浙江省台州市2014-2015学年高二上学期期末质量评估历史试题 扫描版含答案
- 格式:doc
- 大小:1001.50 KB
- 文档页数:10
南充市2014~2015学年度上期高中一年级教学质量监测历史试题参考答案与评分意见一、选择题(每小题2分,共50分):二、材料解析题(共50分):26.(18分)答案:(1)制度:三省六部制。
(2分)影响:对皇权有一定的制约。
(2分)特点:分割相权,加强皇权;三省相互牵制,提高行政效率。
(4分)(2)制度:责任内阁制。
(2分)目的:限制袁世凯独裁,确立共和政体。
(2分)(3)方法:建立联邦政府,加强中央集权;中央与地方实行分权;确立三权分立(分权与制衡) ;民主制度(人民主权)。
(任答三点,6分)27. (14分)答案:(1)史实:学生罢课,游行示威;拒绝在对德合约上签字;工人罢工和商人罢市。
(任答两点,4分)(2)原因:列强对辛亥革命的破坏,扶植袁世凯窃取革命果实;十月革命的启迪,中共和共产国际的帮助;一系列斗争失败的经验教训。
(任答两点,4分)(3)史实:乒乓外交;基辛格秘密访华;尼克松访华(或《中美联合公报》发表)。
(任答两点,2分)影响:有利于打破中国的外交僵局(或有利于改善中国的国际环境);有利于实现中日邦交正常化;有利于对付来自苏联的威胁。
(任答两点,4分)28. (18分)答案:(1)特征:①少数服从多数;②法律面前人人平等;③任人唯贤。
(任答两点,4分)(2)进程:通过《权利法案》确立君主立宪制,限制君主权力;18世纪中期形成责任内阁,国王“统而不治”;1832年议会改革,工业资产阶级分享政治权利。
(6分)(3)特征:具有浓厚的军国主义和专制主义色彩。
(或专制是实,立宪是虚,是不完善的代议制;2分)(4)制度:人民代表大会制,中共领导的多党合作和政治协商制,民族区域自治制,基层民主制度。
(任答三点,6分)。
2023学年第一学期台州山海协作体期中联考高二年级地理学科试题(答案在最后)考生须知:1.本卷共8页满分100分,考试时间90分钟。
2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字。
3.所有答案必须写在答题纸上,写在试卷上无效。
4.考试结束后,只需上交答题纸。
选择题部分一、选择题I(本大题共20小题,每小题2分,共40分。
每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)。
位于浙江省台州临海的桃渚火山,是我国第二批国家地质公园,其巍峨雄险的熔岩峰林地貌和层叠起伏的熔岩柱体地貌堪称中国白垩纪火山遗迹的典型代表,并被国际地质学界确认为西太平洋火山活动的经典遗存。
下图示意桃渚火山景观图和岩石圈物质循环示意图。
据此完成下面小题。
1.桃渚火山岩石属于右图中的()A.甲B.乙C.丙D.丁2.塑造桃渚火山微地貌景观的地质作用主要有()①流水侵蚀②生物风化③重力崩塌④风力侵蚀⑤冰川侵蚀A.①②③B.①③⑤C.②③④D.③④⑤【答案】1.D 2.A【解析】【1题详解】据材料桃渚火山岩石属于岩浆喷出形成的玄武岩。
读图可知,甲为沉积岩变质形成的变质岩,乙为岩浆,丙为岩浆侵入形成的花岗岩,丁是岩浆喷出形成的玄武岩,故D正确,ABC错误。
故选D。
【2题详解】浙江省台州临海的桃渚火山有着亚热带季风气候及其相应的生物多样性环境,降水较多,流水侵蚀作用显著,①正确;生物多样,有生物风化作用,②正确;玄武岩被流水侵蚀后会有重力崩塌作用,③正确;亚热带地区气温较高,降水较多,风力侵蚀不显著,没有冰川侵蚀,④⑤错误,故A正确,BCD错误。
故选A。
【点睛】岩石根据其成因主要分为三大类:沉积岩、岩浆岩(也可称为火成岩)、变质岩。
阅读台州某地示意图。
完成下列小题。
3.该地出现大面积的沙丘、三角洲平原地貌,塑造该类地貌的主要外力作用有()①风力堆积作用②波浪侵蚀作用③流水沉积作用④冰川作用A.①②B.③④C.②④D.①③4.牛轭湖形成后,会对甲河产生的影响是()A.洪涝灾害减轻B.河段落差降低C.河道淤积增强D.航运里程增加【答案】3.D 4.A【解析】【3题详解】结合题目信息可知,该地出现大面积的沙丘、三角洲平原地貌,而形成沙丘、三角洲平原两种地貌的主要外力是风力堆积作用和流水沉积作用,没有波浪侵蚀作用与冰川作用,①③正确,②④错误;故选D。
丽水市2022学年第一学期普通高中教学质量监控高二化学试题卷2023.01(答案在最后)本试题卷分选择题和非选择题两部分,共8页,满分100分,考试时间90分钟。
考生须知:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,写在本试题卷上的答案一律无效。
3.非选择题的答案必须用黑色字迹的签字笔或钢笔写在答题纸上相应区域内,作图时可先使用2B铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑,答案写在本试题卷上无效。
4.可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 S 32 Cu 64选择题部分一、选择题(本大题共22小题,1~16题每小题2分,17~22题每小题3分,共50分。
每个小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.某品牌运动饮料中含下列物质,属于弱电解质的是A.食用盐B.葡萄糖酸锌C.水D.三氯蔗糖2.下列物质用途与盐类的水解无关..的是A.Na2CO3常用作去油污B.可溶性的铝盐、铁盐作净水剂C.TiCl4溶于水制备TiO2 D.FeCl3溶液作为印刷电路板的“腐蚀液”3.下列能层或能级符号不正确...的是A.M B.4s C.3p D.2d4.下列有关能源的叙述不正确...的是A.可燃冰因稀缺而难以被规模化开采使用B.超低温液氧液氢火箭推进剂无毒、无污染、高效能C.碳捕集、利用与封存技术可实现CO2资源化利用D.氢气、烃、肼等液体或气体均可作燃料电池的燃料5.已知反应:2NO(g) + Br2(g) 2NOBr(g)ΔH = -a kJ·mol-1(a﹥0),其反应机理如下:①NO(g) + Br2(g) NOBr2(g)快②NO(g) + NOBr2(g) 2NOBr(g)慢下列有关该反应的说法不正确...的是A.该反应的速率主要取决于②的快慢B.NOBr2是该反应的中间产物C.正反应的活化能比逆反应的活化能小a kJ·mol-1D.增大Br2(g)的浓度能增大活化分子百分数,加快反应速率6.下列说法不正确...的是A.ΔH < 0为放热反应B.化学键断裂与形成时的能量变化是化学变化中能量变化的主要原因C.在25℃和101 kPa时,相同浓度的盐酸、醋酸溶液分别与NaOH溶液发生中和反应生成1 mol H2O时,放出的热量相等D.已知甲烷的燃烧热为890.3 kJ·mol-1,则甲烷燃烧的热化学方程式可表示为:CH4(g) + 2O2(g) = 2CO2(g) + 2H2O(l) ΔH = -890.3 kJ·mol-17.下列说法正确的是A.Zn分布在元素周期表d区B.第四周期含14种金属元素C.稀有气体基态原子最外层都是ns2np6D.116 Lv位于周期表第七周期第ⅣA族8.下列各组离子在水溶液中能大量共存的是A.NH4+、Na+、HCO3-、Cl-B.H+、Na+、CH3COO-、NO3-C.Fe3+、S2-、NH4+、SO42-D.Na+、Fe3+、SO42-、SCN-9.下列说法正确的是A.基态Cr原子的价层电子:3d54s1,违反能量最低原理B.基态C原子的电子排布式:1s22s22p x12p z1,违反能量最低原理C.基态C原子的价层电子排布图:,违反泡利原理D.基态Fe3+的3d电子排布图:,违反洪特规则10.下列有关电化学腐蚀和电化学保护的说法,不正确...的是甲乙丙丁A.图甲是钢铁的吸氧腐蚀示意图B.图乙中的电解质溶液呈酸性C.图丙中的电子被强制流向钢闸门D.图丁是牺牲阳极示意图,利用了电解原理11.现有4种短周期主族元素X、Y、Z和Q,原子序数依次增大,X最外层电子数是内层电子总数的一半,Y与Z同周期且相邻,基态Z原子3p能级有2个空轨道,Q原子半径在同周期元素中最小。
南充市2014~2015学年度上期高中一年级教学质量监测历史试题参考答案与评分意见一、选择题(每小题2分,共50分):二、材料解析题(共50分):26.(18分)答案:(1)制度:三省六部制。
(2分)影响:对皇权有一定的制约。
(2分)特点:分割相权,加强皇权;三省相互牵制,提高行政效率。
(4分)(2)制度:责任内阁制。
(2分)目的:限制袁世凯独裁,确立共和政体。
(2分)(3)方法:建立联邦政府,加强中央集权;中央与地方实行分权;确立三权分立(分权与制衡) ;民主制度(人民主权)。
(任答三点,6分)27. (14分)答案:(1)史实:学生罢课,游行示威;拒绝在对德合约上签字;工人罢工和商人罢市。
(任答两点,4分)(2)原因:列强对辛亥革命的破坏,扶植袁世凯窃取革命果实;十月革命的启迪,中共和共产国际的帮助;一系列斗争失败的经验教训。
(任答两点,4分)(3)史实:乒乓外交;基辛格秘密访华;尼克松访华(或《中美联合公报》发表)。
(任答两点,2分)影响:有利于打破中国的外交僵局(或有利于改善中国的国际环境);有利于实现中日邦交正常化;有利于对付来自苏联的威胁。
(任答两点,4分)28. (18分)答案:(1)特征:①少数服从多数;②法律面前人人平等;③任人唯贤。
(任答两点,4分)(2)进程:通过《权利法案》确立君主立宪制,限制君主权力;18世纪中期形成责任内阁,国王“统而不治”;1832年议会改革,工业资产阶级分享政治权利。
(6分)(3)特征:具有浓厚的军国主义和专制主义色彩。
(或专制是实,立宪是虚,是不完善的代议制;2分)(4)制度:人民代表大会制,中共领导的多党合作和政治协商制,民族区域自治制,基层民主制度。
(任答三点,6分)。
2022学年第一学期高二年级三校联考历史学科试题卷考生须知:1.本卷满分100分,考试时间90分钟;2.答题前,在答题卷指定区域填写班级、姓名、考场、座位号及准考证号(填涂);3.所有答案必须写在答题卷上,写在试卷上无效。
选择题部分一、选择题(共30小题,每小题2分,共60分。
每小题只有一个答案符合题目要求。
)1.“除了军事与经济资源的互为挹注,这些封君与周王室之间,也依仗宗族纽带,用祖先崇拜的繁缛礼仪,以朝贡、觐见、馈赠、通婚、封赏…………不断加强亲戚之间的关系。
……亲缘网络的伦理要求,是敦睦亲戚的孝道。
于是,周人统治的机制,取得了道德的意义。
”对该“周人统治的机制”解读正确的是A. 周王拥有绝对的权力B. 按照宗族等级分配政治权力C. 打破禅让政治的传统D. 血缘贵族政治从此得以确立2.《睡虎地秦墓竹简》记载:“有事请殹(也),必以书,毋口请,毋羁(羁)请。
”“行命书及书署急者,辄行之;不急者,日觱(毕),勿敢留。
留者以律论之。
”这说明秦朝文书A.可以避免地方的分裂割据B.形成了一个完整的体系C.建立较为严密的管理制度D.导致政府行政效率低下3.右图所示为唐朝沙州节度使张承奉致都僧统等帖,该图可以佐证A.郡国并行制带来的巨大弊端B.当时藩镇割据势力较为强大C.唐朝行政区划打破山川形势D.地方出现州以上的军政长官4.廷议、朝议、集议是中国古代中央决策体制的重要方式。
下列史料记载的现象按时间先后排列正确的是①“太祖登正阳门,望城中诸军未有归者,乃脱甲诣政事堂。
”②“是故天子有公,诸侯有卿……以相佐也。
”③“只供传述缮撰,而不能稍有赞画于其间”④“虽置三公,事归台阁”A.④②③① B.②④①③C.①④②③ D.②④③①5.右图是距今约2700年前的古希腊陶壶,壶上图案展现了古希腊重装步兵交战的场景。
根据图片信息并结合所学可知,当时古希腊城邦A.公民承担保卫城邦的责任B.民主政治制度已趋于完善C.寡头政治优越性已经凸显D.陶片放逐法存在较大弊端6.罗马经历了从共和国到帝国的演变。
台州市2023学年第一学期期中考试试卷高二数学(答案在最后)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.直线210x y +-=的一个方向向量是()A.()2,1- B.()2,1 C.()1,2- D.()1,2【答案】A 【解析】【分析】根据方向向量的定义即可求解.【详解】210x y +-=的一个方向向量是()2,1-,故选:A2.在平面直角坐标系xOy 中,双曲线221x y -=的渐近线方程为()A.22y x =±B.y =C.y x =±D.24y x =±【答案】C 【解析】【分析】根据等轴双曲线即可求解.【详解】221x y -=的渐近线方程为y x =±,故选:C3.圆1C :22210240x y x y +-+-=与圆2C :222260x y x y +++-=的公共弦所在直线方程为()A.240x y ++=B.2490x y -+=C.240x y -+=D.240x y --=【答案】B 【解析】【分析】将两圆方程作差即可得相交弦方程.【详解】由221:(1)(5)50C x y -++=,即1(1,5)C -,半径为由222:(1)(1)8C x y +++=,即2(1,1)C --,半径为,所以12||C C <=<,即两圆相交,将两圆方程作差得2222210222604x y x y x y x y +-+----+=-,整理得2490x y -+=,所以公共弦所在直线方程为2490x y -+=.故选:B4.已知(2,0)(4,)A B a -,两点到直线:10l x y -+=的距离相等,则=a ()A.4 B.6C.2D.4或6【答案】D 【解析】【分析】直接根据点到直线距离公式进行求解即可.【详解】已知点()2,0A -,()4,B a ,直线:10l x y -+=,由于点A 与点B 到直线l 的距离相等,,解得:4a =或6a =.故选:D5.“直线10x ay +-=与直线10ax y -+=相互垂直”是“1a =”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据两直线垂直,求出a 的值,则可判断充分性和必要性.【详解】因为直线10x ay +-=与直线10ax y -+=相互垂直,所以()()110a a ⨯+⨯-=,所以R a ∈.当1a =时,直线10x ay +-=与直线10ax y -+=相互垂直,而当直线10x ay +-=与直线10ax y -+=相互垂直时,1a =不一定成立,所以“直线10x ay +-=与直线10ax y -+=相互垂直”是“1a =”的必要而不充分条件,故选:B .6.已知抛物线2:4C y x =的焦点为F ,准线为l ,过C 上一点A 作l 的垂线,垂足为B .若3AF =,则AFB △的外接圆面积为().A.27π8 B.64π27C.9π4D.25π16【答案】A 【解析】【分析】根据抛物线的定义求得1x ,进而得到1y ,利用勾股定理求得BF ,进而得到sin BAF ∠,然后利用正弦定理中的外接圆直径公式,求得AFB △的外接圆半径为R ,然后计算其面积.【详解】设()11,A x y ,由抛物线的定义可知113x AF AB =+==,所以12x =,代入抛物线的方程中得到1y ==由几何关系可知BF ==1sin 3y BAF AF ∠==.设AFB △的外接圆半径为R ,由正弦定理可知2sin BFR BAF=∠,解得R =,所以AFB △的外接圆面积为227ππ8R =.故选:A7.有以下三条轨迹:①已知圆22:(1)9A x y ++=,圆22:(1)1B x y -+=,动圆P 与圆A 内切,与圆B 外切,动圆圆心P 的运动轨迹记为1C ;②已知点A ,B 分别是x ,y 轴上的动点,O 是坐标原点,满足||4AB =,AB ,AO 的中点分别为M ,N ,MN 的中点为P ,点P 的运动轨迹记为2C ;③已知A ,直线l :x =,点P 满足到点A 的距离与到直线l 的距离之比为2,点P 的运动轨迹记为3C .设曲线123,,C C C 的离心率分别是123,,e e e ,则()A.123e e e << B.132e e e << C.321e e e << D.231e e e <<【答案】A 【解析】【分析】由题意求出点P 的运动轨迹方程,进而求出曲线的离心率,比较它们大小即可得出答案.【详解】对于①,因为圆22:(1)9A x y ++=,圆22:(1)1B x y -+=.所以为()1,0A -,A 的半径13r =,()10B ,,B 的半径21r =,设动圆P 的半径为R ,则21PB r R R =+=+,13PA R r R =-=-,可得314PB PA R R +=-++=为定值,所以圆心P 在以A 、B 为焦点的椭圆上运动,由24a =,1c =得2a =,b =,所以椭圆方程为22143x y +=,即动圆P 圆心的轨迹1C 方程为22143x y+=,所以143122e ==,对于②,设(),P x y ,()(),0,0,A a B b ,因为||4AB =,所以2216a b +=,因为AB ,AO 的中点分别为M ,N ,所以,22a b M ⎛⎫⎪⎝⎭,,02a N ⎛⎫⎪⎝⎭,MN 的中点为P ,所以,24a b P ⎛⎫⎪⎝⎭,所以2244a x a x bb y y ⎧=⎪=⎧⎪⇒⎨⎨=⎩⎪=⎪⎩,因为2216a b +=,所以2241616x y +=,故点P 的运动轨迹记为2C :()22104xy y +=≠,所以222e ==;对于③,设点()00,P x y2=,整理可得2200142x y -=.所以,点P 的运动轨迹3C的方程为:22142x y -=,所以3=22e =,所以123e e e <<.故选:A .8.已知1F 、2F 是椭圆()222210x y a b a b+=>>的两个焦点,P 是椭圆上一点,1260F PF ∠=,121||||(2)2PF PF λλ=≤≤,则椭圆的离心率的最大值为()A.3B.2C.D.2【答案】A 【解析】【分析】根据椭圆定义,结合余弦定理可得()22211e λλλ-+=+,进而利用换元法,结合二次函数的性质即可求解.【详解】设2||,|PF x =则12||PF PF x λλ==,122PF PF a +=,所以221ax x a x λλ+=⇒=+,由余弦定理可得()22222214212c x x x x x λλλλ=+-⋅⋅=-+,故()()22224411a c λλλ=-++,进而可得()22211e λλλ-+=+,令1t λ=+,则3,32t ⎡⎤∈⎢⎥⎣⎦,222233331t t e t t t-+==-+,令112,,33m m t ⎡⎤=∈⎢⎥⎣⎦,所以222331331e m m t t =-+=-+,对称轴为12m =,所以2331y m m =-+在11,32m ⎡⎤∈⎢⎥⎣⎦单调递减,在12,33⎡⎤⎢⎥⎣⎦单调递增,故当13m =和23m =时,213313y m m =-+=,故2331y m m =-+的最大值为13,所以()2max13e=,故e 的最大值为3,故选:A二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知双曲线C :221x y m-=的焦点在x 轴上,且实轴长是虚轴长的3倍,则下列说法正确的是()A.双曲线C 的实轴长为6B.双曲线C 的虚轴长为2C.双曲线C 的焦距为22D.双曲线C 的离心率为223【答案】AB 【解析】【分析】由题设可得3a b =,结合已知方程得双曲线方程为2219x y -=,进而判断各项正误.【详解】由题设23263a b b a b =⨯=⇒=,而1b =,故3a =,则29m a ==,所以双曲线方程为2219x y -=,实轴长为26a =,虚轴长为22b =,焦距为210c =103,故A 、B 对,C 、D 错.故选:AB10.已知椭圆22:143x y M +=的左、右焦点分别是1F ,2F ,左、右顶点分别是1A ,2A ,点P 是椭圆上异于1A 和2A 的任意一点,则下列说法正确的是()A.124PF PF += B.直线1PA 与直线2PA 的斜率之积为34-C.存在点P 满足1290F PF ∠=D.若12F PF △的面积为1,则点P 的横坐标为263±【答案】ABD 【解析】【分析】根据椭圆的定义判断A ,计算出1PA 和2PA 的斜率计算B ,根据圆的直径所对圆周角为90 判断C ,由三角形面积公式判断D.【详解】A 选项中,因为椭圆方程为22143x y +=,则24a =,所以2a =,由椭圆的定义知,122PF PF a +=,所以124PF PF +=,A 正确;B 选项中,椭圆的左、右顶点分别是()12,0A -,()22,0A ,设()00,P x y ,因为点P 是椭圆上异于1A 和2A 的任意一点,所以将()00,P x y 代入到椭圆方程得:2200143x y +=,且1002PA y k x =+,2002PA y k x =-,所以1220002000224PA PA y y y k k x x x ⋅=⋅=+--,因为2200143x y +=,所以()222000331444x y x 骣琪=-=×-琪桫,所以122020344PA PA y k k x ⋅==--,B 正确;C 选项中,由椭圆方程知,24a =,23b =,21c =,若1290F PF ∠=,则点P 在以线段12F F 为直径的圆上,以线段12F F 为直径的圆的方程为221x y +=的圆在椭圆内,所以椭圆上不存在P 满足1290F PF ∠=,C 错误;D 选项中,121200112122F PF S F F y y =�创= ,所以01y =,所以代入到2200143x y +=知,03x =±,D 正确.故选:ABD11.设直线系M :22(1)2220a x ay a --++=,则下面四个命题正确的是()A.存在定点P 在M 中的任意一条直线上B.圆222:0.9N x y +=与M 中的所有直线都没有公共点C.对于任意整数()3n n ≥,存在正n 边形,其所有边均在M 中的直线上D.M 中的直线所能围成的正三角形面积都相等【答案】BC 【解析】【分析】由于点()0,0到直线系()22:12220M a x ay a --++=的距离均为2,则直线系M 表示与圆224x y +=的切线的集合,然后结合题意判断四个选项是否正确即可.【详解】由于点()0,0到直线系()22:12220M a x ay a --++=的距离为()222121a d a +===+,故直线系M 表示与圆224x y +=的切线的集合,对于A 选项,由于直线系表示圆224x y +=的切线,其中存在两条切线平行,所以M 中所有直线经过一个定点不可能,故A 选项错误;对于B 选项,由于直线系表示圆224x y +=的切线,而圆2220.9x y +=内含于圆224x y +=中,得M 中的所有直线均与圆()2220.9x y +=无公共点,故B 选项正确;对于C 选项,由于圆的所有外切正多边形的边都是圆的切线,所以对于任意正数()3n n ≥,存在正n 边形,其所有边均在M 中的直线上,故C 选项正确;对于D 选项,正ABC 的三边所在的直线均与圆相切,可以分为切点全在边上或者一个切点在边上,两个切点在边的延长线上两种情况,三角形面积不相等,故D 选项错误.故选:BC12.三支不同的曲线()|1|0,1,2,3i i y a x a i =⋅->=交抛物线24y x =于点,(1,2,3)i i A B i =,F 为抛物线的焦点,记i i A FB △的面积为i S ,下列说法正确的是()A.11(1,2,3)i ii FA FB +=为定值 B.112233////A B A B A B C.若1232S S S +=,则1232a a a += D.若2123S S S =,则2123a a a =【答案】AD【解析】【分析】设直线()1i y a x =-与抛物线24y x =的交于点,i i C B ,则i A 与i C 关于x 轴对称,设()()1122,,,i i A x y B x y -,则()11,i C x y ,联立()214i y a x y x⎧=-⎨=⎩,利用韦达定理求得1212,y y y y +,进而可求得1212,x x x x +,结合焦半径公式即可判断A ;判断i i A B k 是否为定值即可判断B ;求出i S ,即可判断CD.【详解】如图,设直线()1i y a x =-与抛物线24y x =的交于点,i i C B ,则i A 与i C 关于x 轴对称,设()()1122,,,i i A x y B x y -,则()11,i C x y ,联立()214i y a x y x⎧=-⎨=⎩,消x 得2440iy y a --=,则12124,4iy y y y a +==-,又()1i y a x =-,则()()()()212121212411,114i i i iy y a x a x y y a x x a +=-+-==--=-,则21212224,1i i a x x x x a ++==,对于A ,()1,0F ,2212212121221111124221241111i i ii i iFA FB x x a a x x a x x x x a ++++++++++=+==+++,故A 正确;对于B ,212122212121444i i A B y y y y k y y x x y y ++====---因为i a 不是定值,所以i i A B k 不是定值,故B 错误;对于C ,设直线()1i y a x =-的倾斜角为i θ,则tan i i a θ=,则22222sin cos 2tan 2sin 2cos sin 1tan 1i i i ii i i i i a a θθθθθθθ===+++,所以()()122211sin 211221i i i i i i a S A F B F x x a θ==++⋅+()2121222222414111211i i i i i i ia a a x x x x a a a a ⎛⎫+=+++⋅=++= ⎪++⎝⎭,又因1232S S S +=,所以123448a a a +=,所以()1232a a a +=,故C 错误;对于D ,因为2123S S S =,所以21234416a a a ⋅=,所以2123a a a =,故D 正确.故选:AD.【点睛】方法点睛:解决直线和抛物线的位置关系类问题时,一般方法是设出直线方程并联立抛物线方程,得到根与系数的关系式,要结合题中条件进行化简,但要注意的是计算量一般都较大而复杂,要十分细心.三、填空题:本题共4小题,每题5分,共20分.13.已知直线l的方程为4y =+,则倾斜角为_______,在y 轴上的截距为________.【答案】①.60 ②.4【解析】【分析】根据给定的直线方程,求出直线的斜率,进而求出倾斜角,再求出直线与y 轴交点的纵坐标即得.【详解】直线l的方程为4y =+的斜率k =α,则tan α=,于是60α= ;当0x =时,4y =,所以直线l 在y 轴上的截距为4.故答案为:60 ;414.准线方程为2x =-的抛物线的标准方程为__________.【答案】28y x=【解析】【分析】根据准线方程确定抛物线开口方向并求出p 值,进而求其标准方程【详解】已知抛物线的准线方程为2x =-,得该抛物线开口向右,且22p =,得4p =,故抛物线的方程为:28y x =.故答案为:28y x=15.过点()0,1的直线l 与椭圆22:14x C y +=交于,P Q 两点,则PQ 的最大值是_________.【解析】【分析】由题意可知()0,1即为椭圆与直线的交点,设()00,Q x y ,利用两点间的距离公式以及二次函数性即可求出PQ .【详解】根据题意可知,显然()0,1在椭圆上,不妨取0p x =,则()0,1P ,设()00,Q x y ,由,P Q 不重合可知01y ≠,且220014x y +=,即220044x y =-所以()222220002000014412325P y y Q x y y y y =++--=-+-=-+,根据二次函数性质可知,当031y =-时,2PQ 取最大值为163,即可得PQ .16.已知12F F ,分别为双曲线22221()00a x y a bb >-=>,的左右焦点,过2F 的直线与双曲线的右支交于A 、B 两点,记12AF F △的内切圆的半径为1r ,12BF F △的内切圆的半径为2r ,21216r r a ≤,则双曲线的离心率的取值范围为_________.【答案】(1,5]【解析】【分析】设圆1O 切1AF 、2AF 、12F F 分别于点M 、N 、G ,推导出12122O GF O F O △∽△,可得出()212r r c a =-,可得出关于c 、a 的不等式,即可求得该双曲线离心率的取值范围.【详解】设12AF F △、12BF F △的内切圆圆心分别为1O 、2O ,设圆1O 切1AF 、2AF 、12F F 分别于点M 、N 、G,过2F 的直线与双曲线的右支交于A 、B 两点,由切线长定理可得AM AN =,11F M F G =,22F G F N =,所以,()()()21212121AF F F AF AN F N FG F G AM F M +-=+++-+222222F N F G F G c a =+==-,则2F G c a =-,所以点G 的横坐标为()c c a a --=.故点1O 的横坐标也为a ,同理可知点2O 的横坐标为a ,故12O O x ⊥轴,故圆1O 和圆2O 均与x 轴相切于(),0G a ,圆1O 和圆2O 两圆外切.在122O O F △中,()122122*********O F O O F G O F G AF F BF F ∠=∠+∠=∠+∠= ,即122O O F G ⊥,12212GO F F O O ∴∠=∠,1212290O GF O F O ∠=∠= ,所以,12122O GF O F O △∽△,所以,1121212O GO F O F O O =,则212112O F O G O O =⋅,所以22222121112112F G O F O G O G O O O G O G O G =-=⋅-=⋅,即()212c a r r -=⋅,由题意可得:()2216-≤c a a ,可得4-≤c a a ,即5<≤a c a ,所以(]1,5=∈c e a.故答案为:(]1,5.四、解答题:本题共5小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知直线l 经过点()1,0A -,(0,1)B .(1)求直线l 的一般式方程;(2)若点(1,2)C --,求点C 关于直线l 的对称点的坐标.【答案】(1)10x y -+=(2)()3,0-【解析】【分析】(1)先求出直线l 的斜率,从而利用点斜式求出直线l 的方程,化为一般式;(2)设出对称点(),D m n ,根据中点坐标和斜率关系得到方程组,求出30m n =-⎧⎨=⎩,得到对称点.【小问1详解】直线l 的斜率为()10101-=--,所以直线l 的方程为10y x -=-,即10x y -+=;【小问2详解】设点C 关于直线l 的对称点坐标为(),D m n ,显然CD 的中点坐标满足10x y -+=,即121022m n ---+=,又直线CD 与直线l 垂直,故211n m +=-+,联立121022m n ---+=与211n m +=-+,解得30m n =-⎧⎨=⎩,所以点C 关于直线l 的对称点的坐标为()3,0-.18.已知直线:4l y x =-,圆221:64120C x y x y +-++=,圆222:142140C x y x y +--+=.(1)求直线l 被圆1C 截得的弦AB 的长;(2)判断圆1C 和圆2C 的位置关系,并给出证明.【答案】(1)||AB =(2)内切,证明见详解【解析】【分析】(1)化简圆1C 为标准方程,求出1C ()3,2-到直线:4l y x =-的距离d ,则AB =,代入求解即可得出答案;(2)化简圆2C 为标准方程,求两圆的圆心距与21r r -,21r r +比较,即可得出答案.【小问1详解】因为圆221:64120C x y x y +-++=,所以221:(3)(21C x y -++=),则圆1C 的圆心为1C ()3,2-,11r =,则1C ()3,2-到直线:4l y x =-的距离为:2d ==,所以||AB ==【小问2详解】因为222:142140C x y x y +--+=,则222:(7)(136C x y -+-=),则圆2C 的圆心为2C ()7,1,26=r ,12215C C r r ====-,所以两圆内切.19.已知圆C 经过()2,0,(0,2),(2,4).(1)求圆C 的方程;(2)若直线l 与圆C 相切,且与x 轴正半轴交于点(,0)A a ,交y 轴正半轴于点(0,)B b .求(4)(4)a b -⋅-的值.【答案】(1)22(2)(2)4x y -+-=;(2)(4)(4)8a b --=.【解析】【分析】(1)设圆的标准方程,根据点在圆上列方程组求参数,即得圆的方程;(2)设直线:1x y l a b+=,根据直线与圆相切及点线距离公式列方程整理,即可求值.【小问1详解】令圆222:()()C x a y b r -+-=,则()()()()()()222222222200224a b r a b r a b r ⎧-+-=⎪⎪-+-=⎨⎪-+-=⎪⎩,可得2224a b r =⎧⎪=⎨⎪=⎩,所以22:(2)(2)4C x y -+-=.【小问2详解】由题意,设直线:1x y l a b+=,即0bx ay ab +-=,而(2,2)C 且半径为2,直线l 与圆C2=,则222(22)4()a b ab a b +-=+,所以222224()4()4()a b ab a b a b a b +-++=+,化简得(4)(4)8a b --=.20.已知动点M 到定点(1,0)的距离比到直线2x =-的距离小1.(1)求动点M 的轨迹E 的方程;(2)取E 上一点(1,)(0)P a a >,任作弦PA PB ,,满足1PA PB k k ⋅=,则直线AB 是否经过一个定点?若经过定点,求出该点坐标,否则说明理由.【答案】(1)24y x=(2)定点为(3,2)--【解析】【分析】(1)根据抛物线的定义求解动点M 的轨迹方程;(2)首先将P 点代入抛物线中求得参数a 的值,然后假设2111,4A y y ⎛⎫ ⎪⎝⎭,2221,4B y y ⎛⎫ ⎪⎝⎭,利用已知条件1PA PB k k ⋅=,得到12122()12y y y y ++=,最后代入直线AB 方程中即可得到恒过定点.【小问1详解】已知动点M 到定点()1,0的距离比到直线2x =-的距离小1,可得动点M 到定点()1,0的距离与到直线=1x -的距离相等,由抛物线的定义易知轨迹E 的方程为24y x =.【小问2详解】将()1,P a 代入24y x =中,可得:24a =,0a > ,故得:2a =,即得:()1,2P ;如图,设2111,4A y y ⎛⎫ ⎪⎝⎭,2221,4B y y ⎛⎫ ⎪⎝⎭,由于122212*********PA PB y y k k y y --⋅=⋅=--,整理可得:()1212212y y y y ++=.2122122141144AB y y k y y y y -==+-,则根据点斜式方程可得:2111241:4AB l y y x y y y ⎛⎫-=- ⎪+⎝⎭,整理得:1212124:AB y y l y x y y y y =+++由直线AB 的方程()()1212121212121212244432y y y y y x x x y y y y y y y y y y -+=+=+=+-+++++,可知直线AB 恒过定点()3,2--21.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,椭圆上的点到左焦点1F 的距离的最大值为23+.(1)求椭圆C 的方程;(2)求椭圆C 的外切矩形(即矩形的四边所在直线均与椭圆相切)ABCD 的面积S 的取值范围.【答案】(1)2214x y +=(2)[]8,10【解析】【分析】(1)根据题意求出a b c ,,,进而可求出结果;(2)当矩形ABCD 的一组对边斜率不存在时,可求出矩形ABCD 的面积;当矩形ABCD 四边斜率都存在时,不防设AB CD 、所在直线斜率为k ,则BC AD 、斜率为1k -,设出直线AB 的方程为y kx m =+,联立直线与椭圆方程,结合韦达定理以及弦长公式等,即可求解.【小问1详解】因为2c e a ==,2c a +=+2==c a ,所以2221b a c =-=,所以椭圆方程为2214x y +=;【小问2详解】当矩形ABCD 一组对边斜率不存在时,矩形ABCD 的边长分别为4和2,则矩形ABCD 的面积为8,当矩形ABCD 的四边斜率都存在时,不妨设AB CD 、的斜率为k ,则AD BC 、的斜率为1k-,设直线AB 方程为y kx m =+,联立2214y kx m x y =+⎧⎪⎨+=⎪⎩,得222(41)84(1)0k x kmx m +++-=,由10∆=,可得2241m k =+,显然直线CD 的方程为y kx m =-,则直线AB CD 、之间的距离为1d ==,同理可得:AD BC 、之间的距离为2d =所以矩形ABCD的面积为1210S d d ==,取等条件:1k =±,当AB 斜率存在时,8S >.综上所述,面积S 的取值范围是[]8,10.。
浙江省台州市2014—2015学年高二下学期期末质量评估历史试题一、选择题(本大题有25小题,每小题2分,共50分。
在每小题给出的四个选项中,只有一项是最符合题目要求的。
)1.在中国古代社会,“国”和“家”对统治者而言是紧密相连的。
从政治角度看,古代社会中“国”和“家”的重要联结点是( )A.禅让制 B.嫡长子继承制C.郡县制 D.察举制【考点】西周的政治制度——宗法制(嫡长子继承制)【解析】禅让制是民主选举部落首领的制度,与国和家无关,故A项错误;嫡长子继承制是宗法制的核心,王位和财产由嫡长子继承,体现了家国一体,故B项正确;郡县制是地方行政制度,与血缘无关,故C项错误;察举制是举荐选官,与国和家无关,故D项错误。
【答案】B2.《左传·宣公三年》记载:“昔夏之方有德也,远方图物,贡金九牧,铸鼎象物。
”这里用铸鼎的“金”应该是( )A.铁 B.青铜C.黄金 D.钢【考点】古代中国手工业的发展——青铜业【解析】铁在西周晚期出现,与材料无关,故A项错误;夏商周是青铜时代,铸鼎主要是青铜,故B项正确;黄金不可能用来铸鼎,故C项错误;钢在夏朝不存在,故D项错误。
【答案】B3.从西汉中期耦犁推广以来,中国古代的农业工具不是向大型、高效发展,而是逐步被改造得比较轻便灵巧。
这说明古代农具( )A.已经达到定型阶段 B.逐步走向停滞落后C.适应小农经济需要 D.严重制约农业发展【考点】古代中国农业的主要耕作方式——农具改革【解析】古代农具不断发展变化,定型不符合史实,故A项错误;农具的轻便和灵巧不能说明农具走向停滞和落后,是与中国小农经济的发展相适应,故B项错误,C项正确;农具的轻便和灵巧促进了农业的发展,故D项错误。
【答案】C4.“绢帛绫绸叠满箱,将来裁剪做衣裳。
公婆身上齐完备,剩下方才做与郎。
”诗句中这些纺织产品的主要用途是( )A.自我消费 B.对外出售C.交纳赋税 D.捐赠礼品【考点】古代中国手工业的发展——家庭手工业【解析】“公婆身上齐完备,剩下方才做与郎”体现了衣服主要自我消费,材料没有涉及对外出售、缴纳赋税和捐赠礼品,选择A项符合题意。
2021年高二上学期第一学段(期中)考试历史(理)试题word版含答案蒲强景怡一.选择题(本大题共25小题,每小题2分,共50分,在每小题所给的四个选项中,只有一项最符合题意)1.文物是物化的历史,是历史工作者从事历史研究的重要依据。
下列文物中,对研究奴隶社会历史有着重要作用的是()①雅典陶片②甲骨卜辞③十二铜表法④浑仪A.①③④B.②③④C.①②③D.①②④2.数学是一门思维学科,下面关于我国古代的数学成就表述不正确的是()A.中国是世界上最早使用十进位值制记数法的国家B.秦汉时期,中国出现算筹计数法C.珠算是古代中国发明的最伟大的计算工具D.祖冲之对圆周率的计算在世界上领先了一千年3.有人将明清之际的中西方科技比喻为“近代科学的晨光与传统科技的晚霞”。
这时的“晚霞”是指()A.集大成的科技巨著涌现B.各种发明不断出现C.早期反封建思想出现 D.古代小说蓬勃发展4.诗言志,歌咏言。
诗歌是人类心灵的窗口,时代精神的火花在这里凝结、积淀。
下列诗句中,反映了唐朝盛世景象的是()A.“大风起兮云飞扬,威加海内兮归故乡,安得猛士兮守四方。
”B.“国破山河在,城春草木深。
感时花溅泪,恨别鸟惊心。
”C.“忆昔开元全盛日,小邑犹藏万家室。
稻米流脂粟米白,公私仓廪俱丰实。
”D.“郁孤台下清江水,中间多少行人泪。
西北望长安,可怜无数山。
”5.明清时代,大量记叙日常生活琐事和平民百姓见闻为主的章回形式的长篇和短篇白话小说蓬勃兴起和长足发展。
这主要是因为()A.白话文开始兴起B.文学素材日益丰富C.市民阶层逐渐壮大D.思想控制空前严密6.小明平时写字很不规范,老师建议他到书店挑选几本中国古代名家的楷书字贴,加以临摹练习,改掉不好的写字习惯。
那么他有可能选择()①《九成宫醴泉铭》②《自叙贴》③《兰亭序》④《玄秘塔碑》A.①②③④B.①④C.②③D.①③7.“使人类克服了经典物理学的危机,对微观世界的基本认识有了革命性的进展”指的是()A.牛顿力学体系的建立 B.进化论的提出 C.自由落体定律的提出D.量子论的提出8.西方基督教宣扬上帝创世说,人类的始祖亚当和夏娃是上帝创造的。
•2023-2024学年中职语文职业模块期末试卷单选题(12分)以下哪个选项是毛泽东创作《七律二首·送瘟神》的缘起?()A.国共第一次合作B.余江县消灭了血吸虫C.秋收起义取得胜利D.新中国的建立《宁夏闽宁镇:昔日干沙滩,今日金沙滩》一文中“干沙滩”有多种含义。
以下哪一个不属于?()A.干旱多沙B.条件艰苦C.尚未开发的D.日渐富庶3.哪一个领域不是“探界者”钟杨所研究的领域?()。
A、植物学领域B、科普领域C、教育领域D、医疗领域4.以“铁人”王进喜为代表的砖井工人为建设祖国做出了重大贡献,他们身上具备众多优良品质,不包括以下哪一项?()不畏艰险 B、铁骨铮铮 C、大无畏精神 D、舍大家顾小家5.简单相信,傻傻坚守。
樊锦诗在坚守什么?()A、敦煌莫高窟B、龙门石窟C、云冈石窟D、麦积山石窟6.通讯是运用记叙、描写、抒情、议论等多种手法,具体、生动、形象地反映新闻事件或典型人物的一种报道形式。
其特点不包括以下哪一项?()A、真实性B、客观性C、形象性D、虚构性7.以下哪一首诗不是王安石的作品?()《泊船瓜洲》 B、《元日》 C、《桂枝香·金陵怀古》 D、《望庐山瀑布》8.怀古诗的结构特点不包含以下哪一个?()A、思古人B、临古地C、抒己志D、形式自由9.“唐宋八大家”不包括以下那个人?()A.苏轼B.王安石C.欧阳修D.柳永10.中国古代第一部叙事详尽的纪传体史书?()A.《史记》B.《国语》C.《论语》D.《左传》11.《闪亮的坐标——铁人王进喜》的文章体裁是什么?()A.诗歌B.散文C.通讯D.解说词12.北宋词人柳永的创作风格属于哪一派别?()A.豪放派B.婉约派C.荷花淀派D.山药蛋派古诗词默写(8分)1.千村薜荔人遗失,()。
2.(),华佗无奈小虫何。
3.(),六亿神州尽舜尧。
4.《雨霖铃》中“(),(),()”写两情依依,难舍难分,客船却不断催促。
5.《雨霖铃》中描写离别时难舍难分的句子是:(),()。
2023年学年第一学期期中考试试卷高一数学(答案在最后)总分:150分考试时间:120分钟一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知全集U =R ,集合{}1,0,1,2A =-,{}|210B x x =->,则()A B ⋂R ð等于()A.{}1,0- B.{}1,2C.{}1,0,1- D.{}0,1,2【答案】A 【解析】【分析】先求B R ð,然后由交集运算可得.【详解】因为{}1|210|2B x x x x ⎧⎫=->=>⎨⎬⎩⎭,所以1|2B x x ⎧⎫=≤⎨⎬⎩⎭R ð,所以(){}1,0A B ⋂=-R ð.故选:A2.命题“2000,10x x x ∃∈++<R ”的否定为()A.2000,10x x x ∃∈++≥R B.2000,10x x x ∃∈++>R C.2,10x x x ∀∈++≥R D.2,10x x x ∀∈++>R 【答案】C 【解析】【分析】在写命题的否定中要把存在变任意,任意变存在.【详解】因为特称命题的否定为全称命题,所以2000,10x x x ∃∈++<R 的否定即为2,10x x x ∀∈++≥R .故选:C.3.设x ∈R ,则“220x x -<”是“12x -<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】解不等式,再判断不等式解集的包含关系即可.【详解】由220x x -<得()0,2x ∈,由12x -<得()1,3x ∈-,故“220x x -<”是“12x -<”的充分不必要条件.故选:A.4.已知关于x 的不等式20ax bx c ++>的解集为{|2x x <-或}3x >,则下列说法错误的是()A.0a >B.不等式0bx c +>的解集是{}6x x <C.0a b c ++< D.不等式20cx bx a -+<的解集是1|3x x ⎧<-⎨⎩或12x ⎫>⎬⎭【答案】B 【解析】【分析】先求得,,a b c 的关系式,然后对选项进行分析,所以确定正确答案.【详解】由于关于x 的不等式20ax bx c ++>的解集为{|2x x <-或}3x >,所以0a >(A 选项正确),且2323b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,整理得,6b a c a =-=-,由0bx c +>得60,6ax a x --><-,所以不等式0bx c +>的解集是{}6x x <-,所以B 选项错误.660a b c a a a a ++=--=-<,所以C 选项正确.()()22260,6121310cx bx a ax ax a x x x x -+=-++<--=-+<,解得13x <-或12x >,所以D 选项正确.故选:B5.已知函数()y f x =的定义域为{}|06x x ≤≤,则函数()()22f xg x x =-的定义域为()A.{|02x x ≤<或}23x <≤B.{|02x x ≤<或}26x <≤C.{|02x x ≤<或}212x <≤ D.{}|2x x ≠【答案】A 【解析】【分析】由已知列出不等式组,求解即可得出答案.【详解】由已知可得,02620x x ≤≤⎧⎨-≠⎩,解得,02x ≤<或23x <≤.故选:A .6.已知函数5(2),22(),2a x x f x a x x⎧-+≤⎪⎪=⎨⎪>⎪⎩是R 上的减函数,则实数a 的取值范围是()A.()0,2 B.()1,2 C.[)1,2 D.(]0,1【答案】C 【解析】【分析】由题可得函数在2x ≤及2x >时,单调递减,且52(2)22aa -+≥,进而即得.【详解】由题意可知:ay x=在()2,+∞上单调递减,即0a >;5(2)2y a x =-+在(],2-∞上也单调递减,即20a -<;又()f x 是R 上的减函数,则52(2)22aa -+≥,∴02052(2)22a a a a ⎧⎪>⎪-<⎨⎪⎪-+≥⎩,解得12a ≤<.故选:C .7.已知函数()y f x =的定义域为R ,()f x 为偶函数,且对任意12,(,0]x x ∈-∞都有2121()()0f x f x x x ->-,若(6)1f =,则不等式2()1f x x ->的解为()A.()(),23,-∞-⋃+∞ B.()2,3- C.()0,1 D.()()2,01,3-⋃【答案】B 【解析】【分析】由2121()()0f x f x x x ->-知,在(,0]-∞上单调递增,结合偶函数,知其在在[0,)+∞上单调递减即可解.【详解】对120x x ∀<≤,满足()()21210f x f x x x ->-,等价于函数()f x 在(,0]-∞上单调递增,又因为函数()f x 关于直线0x =对称,所以函数()f x 在[0,)+∞上单调递减.则()21f x x ->可化为26x x -<,解得23x -<<.故选:B.8.函数()f x x =,()22g x x x =-+.若存在129,,,0,2n x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,使得()()()()121n n f x f x f x g x -++⋅⋅⋅++()()()()121n n g x g x g x f x -=++++ ,则n 的最大值是()A.8B.11C.14D.18【答案】C 【解析】【分析】令()222h x x x =-+,原方程可化为存在129,,,0,2n x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,使得()()()()121n n h x h x h x h x -++⋅⋅⋅+=,算出左侧的取值范围和右侧的取值范围后可得n 的最大值.【详解】因为存在129,,,0,2n x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,使得()()()()121n n f x f x f x g x -++⋅⋅⋅++()()()()121n n g x g x g x f x -=++++ ,故2221111222222n n n n x x x x x x ---+++-+=-+ .令()222h x x x =-+,90,2x ⎡⎤∈⎢⎥⎣⎦,则()5314h x ≤≤,故()221111531222214n n n x x x x n ---≤-+++-+≤- ,因为()5314n h x ≤≤故5314n -≤,故max 14n =.故选:C.【点睛】本题考查二次函数的最值,注意根据解析式的特征把原方程合理整合,再根据方程有解得到n 满足的条件,本题属于较难题.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.对实数a ,b ,c ,d ,下列命题中正确的是()A.若a b <,则22ac bc <B.若a b >,c d <,则a c b d ->-C.若14a ≤≤,21b -≤≤,则06a b ≤-≤D.a b >是22a b >的充要条件【答案】BC 【解析】【分析】利用不等式的性质一一判定即可.【详解】对于A ,若0c =,则22ac bc =,故A 错误;对于B ,c d c d <⇒->-,由不等式的同向可加性可得a c b d ->-,故B 正确;对于C ,2121b b -≤≤⇒≥-≥-,由不等式的同向可加性可得06a b ≤-≤,故C 正确;对于D ,若102a b =>>=-,明显22a b <,a b >不能得出22a b >,充分性不成立,故D 错误.故选:BC10.已知函数()42f x x =-,则()A.()f x 的定义域为{}±2x x ≠ B.()f x 的图象关于直线=2x 对称C.()()56ff -=- D.()f x 的值域是()(),00,-∞+∞ 【答案】AC 【解析】【分析】根据解析式可得函数的定义域可判断A ,利用特值可判断,直接求函数值可判断C ,根据定义域及不等式的性质求函数的值域可判断D.【详解】由20x -≠,可得2x ≠±,所以()f x 的定义域为{}±2x x ≠,则A 正确;因为()14f =-,()34f =,所以()()13f f ≠,所以()f x 的图象不关于直线=2x 对称,则B 错误;因为()453f -=,所以()()56f f -=-,则C 正确;因为2x ≠±,所以0x ≥,且2x ≠,所以22x -≥-,且20x -≠,当220x -≤-<时,422x ≤--,即()2f x ≤-,当20x ->时,402x >-,即()0f x >,所以()f x 的值域是(](),20,-∞-+∞ ,故D 错误.故选:AC.11.高斯是德国著名的数学家,近代数学奠基之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为七界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,如:[]1.21=,[]1.22-=-,[]y x =又称为取整函数,在现实生活中有着广泛的应用,诸如停车收费,出租车收费等均按“取整函数”进行计费,以下关于“取整函数”的描述,正确的是()A.x ∀∈R ,[][]22x x =B.x ∀∈R ,[][]122x x x ⎡⎤++=⎢⎥⎣⎦C.x ∀,R y ∈,若[][]x y =,则有1x y ->-D.方程[]231x x =+的解集为【答案】BCD 【解析】【分析】对于A :取12x =,不成立;对于B :设[]x x a =-,[0,1)a ∈,讨论10,2a ⎡⎫∈⎪⎢⎣⎭与1,1)2a ⎡∈⎢⎣求解;对于C :,01x m t t =+≤<,,01y m s s =+≤<,由||x y -=||1t s -<得证;对于D :先确定0x ≥,将[]231x x =+代入不等式[][]()2221x x x ≤<+得到[]x 的范围,再求得x 值.【详解】对于A :取12x =,[][][]1211,2220x x ⎡⎤==⎢⎥⎣⎦==,故A 错误;对于B :设11[],[0,1),[][][]22x x a a x x x x a ⎡⎤⎡⎤=-∈∴++=+++⎢⎥⎢⎥⎣⎦⎣⎦12[]2x a ⎡⎤=++⎢⎥⎣⎦,[2][2[]2]2[][2]x x a x a =+=+,当10,2a ⎡⎫∈⎪⎢⎣⎭时,11,122a ⎡⎫+∈⎪⎢⎣⎭,2[0,1)a ∈,则102a ⎡⎤+=⎢⎥⎣⎦,[2]0a =则1[]2[]2x x x ⎡⎤++=⎢⎣⎦,[2]2[]x x =,故当10,2a ⎡⎫∈⎪⎢⎣⎭时1[]2[]2x x x ⎡⎤++=⎢⎥⎣⎦成立.当1,1)2a ⎡∈⎢⎣时,131,22a ⎡⎫+∈⎪⎢⎣⎭,2[1,,)2a ∈则112a ⎡⎤+=⎢⎥⎣⎦,[2]1a =则1[]2[]1[2]],2[12x x x x x ⎡⎤++=+=+⎢⎣⎦,故当1,1)2a ⎡∈⎢⎣时1[]2[]2x x x ⎡⎤++=⎢⎥⎣⎦成立.综上B 正确.对于C :设[][]x y m ==,则,01x m t t =+≤<,,01y m s s =+≤<,则|||()x y m t -=+-()|||1m s t s +=-<,因此1x y ->-,故C 正确;对于D :由[]231x x =+知,2x 一定为整数且[]310x +≥,所以[]13x ≥-,所以[]0x ≥,所以0x ≥,由[][]()2221x x x ≤<+得[][][]()22311x x x ≤+<+,由[][]231x x ≤+解得[]33 3.322x +≤≤≈,只能取[]03x ≤≤,由[][]()2311x x +<+解得[]1x >或[]0x <(舍),故[]23x ≤≤,所以[]2x =或[]3x =,当[]2x =时x =[]3x =时x =,所以方程[]231x x =+的解集为,故选:BCD.【点睛】高斯函数常见处理策略:(1)高斯函数本质是分段函数,分段讨论是处理此函数的常用方法.(2)由x 求[]x 时直接按高斯函数的定义求即可.由[]x 求x 时因为x 不是一个确定的实数,可设[]x x a =-,[0,1)a ∈处理.(3)求由[]x 构成的方程时先求出[]x 的范围,再求x 的取值范围.(4)求由[]x 与x 混合构成的方程时,可用[][]1x x x ≤<+放缩为只有[]x 构成的不等式求解.12.函数()1f x a x a =+--,()21g x ax x =-+,其中0a >.记{},max ,,m m n m n n m n ≥⎧=⎨<⎩,设()()(){}max ,h x f x g x =,若不等式()12h x ≤恒有解,则实数a 的值可以是()A.1B.12 C.13 D.14【答案】CD 【解析】【分析】将问题转化为()min 12h x ≥;分别在a ≥和0a <<的情况下,得到()f x 与()g x 的大致图象,由此可得确定()h x 的解析式和单调性,进而确定()min h x ,由()min 12h x ≤可确定a 的取值范围,由此可得结论.【详解】由题意可知:若不等式()12h x ≤恒有解,只需()min 12h x ≥即可.()1,21,x x af x a x x a +≤⎧=⎨+-≥⎩,∴令211ax x x -+=+,解得:0x =或2x a=;令2121ax x a x -+=+-,解得:x =或x =;①当2a a≤,即a ≥时,则()f x 与()g x大致图象如下图所示,()()()(),02,02,g x x h x f x x a g x x a ⎧⎪≤⎪⎪∴=<<⎨⎪⎪≥⎪⎩,()h x ∴在(],0-∞上单调递减,在[)0,∞+上单调递增,()()()min 001h x h g ∴===,不合题意;②当2a a>,即0a <<时,则()f x 与()g x大致图象如下图所示,()()()(),0,0,g x x h x f x x g x x ⎧≤⎪∴=<<⎨⎪≥⎩()h x ∴在(],0-∞,a ⎡⎣上单调递减,[]0,a,)+∞上单调递增;又()()001h g ==,21hg a ==,∴若()min 12h x ≥,则需()min h x h =,即1212a ≤,解得:14a -≤;综上所述:实数a的取值集合10,4M ⎛⎤-= ⎥ ⎝⎦,1M ∉ ,12M ∉,13M ∈,14M ∈,∴AB 错误,CD 正确.故选:CD.【点睛】关键点点睛:本题考查函数不等式能成立问题的求解,解题关键是将问题转化为函数最值的求解问题,通过分类讨论的方式,确定()f x 与()g x 图象的相对位置,从而得到()h x 的单调性,结合单调性来确定最值.三、填空题:本题共4小题,每小题5分,共20分.13.若幂函数()f x 过点()42,,则满足不等式()()21f a f a ->-的实数a 的取值范围是__________.【答案】312⎡⎫⎪⎢⎣⎭,【解析】【分析】利用待定系数法求出幂函数()f x 的解析式,再利用函数定义域和单调性求不等式的解集.【详解】设幂函数()y f x x α==,其图像过点()42,,则42α=,解得12α=;∴()12f x x ==,函数定义域为[)0,∞+,在[)0,∞+上单调递增,不等式()()21f a f a ->-等价于210a a ->-≥,解得312a ≤<;则实数a 的取值范围是31,2⎡⎫⎪⎢⎣⎭.故答案为:31,2⎡⎫⎪⎢⎣⎭14.已知0a >,0b >,且41a b +=,则22ab +的最小值是______.【答案】18【解析】【分析】利用基本不等式“1”的妙用求解最小值.【详解】由题意可得24282221018b a b ab a b a ab +=++=⎛⎫⎛⎫ ⎪⎪⎝⎭⎝++≥⎭,当且仅当13a =,6b =时,等号成立.故答案为:1815.若函数()()22()1,,=-++∈f x x xax b a b R 的图象关于直线2x =对称,则=a b +_______.【答案】7【解析】【分析】由对称性得()(4)f x f x =-,取特殊值(0)(4)(1)(3)f f f f =⎧⎨=⎩求得,a b ,再检验满足()(4)f x f x =-即可得,【详解】由题意(2)(2)f x f x +=-,即()(4)f x f x =-,所以(0)(4)(1)(3)f f f f =⎧⎨=⎩,即15(164)08(93)b a b a b =-++⎧⎨=-++⎩,解得815a b =-⎧⎨=⎩,此时22432()(1)(815)814815f x x x x x x x x =--+=-+--+,432(4)(4)8(4)14(4)8(4)15f x x x x x -=--+-----+432232(1696256256)8(644812)14(168)32815x x x x x x x x x x =--+-++-+---+-++432814815x x x x =-+--+()f x =,满足题意.所以8,15a b =-=,7a b +=.故答案为:7.16.设函数()24,()2,ax x a f x x x a-+<⎧⎪=⎨-≥⎪⎩存在最小值,则a 的取值范围是________.【答案】[0,2]【解析】【分析】根据题意分a<0,0a =,02a <≤和2a >四种情况结合二次函数的性质讨论即可》【详解】①当a<0时,0a ->,故函数()f x 在(),a -∞上单调递增,因此()f x 不存在最小值;②当0a =时,()24,0()2,0x f x x x <⎧⎪=⎨-≥⎪⎩,当0x ≥时,min ()(2)04f x f ==<,故函数()f x 存在最小值;③当02a <≤时,0a -<,故函数()f x 在(),a -∞上单调递减,当x a <时,2()()4f x f a a >=-+;当x a ≥时,2()(2)(2)0f x x f =-≥=.若240a -+<,则()f x 不存在最小值,故240a -+≥,解得22a -≤≤.此时02a <≤满足题设;④当2a >时,0a -<,故函数()f x 在(),a -∞上单调递减,当x a <时,2()()4f x f a a >=-+;当x a ≥时,22()(2)()(2)f x x f a a =-≥=-.因为222(2)(4)242(2)0a a a a a a ---+=-=->,所以22(2)4a a ->-+,因此()f x 不存在最小值.综上,a 的取值范围是02a ≤≤.故答案为:[0,2]【点睛】关键点点睛:此题考查含参数的分段函数求最值,考查二次函数的性质,解题的关键是结合二次函数的性质求函数的最小值,考查分类讨论思想,属于较难题.四、解答题:本题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知集合{|13}A x x =<<,集合{|21}B x m x m =<<-.(1)若A B ⋂=∅,求实数m 的取值范围;(2)命题p :x A ∈,命题q :x B ∈,若p 是q 的充分条件,求实数m 的取值范围.【答案】(1)[)0,∞+(2)(],2-∞-【解析】【分析】(1)根据B 是否为空集进行分类讨论,由此列不等式来求得m 的取值范围.(2)根据p 是q 的充分条件列不等式,由此求得m 的取值范围.【小问1详解】由于A B ⋂=∅,①当B =∅时,21m m ³-,解得13m ≥,②当B ≠∅时,2111m m m <-⎧⎨-≤⎩或2123m mm <-⎧⎨≥⎩,解得103m ≤<.综上所述,实数m 的取值范围为[)0,∞+.【小问2详解】命题:p x A ∈,命题:q x B ∈,若p 是q 的充分条件,故A B ⊆,所以2113m m ≤⎧⎨-≥⎩,解得2m ≤-;所以实数m 的取值范围为(],2-∞-.18.2018年8月31日,全国人大会议通过了个人所得税法的修订办法,将每年个税免征额由42000元提高到60000元.2019年1月1日起实施新年征收个税.个人所得税税率表(2019年1月1日起执行)级数全年应纳税所得额所在区间(对应免征额为60000)税率(%)速算扣除数1[]0,36000302(]36000,1440001025203(]144000,30000020X 4(]300000,42000025319205(]420000,66000030529206(]660000,96000035859207()960000,+∞45181920有一种速算个税的办法:个税税额=应纳税所得额×税率-速算扣除数.(1)请计算表中的数X ;(2)假若某人2021年税后所得为200000元时,请按照这一算法计算他的税前全年应纳税所得额.【答案】(1)16920X =(2)153850元.【解析】【分析】(1)根据公式“个税税额=应纳税所得额×税率-速算扣除数”计算,其中个税税额按正常计税方法计算;(2)先判断他的全年应纳税所参照的级数,是级数2还是级数3,然后再根据计税公式求解.【小问1详解】按照表格,假设个人全年应纳税所得额为x 元(144000300000x ≤≤),可得:()()20%14400020%1440003600010%360003%x X x -=-⨯+-⨯+⨯,16920X =.【小问2详解】按照表格,级数3,()30000030000020%16920256920-⨯-=;按照级数2,()14400014400010%2520132120-⨯-=;显然1321206000019212020000031692025692060000+=<<=+,所以应该参照“级数3”计算.假设他的全年应纳税所得额为t 元,所以此时()20%1692020000060000t t -⨯-=-,解得153850t =,即他的税前全年应纳税所得额为153850元.19.已知定义在R 上的函数()f x 满足()()()2f x y f x f y +=++,且当0x >时,()2f x >-.(1)求()0f 的值,并证明()2f x +为奇函数;(2)求证()f x 在R 上是增函数;(3)若()12f =,解关于x 的不等式()()2128f x x f x ++->.【答案】(1)(0)2f =-,证明见解析(2)证明见解析(3){1x x <-或}2x >【解析】【分析】(1)赋值法;(2)结合增函数的定义,构造[]1122()()f x f x x x =-+即可;(3)运用题干的等式,求出(3)10f =,结合(2)的单调性即可.【小问1详解】令0x y ==,得(0)2f =-.()2()2(0)20f x f x f ++-+=+=,所以函数()2f x +为奇函数;【小问2详解】证明:在R 上任取12x x >,则120x x ->,所以12()2f x x ->-.又[]11221222()()()()2()f x f x x x f x x f x f x =-+=-++>,所以函数()f x 在R 上是增函数.【小问3详解】由(1)2f =,得(2)(11)(1)(1)26f f f f =+=++=,(3)(12)(1)(2)210f f f f =+=++=.由2()(12)8f x x f x ++->得2(1)(3)f x x f -+>.因为函数()f x 在R 上是增函数,所以213x x -+>,解得1x <-或2x >.故原不等式的解集为{1x x <-或}2x >.20.已知函数()2,R f x x x k x k =-+∈.(1)讨论函数()f x 的奇偶性(写出结论,不需要证明);(2)如果当[]0,2x ∈时,()f x 的最大值是6,求k 的值.【答案】(1)答案见解析(2)1或3【解析】【分析】(1)对k 进行分类讨论,结合函数奇偶性的知识确定正确答案.(2)将()f x 表示为分段函数的形式,对k 进行分类讨论,结合二次函数的性质、函数的单调性求得k 的值.【小问1详解】当0k =时,()f x =||2x x x +,则()f x -=||2x x x --=()f x -,即()f x 为奇函数,当0k ≠时,(1)f =|1|2k -+,(1)|1|2f k -=-+-,(1)(1)|1|2|1|2|1||1|0f f k k k k +-=-+-+-=--+≠,则()f x 不是奇函数,(1)(1)|1|2|1|2|1||1|40f f k k k k --=-++++=-+++≠,则()f x 不是偶函数,∴当0k =时()f x 是奇函数,当0k ≠时,()f x 是非奇非偶函数.【小问2详解】由题设,()f x ()()222,2,x k x x k x k x x k ⎧+-≥⎪=⎨-++<⎪⎩,函数()22y x k x =+-的开口向上,对称轴为2122k kx -=-=-;函数()22y x k x =-++的开口向下,对称轴为2122k k x +=-=+-.1、当1122k k k -<+<,即2k >时,()f x 在(,1)2k-∞+上是增函数,∵122k+>,∴()f x 在[]0,2上是增函数;2、当1122k k k <-<+,即2k <-时,()f x 在1,2k ⎛⎫-+∞ ⎪⎝⎭上是增函数,∵102k-<1,∴()f x 在[]0,2上是增函数;∴2k >或2k <-,在[]0,2x ∈上()f x 的最大值是(2)2|2|46f k =-+=,解得1k =(舍去)或3k =;3、当1122k kk -≤≤+,即22k -≤≤时,()f x 在[]0,2上为增函数,令2246k -+=,解得1k =或3k =(舍去).综上,k 的值是1或3.【点睛】研究函数的奇偶性的题目,如果要判断函数的奇偶性,可以利用奇偶函数的定义()()f x f x -=或()()f x f x -=-来求解.也可以利用特殊值来判断函数不满足奇偶性的定义.对于含有绝对值的函数的最值的研究,可将函数写为分段函数的形式,再对参数进行分类讨论来求解.21.已知函数()2f x x =-,()()224g x x mx m =-+∈R .(1)若对任意[]11,2x ∈,存在[]24,5x ∈,使得()()12g x f x =,求m 的取值范围;(2)若1m =-,对任意n ∈R ,总存在[]02,2x ∈-,使得不等式()200g x x n k -+≥成立,求实数k 的取值范围.【答案】(1)54m ⎡∈⎢⎣(2)(],4∞-【解析】【分析】(1)将题目条件转化为()1g x 的值域包含于()2f x 的值域,再根据[]11,2x ∈的两端点的函数值()()1,2g g 得到()y g x =对称轴为[]1,2x m =∈,从而得到()()min g x g m =,进而求出m 的取值范围;(2)将不等式()200g x x n k -+≥化简得不等式024x n k ++≥成立,再构造函数()0024h x x n =++,从而得到()0max h x k ≥,再构造函数()(){}0max max ,8n h x n n ϕ==+,求出()min n ϕ即可求解.【小问1详解】设当[]11,2x ∈,()1g x 的值域为D ,当[]24,5x ∈,()2f x 的值域为[]2,3,由题意得[]2,3D ⊆,∴()()211243224443g m g m ⎧≤=-+≤⎪⎨≤=-+≤⎪⎩,得5342m ≤≤,此时()y g x =对称轴为[]1,2x m =∈,故()()[]min 2,3g x g m =∈,即()222243g m m m =-+≤≤得1m ≤≤1m ≤≤-,综上可得54m ⎡∈⎢⎣.【小问2详解】由题意得对任意n ∈R ,总存在[]02,2x ∈-,使得不等式024x n k ++≥成立,令()0024h x x n =++,由题意得()0max h x k ≥,而()()(){}{}0max max 2,2max ,8h x h h n n =-=+,设(){}max ,8n n n ϕ=+,则()min n k ϕ≥,而(){},4max ,88,4n n n n n n n ϕ⎧<-⎪=+=⎨+≥-⎪⎩,易得()()min 44n k ϕϕ=-=≥,故4k ≤.即实数k 的取值范围为(],4∞-.22.已知函数()()01ax g x a x =≠+在区间1,15⎡⎤⎢⎥⎣⎦上的最大值为1.(1)求实数a 的值;(2)若函数()()()()()210x b f x b b g x +=-+>,是否存在正实数b ,对区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r 、s 、t ,都存在以()()f g r 、()()f g s 、()()f g t 为边长的三角形?若存在,求实数b 的取值范围;若不存在,请说明理由.【答案】(1)2a =(2)存在,15153b <<【解析】【分析】(1)由题意()1a g x a x =-+,1,15x ⎡⎤∈⎢⎥⎣⎦,然后分a<0,0a >两种情况讨论函数()g x 的单调性,即可得出结果;(2)由题意()()0bf x x b x=+>,可证得()f x 在(为减函数,在)+∞为增函数,设()u g x =,1,13u ⎡⎤∈⎢⎥⎣⎦,则()()()()0b f g x f u u b u ==+>,从而把问题转化为:1,13u ⎡⎤∈⎢⎥⎣⎦,()()min max2f u f u >时,求实数b 的取值范围.结合()bf u u u=+的单调性,分109b <≤,1193b <≤,113b <<,1b ≥四种情况讨论即可求得答案.【小问1详解】由题意()11ax a g x a x x ==-++,1,15x ⎡⎤∈⎢⎥⎣⎦①当a<0时,函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上递减,所以()max 151566a ag x g a ⎛⎫==-== ⎪⎝⎭,得6a =(舍去).②当0a >时,函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上递增,所以()()max 1122a ag x g a ==-==,得2a =.综上所述,2a =.【小问2详解】由题意()22211x g x x x ==-++,又115x ≤≤,由(1)知函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上递增,∴()()115g g x g ⎛⎫≤≤ ⎪⎝⎭,即()113g x ≤≤,所以函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上的值域为1,13⎡⎤⎢⎥⎣⎦.又因为()()()()()()()()()2211111x b x x b x b x b f x b b b g x x x++++++=-+=-+=-+,∴()()20x b bf x x b x x+==+>,令120x x <<,则()()()12121212121b b b f x f x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当1x ,(2x ∈时,()121210b x x x x ⎛⎫--> ⎪⎝⎭,所以()()12f x f x >,()f x 为减函数;当1x ,)2x ∈+∞时,()121210b x x x x ⎛⎫--< ⎪⎝⎭,所以()()12f x f x <,()f x 为增函数;∴()f x 在(为减函数,在)+∞为增函数,设()u g x =,由(1)知1,13u ⎡⎤∈⎢⎥⎣⎦,∴()()()()0bf g x f u u b u==+>;所以,在区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r 、s 、t ,都存在()()f g r 、()()f g s 、()()f g t 为边长的三角形,等价于1,13u ⎡⎤∈⎢⎥⎣⎦,()()min max 2f u f u >.①当109b <≤时,()b f u u u =+在1,13⎡⎤⎢⎥⎣⎦上单调递增,∴()min 133f u b =+,()max 1f u b =+,由()()min max 2f u f u >,得115b >,从而11159b <≤.②当1193b <≤时,()b f u u u =+在13⎡⎢⎣上单调递减,在⎤⎦上单调递增,∴()min f u =,()max 1f u b =+,由()()min max 2f u f u >得77b -<<+1193b <≤.③当113b <<时,()b f u u u =+在13⎡⎢⎣上单调递减,在⎤⎦上单调递增,∴()min f u ==,()max 133f u b =+,由()()min max 2f u f u >得74374399b -+<<,从而113b <<.④当1b ≥时,()b f u u u =+在1,13⎡⎤⎢⎥⎣⎦上单调递减,∴()min 1f u b =+,()max 133f u b =+,由()()min max 2f u f u >得53b <,从而513b ≤<.综上,15153b <<.。