析】察看原方程,可用公式法求解;第一确立a、 b、c 的值,在b2﹣4ac≥0的前提条件下,代入求根公式进行计算.解: a=1,b=﹣3,c=1,2b ﹣4ac=9﹣4=5>0,x=;。
2022-2023学年上海市闵行区九年级(上)期中数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在试卷上无效.3.考试结束后,本试卷和答题卡一并交回.第I 卷(选择题)一、选择题(本大题共6小题,共24.0分.在每小题列出的选项中,选出符合题目的一项)1.下列各组图形中,一定相似的是()A.两个正方形B.两个矩形C.两个菱形D.两个平行四边形2.已知△ABC 中,D ,E 分别是边BC ,AC 上的点,下列各式中,不能判断DE ∥AB 的是()A.AE BDEC DC= B.AE BDAC BC= C.AC ECBC DC= D.DE CEAB AC=3.如果两个相似三角形对应边的比为1:4,那么它们的周长比是()A.1:2B.1:4C.1:8D.1:164.若α是锐角,()2sin 152α+=,那么锐角α等于()A.15B.30C.45D.605.已知3a b =,下列说法中不正确的是()A.30a b -=B.a 与b方向相同 C.a b∥ D.3a b=6.如图,一艘船从A 处向北偏东30︒的方向行驶10千米到B 处,再从B 处向正西方向行驶16千米到C 处,这时这艘船与A 的距离()A.15千米B.14千米C.1D.千米第II 卷(非选择题)二、填空题(本大题共12小题,共48.0分)7.如果:3:1a b =,那么a ba b-=+___________.8.设点P 是线段AB 的黄金分割点2AP BP BP <=(),厘米,那么线段AP 的长是___________厘米.9.已知a 与单位向量e 的方向相同,且长度为5,那么用e表示a=___________.10.已知在ABC 中,9086C AB AC ∠=︒==,,,那么cos A 的值是___________.11.如图,D 、E 是ABC 边AB 、AC 上的两点,且DE BC ∥,:1:3DE BC =,那么:AD AB =___________.12.已知ABC ∽A B C ''' ,顶点A 、B 、C 分别与顶点A '、B '、C '对应,AD 、A D ''分别是BC 、B C ''边上的中线,如果362BC AD B C ''===,,,那么A D ''的长是___________.13.如图,在平面直角坐标系内有一点P (6,8),那么OP 与x 轴正半轴的夹角α的余切值___________.14.如图,传送带和地面所成斜坡的坡度为1:4,若它把物体从地面点A 处送到离地面1米高的B 处,则物体从A 到B 所经过的路程为___________米.15.边长为2的等边三角形的高与它的边长的比值为___________.16.在ABC 中,905C AB ∠=︒=,,点D 为AB 的中点,45sin BCD ∠=,那么AC 的长为___________.17.如图,在Rt ABC △中,9030C B ∠=︒∠=︒,,点D 在边AB 上,点E 在边BC 上,将BDE △沿着直线DE 翻折后,点B 恰好落在线段AC 的延长线上的点P 处,如果2APE B ∠∠=,那么BDAD的值是___________.18.如图,在ABC 中,90C ∠=︒,AC BC =,12AB =,点P 在ABC 的内部(不包括边上),且ABP 的面积等于ABC 的面积的一半,设点D 为ABC 的重心,点P 、D 两点之间的距离为d ,那么d 的最小值为___________.三、解答题(本大题共7小题,共78.0分.解答应写出文字说明,证明过程或演算步骤)19.计算:1tan6022cot452cos30︒+︒+︒+.20.如图,已知两个不平行的向量a 、b.先化简,再求作:313222a b a b ⎛⎫+--+ ⎪⎝⎭.不要求写作法,但要指出图中表示结论的向量21.如图,已知在正方形ABCD 中,4=AD ,点E 为边CD 延长线上一点,2DE =,连接BE ,线段BE 交AD 于点F.(1)求DFBC的值;(2)求ABFBCES S 的值.22.如图,在电线杆上的C 处引拉线CE 和CF 固定电线杆.在离电线杆6米的B 处安置测角仪(点B 、E 、D 在同一直线上),在点A 处测得电线杆上C 处的仰角为30︒.已知测角仪的高AB为CE 的长为6米,求测角仪底端(点B )与拉线固定点(E)之间的距离.23.已知:如图,在ABC 中,AB AC =,点D 、E 分别在边BC 上,2AB BD CE =⋅.(1)求证:EAD B ∠=∠;(2)如果点F 在边AB 上,且EF AD ∥,FB BEEF DE=,求证:BAE ∽BCA .24.已知在平面直角坐标系xOy 中(如图),直线22y x =+,与x 轴、y 轴分别交于A 、B 两点,且点C 的坐标为()3,2,连结AC ,与y 轴交于点D.(1)求线段AB 的长度;(2)求点D 的坐标;(3)联结BC ,求证:ACB ABO ∠=∠.25.已知,在ABC ∆中,90ACB ︒∠=,6AC =,8BC =,点D 、E 分别在边AB 、BC 上,且均不与顶点B 重合,ADE A ∠=∠(如图1所示),设AD x =,BE y =.(1)当点E 与点C 重合时(如图2所示),求线段AD 的长;(2)在图1中当点E 不与点C 重合时,求y 关于x 的函数解析式及其定义域;(3)我们把有一组相邻内角相等的凸四边形叫做等邻角四边形.请阅读理解以上定义,完成问题探究:如图1,设点F 在边AB 上,3CE =,如果四边形ACEF 是等邻角四边形,求线段AF 的长.2022-2023学年上海市闵行区九年级(上)期中数学试卷第I卷(选择题)一、选择题(本大题共6小题,共24.0分.在每小题列出的选项中,选出符合题目的一项)1.下列各组图形中,一定相似的是()A.两个正方形B.两个矩形C.两个菱形D.两个平行四边形【答案】A【分析】根据相似图形的概念逐项进行判断即可.【详解】解:A、任意两个正方形的对应角相等,对应边的比也相等,故一定相似,故此选项符合题意;B、任意两个矩形对应角相等,但对应边的比不一定相等,故不一定相似,此选项不符合题意,C、任意两个菱形的对应边的比相等,但对应角不一定相等,故不一定相似,此选项不符合题意;D、任意两个平行四边形对应边的比不一定相等,对应角也不一定相等,故不一定相似,此选项不符合题意;故选:A.【点睛】本题考查的是相似图形的概念,掌握对应角相等,对应边的比相等的多边形,叫做相似多边形是解题的关键.2.已知△ABC中,D,E分别是边BC,AC上的点,下列各式中,不能判断DE∥AB的是()A.AE BDEC DC= B.AE BDAC BC= C.AC ECBC DC= D.DE CEAB AC=【答案】D【分析】若使线段DE∥AB,则其对应边必成比例,进而依据对应边成比例即可判定DE∥AB.【详解】解:如图,若使线段DE∥AB,则其对应边必成比例,即AEEC=BDDC,AEAC=BDBC,故选项A、B可判定DE∥AB;EC AC=CDBC,即ACBC=ECCD,故选项C可判定DE∥AB;而由DEAB=CEAC不能判断DE∥AB,故D选项答案错误.故选:D.【点睛】本题考查了平行线分线段成比例定理的推论,熟练掌握该知识是解题的关键.3.如果两个相似三角形对应边的比为1:4,那么它们的周长比是()A.1:2B.1:4C.1:8D.1:16【答案】B【分析】根据周长比等于相似比进行解答即可.【详解】解:∵两个相似三角形对应边的比为1:4,∴两个相似三角形的相似比为1:4,∴它们的周长比是1:4,故选:B .【点睛】本题考查了相似三角形的相似比,熟知相似三角形的周长比=相似比是解本题的关键. 4.若α是锐角,()2sin 152α+=,那么锐角α等于()A.15B.30C.45D.60【答案】B 【分析】由sin45°=22可得()15α+ =45°即可确定α.【详解】解:∵sin45°=2,()2sin 152α+=,α是锐角∴()15α+=45°,即α=30°.故选:B .【点睛】本题主要考查特殊角的三角函数值,根据特殊角的三角函数值确定()15α+=45°成为解答本题的关键.5.已知3a b =,下列说法中不正确的是()A.30a b -= B.a 与b方向相同C.a b∥ D.3a b=【答案】A【分析】根据已知条件可知:a与b的方向相同,其模是3倍关系.【详解】解:A 、由3a b =知:30a b -=,选项不正确,符合题意;B 、由3a b = 知:a 与b 的方向相同,选项正确,不符合题意;C 、由3a b =知:a与b的方向相同,则//a b,选项正确,不符合题意;D 、由3a b = 知:3a b = ,选项正确,不符合题意.故选A .【点睛】本题主要考查了平面向量,注意:平面向量既有方向,又有大小.6.如图,一艘船从A 处向北偏东30︒的方向行驶10千米到B 处,再从B 处向正西方向行驶16千米到C 处,这时这艘船与A 的距离()A.15千米B.14千米C.1D.千米【答案】B【分析】根据直角三角形的三角函数得出AE BE ,,进而得出CE ,利用勾股定理得出AC 即可.【详解】解:如图:BC AE ⊥ ,90AEB ∴∠=︒,3010EAB AB ∠=︒= ,千米,5BE ∴=千米,AE =千米,16511CE BC BE ∴=-=-=(千米),14AC ∴===(千米),故选B .【点睛】此题考查了方向角、解直角三角形的应用,解题的关键是根据直角三角形的三角函数得出AE BE ,解答.第II 卷(非选择题)二、填空题(本大题共12小题,共48.0分)7.如果:3:1a b =,那么a ba b-=+___________.【答案】12##0.5【分析】根据:3:1a b =可得3a b =,代入计算即可.【详解】解::3:1a b = ,∴3a b =,321342a b b b b a b b b b --∴===++;故答案为:12.【点睛】此题考查了比例的性质,掌握比例的性质:内项之积等于外项之积是解题的关键.8.设点P 是线段AB 的黄金分割点2AP BP BP <=(),厘米,那么线段AP 的长是___________厘米.1-##1-+计算即可.【详解】解: 点P 是线段AB 的黄金分割点2AP BP BP <=(),厘米,512AP BP BP AB -∴==,)1AP ∴=厘米,1.【点睛】本题考查的是黄金分割,掌握黄金比值是解题的关键.9.已知a 与单位向量e 的方向相同,且长度为5,那么用e 表示a=___________.【答案】5e【分析】根据平行向量的性质求解即可.【详解】解:a 与单位向量e的方向相同,长度为5,5a e ∴= .故答案为:5e.【点睛】本题考查平面向量,解题的关键是理解题意,灵活运用所学知识解决问题.10.已知在ABC 中,9086C AB AC ∠=︒==,,,那么cos A 的值是___________.【答案】34##0.75【分析】根据余弦的定义即可求解.【详解】解:在ABC 中,9086C AB AC ∠=︒==,,,63cos 84AC A AB ∴===.故答案为:34.【点睛】本题主要考查了余弦函数的定义,正确记忆定义是解题的关键.11.如图,D 、E 是ABC 边AB 、AC 上的两点,且DE BC ∥,:1:3DE BC =,那么:AD AB =___________.【答案】13【分析】通过证明ADE V ∽ABC ,可求解.【详解】解:D E B C ∥,ADE ABC ∴△△∽,13AD DE AB BC ∴==,故答案为:13.【点睛】本题考查了相似三角形的判定和性质,证明三角形相似是解题的关键.12.已知ABC ∽A B C ''' ,顶点A 、B 、C 分别与顶点A '、B '、C '对应,AD 、A D ''分别是BC 、B C ''边上的中线,如果362BC AD B C ''===,,,那么A D ''的长是___________.【答案】4【分析】利用“相似三角形的周长比等于对应的中线的比”求解即可.【详解】解:ABC ∽A B C AD '''V ,和A D ''是它们的对应中线,362BC AD B C ''===,,,BC B C AD A D ''''∴=::,632A D ''∴=::,A D ''∴的长是4,故答案为:4.【点睛】本题考查相似三角形的性质,解题的关键是记住相似三角形的性质,灵活运用所学知识解决问题.13.如图,在平面直角坐标系内有一点P (6,8),那么OP 与x 轴正半轴的夹角α的余切值___________.【答案】34##0.75【分析】过点P 作PA x ⊥轴于点A ,由P 点的坐标得PA 、OA 的长,根据余切函数的定义得结论.【详解】解:过点P 作PA x ⊥轴于点A ,如图:由于点68P (,),86PA OA ∴==,,63cot 84OA PA α∴===.故答案为:34.【点睛】本题考查了点在平面直角坐标系里的意义及解直角三角形.解决本题的关键是构造直角三角形.14.如图,传送带和地面所成斜坡的坡度为1:4,若它把物体从地面点A 处送到离地面1米高的B 处,则物体从A 到B 所经过的路程为___________米.【答案】17【分析】过B 作BC ⊥地面于C ,先根据坡比求出AC 的长,再根据勾股定理求出AB 的长即可.【详解】解:过B 作BC ⊥地面于C ,如图所示:14BC AC = ::,即114AC =::,4AC ∴=(米),22224117AB AC BC ∴=+=+=(米),即物体从A 到B 17米,17.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,熟练掌握坡度的定义,根据题意求出AC 的长是解题的关键.15.边长为2的等边三角形的高与它的边长的比值为___________.【答案】2【分析】根据等边三角形的性质即可得出.【详解】解: 等边三角形的边长是2,根据等腰三角形的三线合一,得底边上的高也是底边上的中线,∴底边的一半是1.=所以高与边长的比的比值是32,故答案为:32.【点睛】本题考查了比例线段以及等边三角形的性质.熟练掌握等边三角形的性质以及灵活运用勾股定理,是解题的关键.16.在ABC 中,905C AB ∠=︒=,,点D 为AB 的中点,45sin BCD ∠=,那么AC 的长为___________.【答案】4【分析】连接CD ,过点D 作DE BC ⊥于点E ,根据正弦的定义求出DE ,根据三角形中位线定理求出AC 即可.【详解】解:连接CD ,过点D 作DE 垂直BC 于点E ,如图:5AB = ,点D 为AB 的中点,1 2.52CD AD BD AB ∴====,45sin BCD DE BC ∠=⊥ ,,4905DE DEB CD ∠∴==︒,,42.55DE ∴=,2DE ∴=,90ACB ∠=︒ ,//DE AC ∴,DE ∴是ABC 的中位线,2224AC DE ∴==⨯=.故答案为:4.【点睛】本题主要考查了锐角三角函数、直角三角形斜边上的中线等知识,正确记忆相关定义和定理是解题的关键.17.如图,在Rt ABC △中,9030C B ∠=︒∠=︒,,点D 在边AB 上,点E 在边BC 上,将BDE △沿着直线DE 翻折后,点B 恰好落在线段AC 的延长线上的点P 处,如果2APE B ∠∠=,那么BD AD的值是___________.【分析】根据折叠的性质,直角三角形中,30°角的所对的直角边等于斜边的一半计算即可.【详解】解:在Rt ABC △中,90C ∠=︒,30B ∠=︒ ,60A ∠∴=︒,260APE B ∠∠∴==︒,由翻折可知:30PD BD DPE B ∠∠===︒,,30APD APE DPE ∠∠∠∴=-=︒,603090ADP ∠∴=︒+︒=︒,PDAD ∴=BDAD ∴=【点睛】本题考查了翻折变换,含30度角的直角三角形,解决本题的关键是掌握翻折的性质.18.如图,在ABC 中,90C ∠=︒,AC BC =,12AB =,点P 在ABC 的内部(不包括边上),且ABP 的面积等于ABC 的面积的一半,设点D 为ABC 的重心,点P 、D 两点之间的距离为d ,那么d 的最小值为___________.【答案】1【分析】过作CH AB ⊥于点H ,设AC 、BC 的中点分别为F 、E ,连接AE 、EF EF ,与AH 交于点G ,则AE 与CH 的交点便是ABC 的重心点D ,点P 在线段EF 上(不与E 、F 重合)当P 与G 重合时,P 、D 两点距离最短为DG ,求得DG 的值便可.【详解】解:过作CH AB ⊥于点H ,设AC 、BC 的中点分别为F 、E ,连接AE 、EF EF ,与AH 交于点G ,则AE 与CH 的交点便是ABC 的重心点D,如下图,9012ACB AC BC AB ∠=︒== ,,,162CH AB ∴==, 点D 为ABC 的重心,123DH CH ∴==,E 、F 分别是AC 、BC 的中点,EF AB ∴∥,132CG GH CH ∴===, 点P 在ABC 的内部(不包括边上),且ABP 的面积等于ABC 的面积的一半,∴点P 在线段EF 上(不与E 、F 重合),当P 与G 重合时,P 、D 之间的距离为d 最小,其值为321d DG ==-=,故答案为:1.【点睛】本题主要考查了等腰直角三角形的性质,三角形的重心性质,三角形的中位线定理,三角形的面积,关键在于确定点P 、D 两点的距离的最小值为DG .三、解答题(本大题共7小题,共78.0分.解答应写出文字说明,证明过程或演算步骤)19.计算:1tan6022cot452cos30︒+︒+︒+.【答案】4【分析】把特殊角的三角函数值代入进行计算,即可解答.【详解】解:1tan6022cot452cos30︒︒+︒++232=2=22=4=.【点睛】本题考查了实数的运算,二次根式的运算,特殊角的三角函数值等,熟练掌握特殊角的三角函数值是解题的关键.20.如图,已知两个不平行的向量a、b.先化简,再求作:313222a b a b⎛⎫+--+⎪⎝⎭.不要求写作法,但要指出图中表示结论的向量【答案】2a b+,见解析【分析】去括号合并同类向量,再利用三角形法则画出图形即可.【详解】解:3131323222222a b a b a b a b a b+--+=++-=+().如图,AB即为所求.【点睛】本题考查平面向量,三角形法则,解题的关键是掌握平面向量的加减混合运算,属于中考常考题型.21.如图,已知在正方形ABCD中,4=AD,点E为边CD延长线上一点,2DE=,连接BE,线段BE交AD 于点F.(1)求DF BC的值;(2)求ABF BCES S 的值.【答案】(1)13(2)49【分析】(1)通过证明DEF CEB ∽△△,即可求解;(2)通过证明ABF DEF ∽△△,可求4ABF DEF S S = .根据(1)所证DEF CEB ∽△△,可得出9BCE DEF S S = ,从而即可求出49ABF BCE S S = .【小问1详解】∵四边形ABCD 是正方形,∴4AD BC AD AB CD BC ====∥,,∴DEF CEB ∽△△,∴21243DF DE DE BC EC CD DE ====++;【小问2详解】∵AB DE ∥,∴ABF DEF ∽△△,∴24ABF DEF S AB S DE ⎛⎫== ⎪⎝⎭,∴4ABF DEF S S = .∵DEF CEB ∽△△,∴21139DEF BCE S S ⎛⎫== ⎪⎝⎭ ,∴9BCE DEF S S = ,∴49ABF BCE S S = .【点睛】本题考查相似三角形的判定和性质,正方形的性质,掌握三角形相似的判定定理是解题的关键.22.如图,在电线杆上的C 处引拉线CE 和CF 固定电线杆.在离电线杆6米的B 处安置测角仪(点B 、E 、D 在同一直线上),在点A 处测得电线杆上C 处的仰角为30︒.已知测角仪的高AB为CE 的长为6米,求测角仪底端(点B )与拉线固定点(E)之间的距离.【答案】3米【分析】过A 作AM 垂直于CD ,垂足为M ,根据含有30︒的直角三角形直角边与斜边的关系和勾股定理求出CM ,根据勾股定理得到DE 的长,由BD 的长减去DE 的长即可求出BE 的长.【详解】解:如图:过A 作AM 垂直于CD ,垂足为点M ,则6AM BD ==米,MD AB ==米,90AMC ∠=︒,30CAM ∠=︒ ,12CM AC ∴=,222AC CM AM -= ,2336CM ∴=,CM ∴=,CD ∴=(米),6CE = 米,利用勾股定理得3DE ===(米),633BE ∴=-=(米).答:测角仪底端(点B )与拉线固定点(E )之间的距离是3米.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,含有30︒的直角三角形直角边与斜边的关系和勾股定理知识点,掌握仰角俯角的概念及30︒的直角三角形直角边与斜边的关系是解题的关键.23.已知:如图,在ABC 中,AB AC =,点D 、E 分别在边BC 上,2AB BD CE =⋅.(1)求证:EAD B ∠=∠;(2)如果点F 在边AB 上,且EF AD ∥,FB BE EF DE=,求证:BAE ∽BCA .【答案】(1)见解析(2)见解析【分析】(1)通过证明ABD △∽ECA △,可得DAB AEC ∠∠=,可得结论;(2)通过证明BEF △∽BDA △,可证AF EF =,由等腰三角形的性质和平行线的性质可得FEA FAE B C ∠∠∠∠===,可得结论.【小问1详解】AB AC = ,B C ∴∠=∠,2AB BD CE =⋅ ,AB CE BD AC∴=,ABD ∴ ECA ∽,DAB AEC ∠∠∴=,DAE BAE BAE B ∠∠∠∠∴+=+,DAE B ∴∠=∠;【小问2详解】证明:如图,EF AD ∥ ,BEF ∴ BDA ∽△,BE BF DE AF ∴=,又BE BF DE EF= ,AF EF ∴=,FAE FEA ∴∠=∠,EF AD ∥ ,DAE FEA ∴∠=∠,又B DAE Ð=Ð,FEA FAE B C ∠∠∠∠∴===,BAE ∴ ∽A BC .【点睛】本题考查了相似三角形的判定和性质,等腰三角形的性质,证明三角形相似是解题的关键.24.已知在平面直角坐标系xOy 中(如图),直线22y x =+,与x 轴、y 轴分别交于A 、B 两点,且点C 的坐标为()3,2,连结AC ,与y 轴交于点D .(1)求线段AB 的长度;(2)求点D 的坐标;(3)联结BC ,求证:ACB ABO ∠=∠.【答案】(15(2)1(0,)2D (3)见解析【分析】(1)分别求出A 、B 点坐标,再求AB 的长即可;(2)用待定系数法求出直线AC 的解析式,直线与y 轴的交点即为D 点;(3)根据B 、C 点的坐标特点,可判断BC y ⊥轴,再分别求出tan ACB ∠与tan ABO ∠,即可证明.【详解】(1)如图:令0x =,则2y =,02B ∴(,),2OB ∴=,令0y =,则1x =-,10A ∴-(,),1OA ∴=,AB ∴=;2()设直线AC 的解析式为y kx b =+,032k b k b -+=⎧∴⎨+=⎩,解得1212k b ⎧=⎪⎪⎨⎪=⎪⎩,1122y x ∴=+,令0x =,则12y =,102D ∴(,);3()证明:0232B C (,),(,),BC y ∴⊥轴,3BC =,102D (,),32BD ∴=,1tan 2BD ACB BC ∠∴==,12AO BO == ,,1tan 2AO ABO BO ∠∴==,ACB ABO ∠∠∴=.【点睛】本题考查一次函数的图象及性质,熟练掌握一次函数的图象及性质,平面中点的坐标特点,直角三角形三角函数值的求法是解题的关键.25.已知,在ABC ∆中,90ACB ︒∠=,6AC =,8BC =,点D 、E 分别在边AB 、BC 上,且均不与顶点B 重合,ADE A ∠=∠(如图1所示),设AD x =,BE y =.(1)当点E 与点C 重合时(如图2所示),求线段AD 的长;(2)在图1中当点E 不与点C 重合时,求y 关于x 的函数解析式及其定义域;(3)我们把有一组相邻内角相等的凸四边形叫做等邻角四边形.请阅读理解以上定义,完成问题探究:如图1,设点F 在边AB 上,3CE =,如果四边形ACEF 是等邻角四边形,求线段AF 的长.【答案】(1)365(2)2020036(10)775y x x =-+≤≤(3)154或5或334【分析】(1)由点C 与点E 重合,ADE A ∠=∠可想到,过点C 作CH AB ⊥于H ,再结合Rt ACB ∆的勾股定理和面积,即可求解CH 的长,又在Rt ACH ∆中可求解AH ,最后利用等腰ACD ∆的性质即可求解AD 的长;(2)由题意想到过点E 作EM AB ⊥于M ,则可知ΔΔBME BCA ∽,即可知BM EM 、与BE 之间的数量关系,再结合ADE A ∠=∠可知ΔΔBCA EMD ∽,即可知DM 与BE 的数量关系,最后由DM AD BM AB 、、、共线的数量关系即可求解y 与x 之间的函数关系;(3)分三种情况:①当ACE CEF ∠=∠时,②当∠=∠AFE CEF 时,③当A AFE ∠=∠时,分别求解即可.【小问1详解】过点C 作CH AB ⊥于H ,在Rt ACB ∆中,9068ACB AC BC ∠=︒==,,,10AB ∴===,1122ACB S AC BC AB CH =⋅=⋅ ,6824105CH ⨯∴==,185AH ∴===,ADE A ∠=∠ ,CD AC ∴=,CH AB ⊥ ,3625AD AH ∴==;【小问2详解】过点E 作EM AB ⊥于M ,90EMB ACB ∴∠=∠=︒,B B ∠∠= ,ΔΔBME BCA ∴∽,BM EM BE BC AC AB ∴==,8610BM EM y ∴==,4355BM y EM y ∴==,,90EMB ACB ADE A ∠=∠=︒∠=∠ ,,ΔΔBCA EMD ∴∽,DM EM AC BC ∴=,3568y DM ∴=,920DM y ∴=,4105DM AD BM AB x y =+-=+- ,9410205y x y ∴=+-,2020077y x ∴=-+结合()1可知x AD =的最小值为365202003610775y x x ∴=-+≤≤()【小问3详解】①当ACE CEF ∠=∠时,如图,//EF AC ∴,AF CE AB CB∴=,1083AB BC CE === ,,,3108AF ∴=,154AF ∴=,②当∠=∠AFE CEF时,83BC CE == ,,5BE ∴=,AFE CEF ∠=∠ ,BFE BEF ∴∠=∠,5BE BF ∴==,10AB = ,1055AF ∴=-=;③当A AFE ∠=∠时,即点F 与点D 重合,由20200277y x =-+()得2020077BE AF =-+,202008377AF ∴-=-+,334AF ∴=;综上所述,如果凸四边形ACEF 是等邻角四边形,线段AF 的长为154或5或334.【点睛】本题主要考查了相似三角形的判定与性质、直角三角形的性质、勾股定理、等邻角四边形、分类讨论等知识点,属于四边形的综合应用题,具有一定难度.解题的关键是掌握相似三角形的判定与性质,理解等邻角四边形的定义,并注意数形结合以及分类思想的应用.。
2024学年第一学期期中考试九年级数学试卷(考试时间:100分钟 满分150分)1.本试卷含三个大题,共25题,答题时,考生务必按答题要求在答题纸规定的位置上作答在草稿纸,本试卷上答题一律无效.2.除第一,二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.3.本次考试不可以使用科学计算器.一,选择题(本大题共6题,每小题4分,满分24分)1.如果两个相似三角形对应边之比是1:4,那么它们的对应边上的中线之比是( )A.1:2B.1:16C.1:8D.1:42.在ABC △中,已知90C ∠=︒,5AB =,4BC =,那么cos B 的值为( ) A.34 B.35 C.45 D.433.在ABC △中,D ,E 分别是边AB ,AC 上的点,在下列已知条件中,不能判定//DE BC 的是( ) A.CE BD EA DA = B.DE AE BC AC = C.AC AE AB AD = D.CE BD CA BA =4.下列命题中,假命题的是( )A.如果0k =或0a =,那么0ka =B.如果m ,n 为实数,那么()()m na mn a =C.如果a kb =(k 为实数),那么//a bD.如果||3a =,那么3a b =或3a b =-5.如图,传送带和地面所成斜坡的坡度为1:3,它把物体从地面点A 处送到离地面3米高的B 处,则物体从A 到B 所经过的路程为( )A. B. 米 D.9米6.如图,在正方形ABCD 中,点E ,M 是边AD ,CD 上的点,BE ,BM 与AC 交于点F ,G .如果45EBM ∠=︒,那么下列结论中,错误的是( )A.AEF CBF △∽△B.CMG BFG △∽△C.ABG CFB △∽△D.ABF CBG △∽△ 二,填空题(本大题共12题,每题4分,满分48分)7.已知43x y =,那么2x x y=+________. 8.上海与杭州的实际距离约200千米,在比例尺为1:5000000的地图上,上海与杭州的图上距离约________厘米.9.已知e 为单位向量,向量a 与e 的方向相反,且长度为6,那么a =________.(用e 表示)10.已知P 是线段AB 上的一点,且2AP AB BP =⋅,如果2AB =,那么AP 的长是________.11.已知两个相似三角形的周长之比是2:3,面积之差是50,那么这两个三角形中较小三角形的面积是________.12.已知D ,E 分别是ABC △的边AB ,AC 上的点(不与端点重合),且DE 与BC 不平行,要使得ADE △与ABC △相似,那么添加一个条件可以为________(只填一个).13.在ABC △中,已知13AB AC ==,12tan 5B =,点G 是ABC △的重心,那么AG 的长是________. 14.如图,已知////AD BE CF ,如果32AB BC =,4AD =,9CF =,那么BE 的长是________.15.如图,某兴趣小组用无人机进行航拍测高,无人机从相距1号楼和2号楼的地面正中间点B 垂直起飞到点A 处,测得1号楼顶部E 的俯角为60︒,测得2号楼顶部F 的俯角为45︒.已知1号楼的高度为20米,那么2号楼的高度为________米(结果保留根号).16.已知在梯形ABCD 中,//AD BC ,90ABC ∠=︒,对角线AC ,BD 相交于点O ,且AC BD ⊥,如果:2:3AD BC =,那么:DB AC =________.17.如图,在Rt ABC △中,90ACB ∠=︒,9AB =,cot 2A =,点D ,E 在边AB ,AC 上,将ADE △沿着DE 翻折后,点A 的对应点在线段BC 的延长线上的点P 处,如果BPD A ∠=∠,那么DE 的长为________.18.Rt ABC △中,90C ∠=︒,3AC =,2BC =,将此三角形绕点A 旋转,当点B 的对应点D 在直线BC 上,点C 的对应点在点E 处,那么BDE △的面积是________.三,解答题(第19-22题,每题10分,第23-24题,每题12分,第25题14分,共78分)19.(本题满分10分) 2.20.(本题满分10分,第(1)小题6分,第(2)小题4分)如图,点E 在平行四边形ABCD 边BC 上一点,对角线AC ,BD 相交于点O ,AE ,AC 交BD 于点G ,O ,已知:3:1AG GE =.(1)求:EC BC 的值.(2)设BA a =,AO b =,那么EC =_______,GB =_______(用向量a ,b 表示).21.(本题满分10分,其中每小题各5分)已知:如图,在ABC △中,6AB AC ==,4BC =,AB 的垂直平分线交AB 于点E ,交BC 的延长线于点D .(1)求CD 的长度.(2)过C 作CH DE ⊥于点H ,求CH 的长度.22.(本题满分10分)图1是一款平板电脑支架,由托板,支撑板和底座构成.工作时,可将平板电脑吸附在托板上,底座放置在桌面上.图2是其侧面结构示意图,已知托板AB 长200mm,支撑板CB 长80mm,当130ABC ︒∠=,70BCD ∠=︒时,求托板顶点A 到底座CD 所在平面的距离(结果精确到1mm ).(参考数据:sin700.94≈︒,cos700.34≈︒,tan70 2.75≈︒, 1.41≈ 1.73≈)图1 图223.(本题满分10分,其中每小题各6分)如图在Rt ABC △中,90ACB ∠=︒,D ,E 分别位于边AB ,BC 上.且CD CA =,DE AB ⊥.(1)求证:2CA CE CB =⋅.(2)联结AE ,取AE 的中点M ,联结CM 并延长交AB 于点H .求证:CH AB ⊥.24.(本题满分12分,第(1)小题2分第(2,3)小题各5分)如图在平面直角坐标系xOy 内,已知点(1,0)A ,(5,0)B ,(3,4)C -,(0,3)D ,点P 在x 轴的负半轴上,且AP AB =.(1)求直线PD 的表达式.(2)点M 是直线PD 在第三象限上的点,联结AM ,且2MP PA PB =⋅,求tan PMA ∠的值.(3)在(2)的条件下,联结AC ,BC ,在直线CM 上是否存在点E ,使得AEC ACB ∠=∠.若存在,求出点E 的坐标,若不存在,请说明理由.25.(本题满分14分,其中第(1)小题4分,第(2)小题4分,第(3)小题6分)已知,在梯形ABCD 中,//AB CD ,90ABC ∠=︒,6AB =,8BC =,tan 2D =,点E 是射线CD 上一动点(不与点C 重合),将BCE △沿着BE 进行翻折,点C 的对应点记为点F .图1 图2 图3 图4(1)如图1,当点F 位于梯形ABCD 的中位线MN 上时,求CE 的长.(2)如图2,当点E 在线段CD 上时,设CE x =,BFC EFCS y S =△△,求y 与x 之间的函数关系式,并写出定义域. (3)如图3,联结AC ,线段BF 与射线CA 交于点G ,当CBG △是等腰三角形时,求CE 的长.。
2023学年第一学期期中诊断评估九年级数学试卷(考试时间:100分钟 满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1. 下列各组中的四条线段(单位:厘米)成比例线段的是( )A. 1、2、3、4;B. 1、2、4、8;C. 2、3、4、5;D. 5、10、15、20.【答案】B【解析】【分析】本题主要考查了成比例线段的定义,熟练掌握对于给定的四条线段,如果其中两条线段的长度之比等于另外两条线段的长度之比,则这四条线段叫做成比例线段是解题的关键.根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【详解】解:A 、,故本选项不符合题意;B 、,故本选项符合题意;C 、,故本选项不符合题意;D 、,故本选项不符合题意;故选:B .2. 在中,点、分别在边、上,如果,,那么下列条件中能够判断的是( )A.B.C. D. 【答案】A【解析】【分析】本题考查了相似三角形的判定和性质、平行线的判定等,能灵活运用定理进行推理是解此题的关键.先求出比例式,再根据相似三角形的判定得出,根据相似推出,根据平行线的判定得出即可.【详解】如图:4123⨯≠⨯1824⨯=⨯2534⨯≠⨯5201015⨯≠⨯ABC D E AB AC 3AD =6BD =DE BC ∥31AE AC =31DE BC =12AE AC =12DE BC =ADE ABC △△∽ADE B ∠=∠故A 选项符合题意.其它选项都不能判断出即不能判断出.故选:A .3. 下列判断不正确的是( )A. ;B. 如果向量与均为单位向量,那么或;C. 如果,那么;D. 对于非零向量,如果,那么.【答案】B【解析】【分析】本题考查了平面向量、平行向量、单位向量,根据平面向量的性质逐一判断即可得出答案,解题的关键是熟练掌握基本知识.【详解】解:A 、,计算正确,原说法正确,故本选项不符合题意;B 、如果向量与均为单位向量,那么它们的模相等,即,原说法错误,故本选项符合题意;C 、如果,那么,原说法正确,故本选项不符合题意;D 、对于非零向量,如果,那么,原说法正确,故本选项不符合题意;13,6,,3AE AD =BD AC == 1,3AD AE AB AC ∴==,DAE BAC ∠=∠ ,ADE ABC ∴ ∽,ADE B ∴∠=∠,DE BC ∴∥,ADE ABC ∽DE BC ∥()222a b a b +=+ a b a b = a b =- a b = a b = b ()0a k b k =⋅≠ a b ()222a b a b +=+ a b a b = a b = a b = b ()0a k b k =⋅≠ a b4. 如图,点都是方格纸中的格点,为使(点和对应,点和对应),则点应是四点中的( )A. B. C. D. 【答案】C【解析】【分析】由图形可知△ABC 的边AB=4,AC=6 DE=2,当△DEM ∽△ABC 时,AB 和DE 是对应边,相似比是1:2,则AC 的对应边是3,则点M 的对应点是H .【详解】解:根据题意,∵△DEM ∽△ABC ,AB=4,AC=6 DE=2∴DE :AB=DM :AC∴DM=3∴M 点的对应点应是H故选C .【点睛】本题主要考查相似三角形的性质,相似三角形的对应边的比相等.5. 如图,下列条件中不能判断和相似的是( )A. B. C.D. ,,,,,,,,A B C D E F G H K 78⨯DEM ABC ∆∆ D A E B M ,,,F G H K FG H KACD ABC ACD B∠=∠ACB ADC ∠=∠AC AB CD BC=2AC AD AB =⋅【解析】【分析】本题主要考查了相似三角形的判定和性质,解题的关键是掌握有两个角相等的两个三角形相似,两边成比例且夹角相等的两个三角形相似,三边分别成比例的两个三角形相似.根据相似三角形的判定定理即可进行解答.【详解】解:A 、∵,,∴,故A 不符合题意;B 、∵,,∴,故B 不符合题意;C、由,不能判断和相似,符合题意;D 、∵,∴,又∵,∴,故D 不符合题意;故选:C .6. 如图,在中,点是边延长线上的一点,交于点,下列各式中可能错误的是( )A. B. C. D. 【答案】D【解析】【分析】根据平行四边形的性质得到再利用平行线分线段成比例定理即可判断A 和B 选项,再利用平行线分线段成比例定理和等量代换即可判断C 选项,再证明,即可判断D 选项【详解】四边形是平行四边形,,,ACD B ∠=∠BAC CAD ∠=∠ACD ABC △△∽ACB ADC ∠=∠BAC CAD ∠=∠ACD ABC △△∽AC AB CD BC=ACD ABC 2AC AD AB =⋅AC AB AD AC=BAC CAD ∠=∠ACD ABC △△∽ABCD Y E BA CE AD F AE FE AB FC =AE AF AB DF =AE AF BE AD =BE CF BC FD= ABCD ∴AD BC ∥AB CD ∥,,,故选项A 和选项B 正确,不符合题意;故选项C 正确,不符合题意;四边形是平行四边形,,,,,故选项D 错误,符合题意;故选:D【点睛】此题考查了平行四边形的性质、平行线分线段成比例定理、相似三角形的判定和性质等知识,解题的关键是熟练掌握平行线分线段成比例定理、相似三角形的判定和性质.二、填空题:(本大题有12小题,每题4分,满48分)7. 如果,那么___________________.【答案】##【解析】【分析】根据分式的性质化简,再整体代入即可.【详解】解:∵,∴.故答案为:【点睛】本题考查了分式化简求值,注意整体代入思想的应用.8. 已知线段厘米,厘米,那么线段和比例中项_________厘米.的的∴AE FE AB FC =AF EF DF FC=∴AE AF AB DF =∴AB DF AE AF=∴AB AE AF DF AE AF++=∴BE AD AE AF=∴AE AF BE AD = ABCD ∴B D ∠=∠AB CD ∥∴E FCD =∠∠∴BEC DCF∽∴FBE BC DC D =23x y =x y y+=5321323x y =251133x y x y y +=+=+=532a =8c =a c b =【答案】【解析】【分析】本题考查了成比例线段,根据比例中项的定义,即可求解.详解】解:依题意,厘米,厘米,∴厘米,故答案为:.9. 在比例尺为的某市旅游地图上,某条道路的长为,那么这条道路的实际长度为_________.【答案】【解析】【分析】本题考查比例尺知识,能够根据比例尺正确进行计算,注意单位的转换.根据比例尺图上距离实际距离,依题意列比例式直接求解即可.【详解】解:设这条道路的实际长度为,则:,解得.故答案是:.10. 线段长为,点在线段上,且满足,那么的长为_______.【答案】【解析】【分析】本题主要考查一元二次方程的求解,根据题意设的长可以得出,利用给定的关系式可列出关于x 的方程求解即可.【详解】解:设,则,根据得代入得,解得(舍去),故答案为:.11. 若两个相似三角形周长比是4:9,则对应角平分线的比是______.【答案】4∶9【解析】【的4::a b b c =2a =8c =4b =41:500007cm km 3.5=:x 1750000x=()350000 3.5km x ==3.5AB 4cm P AB BP AP AP AB =AP cm 2AP BP =AP BP AB APAP x =4BP x =-=AP BP AB AP2AP AB BP =⋅()244x x =⨯-2x =-+2x =--2-【详解】试题解析:两个相似三角形的周长比是这两个三角形的相似比是对应角平分线的比等于相似比,是故答案是:点睛:相似三角形的周长比等于相似比.对应角平分线,中线,高之比都等于相似比.面积比等于相似比的平方.12. 如果向量与单位向量方向相反,长度为,那么向量用单位向量表示为 ___.【答案】【解析】【分析】由向量 与单位向量方向相反,且长度为,根据向量的定义,即可求得答案.【详解】解:∵向量与单位向量方向相反,且长度为,∴=−故答案为:=−.【点睛】此题考查了平面向量的知识.此题比较简单,注意掌握单位向量的知识.13. 如图,,,,那么_________.【答案】6【解析】【分析】本题考查了平行线分线段成比例定理和比例的基本性质,熟练掌握性质并用其求解是基本要求.根据平行线分线段成比例定理列出比例式,再根据比例的基本性质进行计算.【详解】∵,,,∴,即∴.4:9.∴4:9.4:9.4:9.a e 12a e 12a e =-a e 12a e 12a 12ea 12e AD BC ∥E F ∥23AE BE =4cm DF =FC =cm AD BC ∥E F ∥23AE BE =4cm DF =23AE DF BE FC ==423FC =6FC =故答案为:6.14. 如图,在中,点、分别在边、上,如果,,那么与四边形的面积之比是_________.【答案】【解析】【分析】本题考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是本题的解题关键.利用平行判定,然后利用相似三角形的性质求得,从而求解.【详解】解:∵,∴.∵,∴.∴.故答案为:.15. 如图,在中,,,是的重心,那么点到直角顶点的距离_________.【答案】【解析】【分析】本题考查三角形的重心的概念和性质、直角三角形的性质、根据点G 是的重心,可得点ABC D E AB AC :3:5AD AC =ADE C ∠=∠ADE V BCED 9:16ADE ACB ∽925ADE ABC S S =△△A A ∠=∠ADE C∠=∠ADE ACB ∽:3:5AD AC =925ADE ABC S S =△△:9:16ADE BCED S S =四边形△9:16Rt ABC △90ACB ∠=︒15AB =G Rt ABC △G C GC =5ABCM 是的中点,且,问题随之得解【详解】如图所示,延长与交于点M ,∵在中,,∴是直角三角形,∵点G 是的重心,∴,∵点G 是的重心,∴.故答案为:5 .16. 如图,在中,平分, ,,,则________.【答案】【解析】【分析】本题主要考查了相似三角形的性质与判定,等角对等边,平行线的性质,角平分线的定义,先由平行线的性质和角平分线的定义证明,得到,设,则,证明,得到,即,解方程即可得到答案.【详解】解;∵平分,∴,∵,∴,∴,AB 23CG CM =CG AB ABC 90ACB ∠=︒ABC ABC 11522CM AB ==ABC 253CG CM ==ABC BE ABC ∠DE BC ∥3AD =6BC =DE =3DEB DBE ∠=∠DE BD =DE BD x ==3AB AD BD x =+=+ADE ABC △△∽AD DE AB BC =3336x =+BE ABC ∠ABE CBE ∠=∠DE BC ∥DEB CBE ∠=∠DEB DBE ∠=∠∴,设,则,∵,∴,∴,即,解得,经检验,是原方程的解,∴,故答案为;3.17. 如图,正方形的边在的边上,点、分别在边、上.如果的边长为6,面积为24,那么正方形的边长_________.【答案】##【解析】【分析】本题考查了相似三角形的判定与性质.由得,利用相似三角形对应边上高的比等于相似比,列方程求解.【详解】解:作交于点,交于点,由正方形得,即,,.DE BD =DE BD x ==3AB AD BD x =+=+DE BC ∥ADE ABC △△∽AD DE AB BC =3336x =+3x =3x =3DE =DEFG EF ABC BC D G AB AC ABC BC DEFG 247337∥DG BC △∽△ADG ABC AH BC ⊥BC H DG P DEFG DG EF ∥∥DG BC AH BC ⊥ AP DG ∴⊥由得,.,,,,即,∵的边长为6,面积为24,∴,∴,设正方形的边长,得,解得.故正方形的边长是.故答案为:.18. 如图,梯形中,,,,将梯形沿直线翻折,使得点与点重合,折痕与边、相交于点、.如果,那么的值是_________. 【答案】【解析】【分析】先得出,再设,结合梯形性质以及矩形性质,得出,运用勾股定理得,证明。
沪科版九年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.在下列关于x 的函数中,一定是二次函数的是()A .y=x 2B .y=ax 2+bx+cC .y=8xD .y=x 2(1+x )2.某工厂2015年产品的产量为100吨,该产品产量的年平均增长率为x (x >0),设2015,2016,2017这三年该产品的总产量为y 吨,则y 关于x 的函数关系式为()A .y =100(1﹣x )2B .y =100(1+x )C .y =2100(1)x +D .y =100+100(1+x )+100(1+x )23.在平面直角坐标系中,抛物线y=-12(x+1)2-12的顶点是()A .(-1,-12)B .(-1,12)C .(1,-12)D .(1,12)4.函数22(21)m y m x -=-是反比例函数,在第一象限内y 随x 的增大而减小,则m =()A .1B .﹣1C .±1D .5.二次函数222=++y x x 与坐标轴的交点个数是()A .0个B .1个C .2个D .3个6.如图,若一次函数y ax b =+的图象经过二、三、四象限,则二次函数2y ax bx =+的图象可能是()A .B .C .D .7.已知:0.5a =, 3.2b =,16c =, 2.5d =,下列各式中,正确的是()A .a b =c dB .a c =d bC .a b =d cD .d c =b a8.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是()A .∠ABP=∠CB .∠APB=∠ABC C .AP ABAB AC =D .AB ACBP CB=9.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x =2,且OA =OC ,则下列结论:①abc >0;②9a +3b +c <0;③c >﹣1;④关于x 的方程ax 2+bx +c =0(a ≠0)有一个根为1;其中正确的结论个数有()A .1个B .2个C .3个D .4个10.如图,已知点A 是反比例函数6y x=在第一象限图像上的一个动点,连接OA ,以为长,OA 为宽作矩形AOCB ,且点C 在第四象限,随着点A 的运动,点C 也随之运动,但点C 始终在反比例函数ky x=的图像上,则k 的值为()A .-B .C .D .二、填空题11.若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是(2,3),则另一个交点的坐标是________.12.若53x x y =-,则y x=________.13.如图,直线A l A ∥BB 1∥CC 1,若AB=8,BC=4,A 1B 1=6,则线段A 1C 1的长是________.14.如图,在钝角△ABC 中,AB =3cm ,AC =6cm ,动点D 从点A 出发到点B 止.动点E 从点C 出发到点A 止.点D 运动的速度为1cm /s ,点E 运动的速度为2cm /s .如果两点同时运动,那么当以点A 、D 、E 为顶点的三角形与△ABC 相似时.运动的时间是_____.三、解答题15.已知二次函数y =212x ﹣2x +6.用配方法求函数图象的顶点坐标和对称轴.16.将抛物线y =﹣x 2向左平移3个单位,再向上平移4个单位.(1)写出平移后的抛物线的函数关系式.(2)若平移后的抛物线的顶点为A ,与x 轴的两个交点分别是B 、C ,求△ABC 的面积.17.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax 2+bx +c =0的两个根;(2)写出不等式ax 2+bx +c >0的解集;(3)若方程ax 2+bx +c =k 有两个不相等的实数根,求k 的取值范围.18.如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=°,BC=;(2)判断△ABC与△DEF是否相似,并证明你的结论.19.如题图,已知A(-4,2),B(n,-4)是一次函数y=kx+b的图象和反比例函数m yx的图象的两个交点.(1)求m,n的值;(2)求一次函数的关系式;、(3)结合图象直接写出一次函数小于反比例函数的x的取值范围.20.如图,操场上有一根旗杆AH,为测量它的高度,在B和D处各立一根高1.5米的标杆BC、DE,两杆相距30米,测得视线AC与地面的交点为F,视线AE与地面的交点为G,并且H、B、F、D、G都在同一直线上,测得BF为3米,DG为5米,求旗杆AH的高度?21.某电子厂商投产一种新型电子产品,每件制造成本为16元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)如果厂商每月的制造成本不超过480万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?22.如图三角形ABC,BC=12,AD是BC边上的高AD=10.P,N分别是AB,AC边上的点,Q,M是BC上的点,连接PQ,MN,PN交AD于E.求(1)若四边形PQMN是矩形,且PQ:PN=1:2.求PQ、PN的长;(2)若四边形PQMN是矩形,求当矩形PQMN面积最大时,求最大面积和PQ、PN的长.23.如图1,点M放在正方形ABCD的对角线AC(不与点A重合)上滑动,连结DM,做MN⊥DM,交直线AB于N.(1)求证:DM=MN;(2)若将(1)中的正方形变为矩形,其余条件不变如图,且DC=2AD,求MD:MN的值;(3)在(2)中,若CD=nAD,当M滑动到CA的延长线上时(如图3),请你直接写出MD:MN 的比值.参考答案1.A【分析】根据二次函数的定义:y=ax2+bx+c(a≠0.a是常数),可得答案.【详解】解:A、y=x2是二次函数,故A符合题意;B、a=0时不是二次函数,故B不符合题意,C、y=8x是一次函数,故C不符合题意;D、y=x2(1+x)不是二次函数,故D不符合题意;故选A.【点睛】本题考查了二次函数的定义,利用二次函数的定义是解题关键,注意a是不等于零的常数.2.D【分析】直接表示出2016年,2017年的产量进而得出y关于x的函数关系式.【详解】解:设2015,2016,2017这三年该产品的总产量为y吨,则y关于x的函数关系式为:y=100+100(1+x)+100(1+x)2.故选:D.【点睛】此题主要考查了根据实际问题列二次函数解析式,正确表示出2017年的产量是解题关键.3.A【分析】结合抛物线的解析式和二次函数的性质即可得出该抛物线顶点坐标.【详解】∵抛物线的解析式为y=12(x+1)2﹣12,∴该抛物线的顶点坐标为(﹣1,﹣1 2).故选A【点睛】本题考查二次函数的性质.4.A【分析】根据反比例函数的定义列出方程求解,再根据它的性质决定解的取舍.【详解】解:根据题意得:2m21 2m10⎧-=-⎨->⎩,解得:m=1.故选:A.【点睛】本题考查了反比例函数的性质.对于反比例函数y=kx,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.5.B【分析】先计算根的判别式的值,然后根据b 2−4ac 决定抛物线与x 轴的交点个数进行判断.【详解】∵△=22−4×1×2=−4<0,∴二次函数y =x 2+2x +2与x 轴没有交点,与y 轴有一个交点.∴二次函数y =x 2+2x +2与坐标轴的交点个数是1个,故选:B .【点睛】本题考查了抛物线与x 轴的交点:求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标,令y =0,即ax 2+bx +c =0,解关于x 的一元二次方程即可求得交点横坐标.二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)的交点与一元二次方程ax 2+bx +c =0根之间的关系:△=b 2−4ac 决定抛物线与x 轴的交点个数;△=b 2−4ac >0时,抛物线与x 轴有2个交点;△=b 2−4ac =0时,抛物线与x 轴有1个交点;△=b 2−4ac <0时,抛物线与x 轴没有交点.6.C 【分析】根据一次函数的性质判断出a 、b 的正负情况,再根据二次函数的性质判断出开口方向与对称轴,然后选择即可.【详解】解:y ax b =+ 的图象经过二、三、四象限,0a ∴<,0b <,∴抛物线开口方向向下, 抛物线对称轴为直线02bx a=-<,∴对称轴在y 轴的左边,纵观各选项,只有C 选项符合.故选C .【点睛】本题考查了二次函数的图象,一次函数的图象与系数的关系,主要利用了二次函数的开口方向与对称轴,确定出a 、b 的正负情况是解题的关键.7.C 【分析】如果其中两个数的乘积等于另外两个数的乘积,则四个数成比例.【详解】因为16×0.5=8,3.2×2.5=8,所以ac=bd ,可得:a d b c=,故选C点睛:此题考查比例线段问题,理解成比例的概念,注意在数两两相乘的时候,要让最小的和最大的相乘,另外两个数相乘,看它们的积是否相等进行判断.8.D 【详解】试题分析:A .当∠ABP=∠C 时,又∵∠A=∠A ,∴△ABP ∽△ACB ,故此选项错误;B .当∠APB=∠ABC 时,又∵∠A=∠A ,∴△ABP ∽△ACB ,故此选项错误;C .当AP ABAB AC=时,又∵∠A=∠A ,∴△ABP ∽△ACB ,故此选项错误;D .无法得到△ABP ∽△ACB ,故此选项正确.故选D .考点:相似三角形的判定.9.B 【分析】根据抛物线的图象与系数的关系即可求出答案.【详解】解:由抛物线的开口可知:a <0,由抛物线与y 轴的交点可知:c <0,由抛物线的对称轴可知:﹣2ba>0,∴b >0,∴abc >0,故①正确;令x =3,y >0,∴9a +3b +c >0,故②错误;∵OA =OC <1,∴c >﹣1,故③正确;观察图象可知关于x 的方程ax 2+bx +c (a ≠0)=0的两根:一个根在0与1之间,一个根在3与4之间,故④错误;故选:B .【点睛】本题考查的是二次函数图象与系数的关系,二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.本题属于中等题型.10.A 【解析】分析:设A (a ,b ),则,分别过A ,C 作AE ⊥x 轴于E ,CF ⊥x 轴于F ,根据相似三角形的判定证得△AOE ∽△COF ,由相似三角形的性质得到,b ,则k=-OF•CF .详解:设A (a ,b ),∴OE=a ,AE=b ,∵在反比例函数y=x的图象上,∴,分别过A ,C 作AE ⊥x 轴于E ,CF ⊥x 轴于F ,∵四边形AOCB 是矩形,∴∠AOE+∠COF=90°,∴∠OAE=∠COF=90°-∠AOE ,∴△AOE ∽△OCF ,∵OA ,∴OC OF CFOA AE OE==,∴b ,OE=a ,∵C 在反比例函数y=kx的图象上,且点C 在第四象限,∴,故选:A.点睛:本题主要考查了矩形的性质,相似三角形的判定和性质,反比例函数的几何意义和求法,正确作出辅助线证得△AOE ∽△COF 是解题的关键,同时注意k 的符号.11.(﹣2,﹣3)【解析】∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,3)关于原点对称,∴该点的坐标为(−2,−3).故答案为(−2,−3).12.25【解析】解:∵53x x y =-,∴3x =5(x ﹣y ),∴2x =5y ,∴25y x =.故答案为25.13.9【解析】根据平行线分线段成比例定理,列出比例式,利用比例的基本性质即可得解.解:∵A l A ∥BB 1∥CC 1,∴1111B C A B =BC AB,∵AB=8,BC=4,A 1B 1=6,∴B1C 1=3.∴A1C 1=A 1B 1+B1C 1=6+3=9.“点睛”考查了平行线分线段成比例定理,明确线段之间的对应关系.14.32秒或125秒【分析】如果以点A 、D 、E 为顶点的三角形与△ABC 相似,由于A 与A 对应,那么分两种情况:①D 与B 对应;②D 与C 对应.根据相似三角形的性质分别作答.【详解】解:如果两点同时运动,设运动t 秒时,以点A 、D 、E 为顶点的三角形与△ABC 相似,则AD =t ,CE =2t ,AE =AC ﹣CE =6﹣2t .①当D 与B 对应时,有△ADE ∽△ABC .∴AD :AB =AE :AC ,∴t :3=(6﹣2t ):6,∴t =32;②当D 与C 对应时,有△ADE ∽△ACB .∴AD :AC =AE :AB ,∴t :6=(6﹣2t ):3,∴t =125.∴当以点A 、D 、E 为顶点的三角形与△ABC 相似时,运动的时间是32秒或125秒.故答案为:32秒或125秒.【点睛】本题考查的是相似三角形的判定定理,相似三角形的对应边成比例的性质.本题分析出以点A 、D 、E 为顶点的三角形与△ABC 相似,有两种情况是解决问题的关键.15.顶点坐标为(2,4)对称轴为x =2【分析】根据配方法的步骤把一般式转化为顶点式,根据顶点式的坐标特点,写出顶点坐标.【详解】解:y =212x ﹣2x +6=12(x 2﹣4x +4+8)=12(x ﹣2)2+4,所以顶点坐标为(2,4)对称轴为x =2.【点睛】本题考查了二次函数的性质,配方法,二次函数的顶点式y =a (x−h )2+k ,顶点坐标是(h ,k ),对称轴是x =h .16.(1)y =﹣(x +3)2+4;(2)8【分析】(1)分别根据“上加下减,左加右减”的原则进行解答即可;(2)在解析式中令y =0,求得x 的值,即可求得B 和C 的横坐标,则BC 的长即可求得,然后根据三角形的面积公式即可求得.【详解】解:(1)由“左加右减”的原则可知,将抛物线y =﹣x 2向左平移3个单位所得直线的解析式为:y =﹣(x +3)2;由“上加下减”的原则可知,将抛物线y =﹣(x +3)2向上平移4个单位所得抛物线的解析式为:y =﹣(x +3)2+4.故平移后的抛物线的函数关系式是:y =﹣(x +3)2+4.(2)顶点坐标A (﹣3,4)令y =﹣(x +3)2+4=0,解得x 1=﹣1,x 2=﹣5.∴B (﹣1,0),C (﹣5,0),BC =4.则三角形ABC 底边BC 边上的高h=4,∴S △ABC =12BC ×h =12×4×4=8.【点睛】本题考查了抛物线的平移以及二次函数与x 轴的交点坐标的求法,正确理解平移法则是关键.17.(1)x 1=1,x 2=3;(2)1<x <3;(3)k <2.【分析】(1)根据函数图象,二次函数图象与x 轴的交点的横坐标即为方程的根;(2)根据函数图象写出x 轴上方部分的x 的取值范围即可;(3)能与函数图象有两个交点的所有k 值即为所求的范围.【详解】解:(1)∵函数图象与x 轴的两个交点坐标为(1,0)(3,0),∴方程的两个根为x 1=1,x 2=3;(2)由图可知,不等式ax 2+bx +c >0的解集为1<x <3;(3)∵二次函数的顶点坐标为(2,2),∴若方程ax 2+bx +c =k 有两个不相等的实数根,则k 的取值范围为k <2.【点睛】本题考查了二次函数与不等式,抛物线与x 轴的交点问题,数形结合是数学中的重要思想之一,解决函数问题更是如此,同学们要引起重视.18.(1)(2)△ABC ∽△DEF .【分析】(1)根据已知条件,结合网格可以求出∠ABC 的度数,根据,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC 的长;(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC 与△DEF 相似.【详解】(1)9045135ABC ∠=+= ,BC ===故答案为(2)△ABC ∽△DEF .证明:∵在4×4的正方形方格中,135,9045135ABC DEF ∠=∠=+= ,∴∠ABC =∠DEF .∵2,2,AB BC FE DE ====∴222AB BC DE FE ====∴△ABC ∽△DEF .【点睛】考查勾股定理以及相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.19.(1)m=-8,n=2;(2)y=-x-2;(3)-4<x<0,或x>2.【解析】分析:(1)先把A 的坐标代入反比例函数y=m x中求出m 的值,写出反比例函数的解析式,再将点B 的坐标代入求n 的值;(2)利用待定系数法求一次函数的关系式;(3)结合图象写结论即可.本题解析:(1)把A(−4,2)代入y=mx,即:m=−8,∴y=8x-,把B(n,−4)代入y=8x-得:解得n=2,∴B(2,−4);(2)把A(−4,2),B(2,−4)代入y=kx+b中,得24{42k bk b=-+-=+,解得k=−1,b=−2,∴y=−x−2;(3)由图象得:一次函数小于反比例函数的x的取值范围是:−4<x<0或x>2.20.24m【解析】试题分析:首先设AH=x,BH=y,根据△AHF∽△CBF,△AHG∽△EDG,得出B B=B B,B B= D B,然后将各数字代入求出x的值.试题解析:由题意知,设AH=x,BH=y,△AHF∽△CBF,△AHG∽△EDG,∴B B=B B,B B=D B,∴3x=1.5×(y+3),5x=1.5×(y+30+5)解得x=24m.答:旗杆AH的高度为24m.21.(1)z=﹣2x2+132x﹣1600;(2)当销售单价为35元时,厂商每月获得的利润最大,最大利润为570万元.【分析】(1)根据每月的利润z=(x−16)×y,再把y=−2x+100代入即可求出z与x之间的函数解析式,(2)先根据制造成本不超过480万元知生产量不超过30万件,结合一次函数解析式得出x 的取值范围,把函数关系式变形为顶点式运用二次函数的性质求出最值.【详解】解:(1)根据题意知,z=(x﹣16)(﹣2x+100)=﹣2x2+132x﹣1600;(2)厂商每月的制造成本不超过480万元,每件制造成本为16元,∴每月的生产量为:小于等于48016=30万件,则y=﹣2x+100≤30,解得:x≥35,∵z=﹣2x2+132x﹣1600=﹣2(x﹣33)2+578,∴图象开口向下,对称轴右侧z随x的增大而减小,∴x=35时,z最大为570万元.当销售单价为35元时,厂商每月获得的利润最大,最大利润为570万元.【点睛】本题考查的是二次函数在实际生活中的应用,关键是根据题意求出二次函数的解析式以及利用增减性求出最值.22.(1)PQ=154,PN=152;(2)PQ=5,PN=6.【分析】(1)设PQ=y,则PN=2y,根据相似三角形的对应边上的高的比=相似比,构建方程即可解决问题;(2)设AE=x.利用相似三角形的性质,用x表示PN,PQ,构建二次函数,利用二次函数的性质解决问题即可.【详解】解:(1)设PQ=y,则PN=2y,∵四边形PQMN是矩形,∴PN∥BC,∴△APN∽△ABC,∵AD⊥BC,∴AD⊥PN,∴PNBC=AEAD,即212y=1010y-,解得y=15 4,∴PQ=154,PN=152.(2)设AE=x.∵四边形PQMN是矩形,∴PN∥BC,∴△APN∽△ABC,∵AD⊥BC,∴AD⊥PN,∴PNBC=AEAD,∴PN=65x,PQ=DE=10﹣x,∴S矩形PQMN =65x(10﹣x)=﹣65(x﹣5)2+30,∴当x=5时,S的最大值为30,∴当AE=5时,矩形PQMN的面积最大,最大面积是30,此时PQ=5,PN=6.【点睛】本题考查相似三角形的应用、二次函数的应用、矩形的性质等知识,解题的关键是学会利用相似三角形的性质构建二次函数或方程解决问题,属于中考常考题型.23.(1)见解析;(2)MD:2MN=;(3)MD:MN n=.【分析】(1)过M作MQ⊥AB于Q,MP⊥AD于P,则∠PMQ=90°,∠MQN=∠MPD=90°,根据ASA即可判定△MDP≌△MNQ,进而根据全等三角形的性质得出DM=MN;(2)过M作MS⊥AB于S,MW⊥AD于W,则∠WMS=90°,根据∠DMW=∠NMS,∠MSN=∠MWD=90°,判定△MDW∽MNS,得出MD:MN=MW:MS=MW:WA,再根据△AWM ∽△ADC ,DC=2AD ,即可得出MD :MN=MW :WA=CD :DA=2;(3)过M 作MX ⊥AB 于X ,MR ⊥AD 于R ,则易得△NMX ∽△DMR ,得出MD :MN=MR :MX=AX :MX ,再由AD ∥MX ,CD ∥AX ,易得△AMX ∽△CAD ,得出AX :MX=CD :AD ,最后根据CD=nAD ,即可得出MD :MN=CD :AD=n .【详解】()1证明:过M 作MQ AB ⊥于Q MP AD ⊥,于P ,则9090PMQ MQN MPD ∠=∠=∠= ,,90DMN ∠= ,DMP NMQ ∴∠=∠,ABCD 是正方形,AC ∴平分DAB ∠,PM MQ ∴=,在MDP 和MNQ △中,MQN MPDPM MQ DMP NMQ∠=∠⎧⎪=⎨⎪∠=∠⎩,MDP ∴ ≌()MNQ ASA ,DM MN ∴=;()2过M 作MS AB ⊥于S MW AD ⊥,于W ,则90WMS ∠=,MN DM ⊥ ,DMW NMS ∴∠=∠,又90MSN MWD ∠=∠= ,MDW ∴∽MNS ,MD ∴:MN MW =:MS MW =:WA ,//MW CD ,AMW ACD AWM ADC ∴∠=∠∠=∠,,AWM ∴ ∽ADC ,又2DC AD = ,MD ∴:MN MW =:WA CD =:2DA =;()3MD :MN n =,理由:过M 作MX AB ⊥于X MR AD ,⊥于R ,则易得NMX ∽DMR ,MD ∴:MN MR =:MX AX =:MX ,由////AD MX CD AX ,,易得AMX ∽CAD ,AX ∴:MX CD =:AD ,又CD nAD = ,MD ∴:MN CD =:AD n =.【点睛】相似形综合题,主要考查了相似三角形的判定与性质,全等三角形的判定与性质以及正方形、矩形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形或相似三角形,运用相似三角形和全等三角形的性质进行推导即可.。
沪科版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案,每小题3分,共30分)1.抛物线y =2(x -3)2+4的顶点坐标是()A .(3,4)B .(-3,4)C .(3,-4)D .(2,4)2.下列各线段的长度成比例的是()A .2cm ,5cm ,6cm ,8cmB .1cm ,2cm ,3cm ,4cmC .3cm ,6cm ,7cm ,9cmD .3cm ,6cm ,9cm ,18cm 3.已知()5x 6y y 0=≠,那么下列比例式中正确的是()A .x y 56=B .x y 65=C .x 5y 6=D .x 65y=4.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm ,则它的宽约为()A .12.36cmB .13.6cmC .32.36cmD .7.64cm5.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .6.如图,点G 、F 分别是△BCD 的边BC 、CD 上的点,BD 的延长线与GF 的延长线相交于点A ,DE ∥BC 交GA 于点E ,则下列结论错误的是()A .AE DEAG BC=B .DE DFCG CF=C .AD AEBD EG=D .AD DEAB BG=7.两个三角形相似的面积之比为2x 2-3,周长之比为x ,则x 为()A .3B 3C 21D .328.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,AD=4,BD=9,则tanA 的值是()A .62B .52C .94D .329.点E 、F 分别在平行四边形ABCD 的边BC 、AD 上,BE=DF ,点P 在边AB 上,AP :PB=1:n (n >1),过点P 且平行于AD 的直线l 将△ABE 分成面积为S 1、S 2的两部分,将△CDF 分成面积为S 3、S 4两部分(如图)则(S 1+S 4):(S 2+S 3)的值为()A .1:(n+1)B .1:(2n+1)C .1:nD .n :(n+1)10.如图,下列选项中不能判定ACD ABC ∆∆ 的是()A .2AC AD AB =⋅B .2BC BD AB =⋅C .ACD B ∠=∠D .ADC ACB∠=∠二、填空题11.若反比例函数ky x=的图象经过点A (1,2),则k=_____.12.如图,要使△ABC ∽△ACD ,需补充的条件是_____.(只要写出一种)13.将矩形纸片ABCD (如图)那样折起,使顶点C 落在C ꞌ处,测量得AB=4,DE=8,则sin ∠C ꞌED 为________________.14.如图,在Rt △ABC 中,∠ABC=90°,AB :BC=3:4,∠BAC ,∠ACB 的平分线相交于点E ,过点E 作EF ∥BC 交AC 于点F ,则S △EFC :S △ABC =______________.15.一个二次函数,当自变量0x =时,函数值1y =-,且过点()2,0-和点1,02⎛⎫⎪⎝⎭,则这个二次函数的解析式为________________.16.已知函数22(1)m y m x -=-是反比例函数,则m 的值为___________.三、解答题17.计算:(-2)2+4tan60°-8cos30°--3.18.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (-2,3),B (-4,0),C (1,1)(1)以M 点为位似中心,在点M 的同侧作△ABC 关于M 点的位似图形△A 1B 1C 1,使△A 1B 1C 1与△ABC 的位似比为2:1;(2)请直接写出A 1、B 1、C 1三点的坐标.19.已知,如图,一次函数y=-2x+1,与反比例函数ky x=的图象有两个交点A 点、B 点,过点A作AE⊥x轴于点E,点E坐标为(-1,0),过点B作BD⊥y轴于点D,直线AB交y 轴于点C.(1)求k的值;(2)求tan∠CBD.20.已知,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)在原图上作DE∥AB交AC与点E,请直接写出另一个与△ABD相似的三角形,并求出DE的长.21.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=900,点A、C的坐标分别为A(-2,0),C(1,0),tan∠BAC=2 3.(1)求点B的坐标。
卢湾区2009学年第一学期九年级期中考试数学试卷(时间100分钟,满分150分)2009.11(本试卷所有答案请书写在答题卷规定位置上)一、选择题(本大题共6题,每题4分,满分24分)1.把a d b c =写成比例式(其中,,,a b c d 均不为0),下列选项中错误..的是……………………………………………………………………( ) A .a cb d =; B .b d ac =; C .c a bd =; D .a bc d=. 2.如果一个三角形保持形状不变,但周长扩大为原来的4倍,那么这个三角形的边长扩大为原来的…………………………………………( ) A .2倍; B .4倍; C .8倍; D .16倍.3.下列命题中正确的是……………………………………………… ( ) A .所有的菱形都相似; B .所有的矩形都相似; C .所有的等腰三角形都相似; D .所有的等边三角形都相似.4.在Rt△ABC 中,∠B =90º,若AC =a ,∠A =θ,则AB 的长为…………( ) A .sin a θ ; B .cos a θ ; C .tan a θ ; D .cot a θ .5.点C 在线段AB 上,如果AB =3AC , AB a = ,那么BC等于…………( )A .13a ;B .23a ;C .13a - ;D .23a - .6.已知△ABC 的三边长分别为6 cm ,7.5 cm ,9 cm ,△DEF 的一边长为5cm ,若这两个三角形相似,则△DEF 的另两边长可能是下列各组中的…( ) A .2 cm ,3 cm ;B .4 cm ,6 cm ;C .6 cm ,7 cm ;D .7 cm ,9 cm .二、填空题(本大题共12题,每题4分,满分48分) 7.若35a cb d ==(其中0b d +≠),则a cb d +=+__________. 8.若线段AB 长为2cm ,P 是AB 的黄金分割点,则较长线段PA = cm . 9.如图,点G 为△ABC 重心,若AG =1,则AD 的长度为_________. 10.求值:cot30ºsin60-º=_________. 11.在Rt△ABC 中,∠C =90º,若1tan 3A =,则cot A 的值为_________. 12.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若13AD BD =,DE =2,则BC 的长为_______.13.如图,1l ∥2l ∥3l ,AB =2,AC =5,DF =7.5,则DE =_________.14.如图,在平行四边形ABCD 中,点E 、F 是边CD 、BC 边的中点,若AD a = ,AB b =,则EF = ___________.(结果用a 、b 表示)15.如图,已知AB ∥CD ,AD 与BC 交于点O ,若AD ∶BC = 5∶4,BO =1,DO =2.5,则AD =___________.DCFE B A (第13题图)GDABC(第9题图)EA BCD(第12题图)FEDCAB(第14题图)16.如图,在△ABC 的边BC 上,若DAC B ∠=∠,且BD =5,AC = 6,则CD 的长为___________.17.在△ABC 中,点D 、E 分别在AB 、AC 边上,若2AD =,4BD =,4AC =,且△ADE 与ABC 相似,则AE 的长为___________.18.在答题纸的方格图中画出与矩形ABCD 相似的图形''''A B C D (其中AB 的对应边''A B 已在图中给出).三、简答题(本大题共4题,每题10分,满分40分)19.已知两个不平行的向量, a b ,求作向量: 32()()2a b a b ---.20.如图,已知点D 、F 在△ABC 的边AB 上,点E 在边AC 上, 且DE ∥BC ,AF AD ADAB=.求证:EF ∥DC .ab(第19题图)AC(第18题图)B DB ’A ’(第16题图)ABCDOABCD(第15题图)21.如图,在Rt △ABC 中,∠C =90º,AC = 3,1tan 2B . (1) 求BC 的长; (2) 求cos A 的值.22.如图,竖立在点B 处的标杆AB 长2.1米,某测量工作人员站在D 点处,此时人眼睛C 与标杆顶端A 、树顶端E 在同一直线上(点D 、B 、F 也在同一直线上,已知此人眼睛与地面的距离CD 长1.6米,且BD = 1米,BF = 5米,求所测量树的高度.CAB(第21题图)F DACBE(第20题图)BC A 树标杆人FED(第22题图)四、解答题(本大题共2题,每题12分,满分24分)23.如图,BE 、CF 分别是△ABC 的边AC 、AB 上的高,BE 与CF 相交于点D . (1) 求证:△ABE ∽△ACF ; (2) 求证:△ABC ∽△AEF ;(3) 若4ABC AEFSS = ,求cos BAC ∠的值.24.如图所示,在△ABC 中,已知6BC =,BC 边上中线5AD =。
点P 为线段AD 上一点(与点A 、D 不重合),过P 点作EF ∥BC ,分别交边AB 、AC 于点E 、F ,过点E 、F 分别作EG ∥AD ,FH ∥AD ,交BC 边于点G 、H .(1)求证:P 是线段EF 的中点;(2)当四边形EGHF 为菱形时,求EF 的长; (3) 如果5sin 6ADC ∠=,设AP 长为x ,四边形EGHF 面积为y ,求y 关于x 的函数解析式及其定义域.DEFABC(第23题图)H G FE D AB CP (第24题图)五、(本题满分14分)25.已知△ABC 的面积为1, D 、E 分别是AB 、AC 边上的点,CD 、BE 交于F 点,过点F 作FM ∥AB ,FN ∥AC ,交BC 边于M 、N .(1) 如图25-1,当D 、E 分别是AB 、AC 边上的中点时,求△FMN 的面积;(2)如图25-2,当12AD DB =,3AEEC=时,求△FMN 的面积; (3)当AD a DB =,AEb EC=时,用含有,a b 的代数式表示△FMN 的面积.(直接写出答案)(图25-1)NM FEDAB CN MF ABCDE(图25-2)卢湾区2009学年第一学期九年级数学期中考试参考答案及评分说明一、选择题(本大题共6题,每题4分,满分24分)1.C ; 2. B ; 3. D ; 4.B ; 5. D . 6.B二、填空题(本大题共12题,每题4分,满分48分)7.35; 8.51-; 9.32; 10.32; 11.3; 12.8;13.3; 14.1122b a - ; 15.154; 16.4; 17.43或3; 18.图略.三、简答题(本大题共4题,每题10分,满分40分)19.解:化简得12a b -.………………………(4分)∴向量AB是所求作向量.………………………(6分)20.证明:DE ∥BC ,∴ADAEAB AC=.………………………………(4分)∵AF AD AD AB =,∴AF AE AD AC =.…………………………………(4分) ∴EF ∥DC .…………………………………………………………(2分)21.解:(1)在Rt △ABC 中,∵tan ACB BC=,………………………(2分)∴tan ACBC B=.………………………………………………………(2分)又∵AC =3,1tan 2B =∴6BC =.………………………………(1分)(2)在Rt △ABC 中,22226335AB BC AC =+=+=.………(2分) ∴35cos 535AC A AB ===.………………………………………(3分)BAO22.解:过C 点作CH ⊥EF ,交AB 与G 交EF 于H .………………(2分) 由题意得AB ⊥DF ,EF ⊥DF ,∴AB ∥EF .…………………………(2分) ∴AG CG EHCH=.……………………………………………………………(2分)易得CG = DB = 1(米),CH = DF = 6(米),0.5AG AB CD =-=(米)∴3EH =.………………………………………………………………(3分) ∴树高为4.6米.…………………………………………………………(1分) 四、解答题(本大题共2题,每题12分,满分24分)23.证明:(1) ∵ BE ⊥AC ,CF ⊥AB ,∴∠AEB =∠AFC =90º.……(2分) 又∵∠A 是公共角,∴△ABE ∽△ACF .………………………………(2分) (2) ∵△ABC ∽△AEF ,∴AE AB AF AC =, 即AE AFAB AC=.……………(2分) 又∵∠A 是公共角,∴△ABE ∽△ACF .………………………………(2分) (3)∵△ABE ∽△ACF ,∴2()ABC AEF S AB S AE= .…………………………(1分) ∵4ABC AEF S S = ,∴2ABAE=.………………………………………………(2分) ∵∠AEB =90º,∴cos 12BAC AE AB ∠==.………………………………(1分) 24.解:∵EF ∥BC ,∴EP AP BD AD =;FP APCD AD=.……………………(2分) ∴EP FP BD CD=.……………………………………………………………(1分) 又∵BD =CD ,∴EP =FP ,即P 是EF 中点.…………………………(1分) (2)∵EF ∥BC ,∴△AEF ∽△ABC .…………………………………(1分)∴EF APBC AD=,……………………………………………………………(1分) 设EF a =,则5AP a =-.∴565a a -=,解得3011a =.……………(2分)(3)∵EF ∥BC ,EG ∥FH ,∴四边形EGHF 是平行四边形.作PQ ⊥BC ,垂足为Q ,则5sin (5)6PQ PD ADC x =∠=- .………(1分)由(2)得EF AP BC AD =,65EF x =,65xEF =.…………………………(1分) ∴25y EF PQ x x ==-+ (05)x <<.………………………………(2分) 五、(本题满分14分)25.解(1) ∵FM ∥AB ,∴FMN B ∠=∠.……………………………(1分) 同理FNM C ∠=∠,∴△FMN ∽△ABC .………………………………(1分) ∵D 、E 分别是AB 、AC 边上的中点, ∴点F 是△ABC 的重心.∴23FM DB =.………………………………(1分) ∴21()9FMN ABC S FM S AB == .∴19FMN S = .………………………………(1分)(2)法一:过点D 作DH ∥BE ,交AC 于点H .……………………(1分)∴12AH AD HE BD ==.…………………………(1分) ∵3AE EC =,∴13CE CH =.……………………(1分) ∵DH ∥BE ,∴13CF CE CD CH ==.∵FM ∥AB ,∴13FM CF DB CD ==.……………(1分)∴29FM AB =.………………………………(2分)由(1)得△FMN ∽△ABC ,∴24()81FMN ABC S FM S AB == .∴481FMN S = .(1分) 法二:∵FM ∥AB ,FM CMDB BC =.① ∵FN ∥AC , FN BNEC BC=.② ①+②得1FM FN MNDB EC BC+=+.…………………………………………(2分) H N MF A BCDE由(1)得△FMN ∽△ABC ,设MN FM FNk BC AB AC===, 则32FM FM AB k DB AB BD == ,同理可得4FN k EC =,………………………(2分) ∴2413k k k +=+.解得29k =.………………………………………(2分) ∴24()81FMN ABC S FM S AB == ∴481FMN S = .………………………………(1分) (3)21(1)FMN S a b =++ …………………………………………………(3分)青浦区2009学年第一学期九年级期中质量抽查考试数 学 试 卷Q-2009.11(时间100分钟,满分150分)考生注意:答题时务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题 一律无效。