高中数学 第一章 不等关系与基本不等式 1.1 不等式的性质训练 北师大版选修45
- 格式:doc
- 大小:60.01 KB
- 文档页数:3
一、选择题1.下列结论不正确的是( ) A .若a b >,0c >,则ac bc > B .若a b >,0c >,则c c a b> C .若a b >,则a c b c +>+D .若a b >,则a c b c ->-2.若存在实数x 使得不等式2113x x a a +--≤-成立,则实数a 的取值范围为( )A .3317,22⎛⎡⎫+-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭B .(][) ,21,-∞-+∞C .[]1,2D .(][),12,-∞+∞3.两个正实数a ,b 满足3a ,12,b 成等差数列,则不等式2134m m a b+≥+恒成立时实数m 的取值范围是( ) A .[]4,3-B .[]2,6-C .[]6,2-D .[]3,4-4.若不等式()()2||20x a b x x ---≤对任意实数x 恒成立,则a b +=( )A .-1B .0C .1D .25.若a 、b 、R c ∈,且a b >,则下列不等式中一定成立的是( )A .11a b<B .ac bc ≥C .20c a b >-D .()20a b c -≥6.已知log e a π=,ln eb π=,2e lnc π=,则( ) A .a b c << B .b c a <<C .b a c <<D .c b a <<7.若112a b <<<,01c <<,则下列不等式不成立...的是( ) A .log log a b c c < B .log log b a a c b c < C .c c ab ba <D .c c a b <8.下列命题中错误..的是( ) A .若,a b b c >>,则a c > B .若0a b >>,则ln ln b a < C .若a b >,则22a b >D .若a b >, 则22ac bc >9.已知x ,y ∈R ,且x >y >0,则( ) A .11x y x y->- B .cos cos 0x y -< C .110x y-> D .ln x +ln y >010.不等式5310x x -++≥的解集是( )A .[-5,7]B .[-4,6]C .(][),57,-∞-+∞ D .(][),46,-∞-+∞11.已知,a b ∈R ,且2a bP +=,222a b Q +=,则P ,Q 的关系是( ) A .P Q ≥B .P Q >C .P Q ≤D .P Q <12.若a b >,则下列不等式成立的是( ) A .22a b >B .11a b< C .a b >D .a b e e >二、填空题13.不等式2log 5x a -<对任意[]4,16x ∈恒成立,则实数a 的取值范围为____________. 14.已知平面向量a ,b ,c 满足1a =,||1b =,()c a b a b -+≤-,则||c 的最大值为___________.15.若不等式2240x x m +--≥的解集为R ,则实数m 的取值范围是_______.16.已知函数,若关于的不等式的解集为,则实数的取值范围是_______.17.若110a b>>有下列四个不等式①33a b <;②21log 3log 3a b ++>;b a b a -④3322a b ab +>.则下列组合中全部正确的为__________ 18.关于x 的不等式12x x m +--≥恒成立,则m 的取值范围为________19.已知正实数x ,y 满足40x y xy +-=,若x y m +≥恒成立,则实数m 的取值范围为_____________.20.若函数()f x 满足:对任意一个三角形,只要它的三边长,,a b c 都在函数()f x 的定义域内,就有函数值()()(),,f a f b f c 也是某个三角形的三边长.则称函数()f x 为保三角形函数,下面四个函数:①()()20f x x x =>;②())0f x x x =>;③()sin 02f x x x π⎛⎫=<< ⎪⎝⎭;④()cos 02f x x x π⎛⎫=<<⎪⎝⎭为保三角形函数的序号为___________.三、解答题21.已知函数()36f x x =+,()3g x x =-. (Ⅰ)求不等式()()f x g x >的解集;(Ⅱ)若()3()f x g x a +≥对于任意x ∈R 恒成立,求实数a 的最大值. 22.函数()212f x x x =-++.(1)求函数()f x 的最小值;(2)若()f x 的最小值为M ,()220,0a b M a b +=>>,求证:141213a b +≥++. 23.(1)设1≥x ,1y ≥,证明:111x y xy xy x y++≤++; (2)设1a b c ≤≤≤,证明:log log log log log log a b c b c a b c a a b c ++≤++. 24.已知()13f x x x =++-.(1)求直线8y =与函数()y f x =的图象所围图形的面积; (2)若()211f x a a ≥++-对一切实数x 成立,求a 的取值范围. 25.已知()|1||21|f x x x =+--. (1)求不等式()0f x >的解集;(2)若x ∈R ,不等式()23f x x a ≤+-恒成立,求实数a 的取值范围. 26.已知0a >,0b >,函数()|||2|f x x a x b =++-的最小值为1. (1)求2a b +的值;(2)若2a b tab +≥恒成立,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据不等式的性质,对选项逐一分析,由此得出正确选项. 【详解】对于A 选项,不等式两边乘以一个正数,不等号不改变方程,故A 正确.对于B 选项,若2,1,1a b c ===,则c ca b<,故B 选项错误.对于C 、D 选项,不等式两边同时加上或者减去同一个数,不等号方向不改变,故C 、D 正确.综上所述,本小题选B. 【点睛】本小题主要考查不等式的性质,考查特殊值法解选择题,属于基础题.2.D解析:D 【分析】由题意可转化为()2min311a a x x -≥+--,转化为求11x x +--的最小值,解不等式,求a 的取值范围. 【详解】若存在实数x 使得不等式2113x x a a +--≤-成立,可知()2min311a a x x -≥+--当1x ≤-时,11112x x x x +--=--+-=-,当11x -<<时,11112x x x x x +--=++-=,222x -<<, 当1≥x 时,11112x x x x +--=+-+=, 所以11x x +--的最小值为-2, 所以232a a -≥-,解得:2a ≥或1a ≤. 故选:D 【点睛】本题考查不等式能成立,求参数的取值范围,重点考查转化思想,计算能力,属于基础题型,本题的关键是将不等式能成立,转化为求函数的最小值.3.C解析:C 【分析】由题意利用等差数列的定义和性质求得13a b =+,再利用基本不等式求得112ab,根据题意,2412m m +,由此求得m 的范围. 【详解】 解:两个正实数a ,b 满足3a ,12,b 成等差数列, 13a b ∴=+,123ab ∴,112ab∴,∴112ab. ∴不等式2134m m a b ++恒成立,即234a b m m ab++恒成立, 即214m m ab+恒成立. 2412m m ∴+,求得62m -,故选:C . 【点睛】本题主要考查等差数列的定义和性质,不等式的恒成立问题,基本不等式的应用,属于基础题.4.D解析:D 【分析】可采用分类讨论法,分别讨论22x x -与x a b --的正负,确定,a b 之间的关系即可求解.【详解】当220x x -≥时,即[]02x ,∈时,||0x a b --≤恒成立,所以b a x b a -+≤≤+恒成立,所以2a b +≥且a b ≤; 当220x x -≤时,即(][),02,x ∈-∞+∞时,||0x a b --≥恒成立所以x a b ≥+或x a b ≤-恒成立,所以2a b +≤且a b ≥,综上,2a b += 故选:D 【点睛】本题考查一元二次不等式的解法,由含参数绝对值不等式求参数关系,分类讨论的数学思想,属于中档题5.D解析:D 【分析】利用不等式的性质证明,或者构造反例说明,即得解. 【详解】由题意可知,a 、b 、R c ∈,且a b > A .若1,2a b ==-,满足a b >,则11a b>,故本选项不正确; B .若1,2a b =-=-,满足,1a b c >=-,则ac bc <,故本选项不正确; C . 若0c,则20c a b=-,故本选项不成立;D .22,0,()0a b c a b c >≥∴-≥ 故选:D 【点睛】本题考查了利用不等式的性质,判断代数式的大小,考查了学生综合分析,转化与划归的能力,属于基础题.6.B解析:B 【分析】因为1b c +=,分别与中间量12做比较,作差法得到12b c <<,再由211log e log e 22a ππ==>,最后利用作差法比较a 、c 的大小即可.【详解】解:因为1b c +=,分别与中间量12做比较,2223111ln ln e ln 022e 2eb ππ⎛⎫-=-=< ⎪⎝⎭,432211e 1e ln ln e ln 0222c ππ⎛⎫-=-=> ⎪⎝⎭,则12b c <<,211log e log e 22a ππ==>,()112ln ln 20ln ln a c ππππ-=--=+->,所以b c a <<, 故选:B . 【点睛】 本题考查作差法比较大小,对数的运算及对数的性质的应用,属于中档题.7.B解析:B 【分析】根据幂函数和对数函数的图象和性质,结合不等式的基本性质,对各选项逐一判断即可. 【详解】 对于A :当112a b <<<,01c <<,由对数函数的单调性知,0log log a b c c <<,故A 正确; 对于B :当112a b <<<,01c <<,设函数log c y x =为减函数,则log log 0c c a b >>,所以log log 0b a c c >>,因112a b <<<,则log b a c 与log a b c 无法比较大小,故B 不正确; 对于C :当112a b <<<,01c <<,则10c -<,由指数函数的单调性知,11c c b a --<,将不等式11c c b a --<两边同乘ab ,得c c ab ba <,故C 正确;对于D :当112a b <<<,01c <<,由不等式的基本性质知,c c a b <,故D 正确. 故选: B 【点睛】本题考查了幂函数和对数函数的图象和性质,不等式的基本性质,属于基础题.8.D解析:D 【分析】根据不等式的性质、对数函数和指数函数的单调性,对选项逐一分析,由此得出正确选项. 【详解】对于A 选项,根据不等式传递性可知,A 选项命题正确.对于B 选项,由于ln y x =在定义域上为增函数,故B 选项正确.对于C 选项,由于2x y =在定义域上为增函数,故C 选项正确.对于D 选项,当0c 时,命题错误.故选D.【点睛】本小题主要考查不等式的性质,考查指数函数和对数函数的单调性,属于基础题.9.A解析:A 【分析】结合选项逐个分析,可选出答案. 【详解】结合x ,y ∈R ,且x >y >0,对选项逐个分析: 对于选项A ,0x y ->,110y x x y xy--=<,故A 正确; 对于选项B ,取2πx =,3π2y =,则3cos cos cos 2cos 1002x y -=π-π=->,故B 不正确; 对于选项C ,110y xx y xy--=<,故C 错误; 对于选项D ,ln ln ln x y xy +=,当1xy <时,ln 0xy <,故D 不正确. 故选A. 【点睛】本题考查了不等式的性质,属于基础题.10.D解析:D 【分析】零点分段后分类讨论求解不等式的解集即可. 【详解】 分类讨论:当5x ≥时,不等式即:5310x x -++≥,解得:6x ≥; 当35x -<<时,不等式即5310x x ---≥,此时不等式无解; 当3x ≤-时,不等式即:5310x x -+--≥,解得:4x ≤-; 综上可得,不等式的解集为(][),46,-∞-⋃+∞. 本题选择D 选项. 【点睛】本题主要考查绝对值不等式的解法,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.11.C解析:C 【解析】分析:因为P 2﹣Q 2=﹣2()4a b -≤0,所以P 2≤Q 2,则P≤Q ,详解:因为a ,b ∈R ,且P=2a b +,,所以P 2=2224a b ab ++,Q 2=222a b +,则P 2﹣Q 2=2224a b ab ++﹣222a b +=2224ab a b --=﹣2()4a b -≤0, 当且仅当a=b 时取等成立,所以P 2﹣Q 2≤0,即P 2≤Q 2,所以P≤Q , 故选:C .点睛:比较大小的常用方法 (1)作差法:一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差. (2)作商法:一般步骤:①作商;②变形;③判断商与1的大小;④结论.(3)函数的单调性法:将要比较的两个数作为一个函数的两个函数值,根据函数的单调性得出大小关系. (4)借助第三量比较法12.D解析:D 【解析】分析:根据不等式的性质,通过举例,可判定A 、B 、C 不正确,根据指数函数的性质,即可得到D 是正确的.详解:当1,2a b ==-时,满足a b >,此时2211,,a b a b a b<,所以A 、B 、C 不正确;因为函数x y e =是单调递增函数,又由a b >,所以a b e e >,故选D.点睛:本题主要考查了不等式的性质的应用和指数函数的单调性的应用,其中熟记不等式的基本性质和指数函数的单调性是解答本题的关键,着重考查了分析问题和解答问题的能力.二、填空题13.【分析】先去绝对值转化为再转化为求的最大值与最小值得到答案【详解】由得又由则则的最大值为的最小值为则故答案为:【点睛】本题考查了绝对值不等式的解法对数函数的值域的求法还考查了将恒成立问题转化为求最值 解析:()1,7-【分析】先去绝对值,转化为22log 5log 5x a x -<<+,再转化为求2log ,[4,16]y x x =∈的最大值与最小值,得到答案. 【详解】由2log 5x a -<,得22log 5log 5x a x -<<+,又由2log ,[4,16]y x x =∈, 则[2,4]y ∈,则25log x -的最大值为1-,2log 5x +的最小值为7,则17a -<<. 故答案为:()1,7- 【点睛】本题考查了绝对值不等式的解法,对数函数的值域的求法,还考查了将恒成立问题转化为求最值问题,转化与化归思想,属于中档题.14.【分析】只有不等号左边有当为定值时相当于存在的一个方向使得不等式成立适当选取使不等号左边得到最小值且这个最大值不大于右边【详解】当为定值时当且仅当与同向时取最小值此时所以因为所以所以所以当且仅当且与解析:【分析】只有不等号左边有c ,当||c 为定值时,相当于存在c 的一个方向使得不等式成立. 适当选取c 使不等号左边得到最小值,且这个最大值不大于右边. 【详解】当||c 为定值时,|()|c a b -+当且仅当c 与a b +同向时取最小值, 此时|()|||||||c a b c a b a b -+=-+-,所以||||||c a b a b ++-.因为||||1a b ==,所以2222()()2()4a b a b a b ++-=+=,所以22222(||||)()()2||||2[()()]8a b a b a b a b a b a b a b a b ++-=++-++-++-= 所以||||||22c a b a b ++-,当且仅当a b ⊥且c 与a b +同向时取等号.故答案为 【点睛】本题考察平面向量的最值问题,需要用到转化思想、基本不等式等,综合性很强,属于中档题.15.【分析】构造函数得出函数表示为分段函数的形式并求出函数的最小值可得出实数的取值范围【详解】构造函数由题意得当时当且仅当时等号成立;当时此时函数单调递增则所以函数的最小值为因此故答案为【点睛】本题考查 解析:3m ≤【分析】构造函数()224f x x x =+-,得出()min m f x ≤,函数()y f x =表示为分段函数的形式,并求出函数()y f x =的最小值,可得出实数m 的取值范围. 【详解】构造函数()224f x x x =+-,由题意得()min m f x ≤.当2x ≤时,()()2224133f x x x x =-+=-+≥,当且仅当1x =时,等号成立; 当2x >时,()()222415f x x x x =+-=+-,此时,函数()y f x =单调递增,则()()24f x f >=.所以,函数()y f x =的最小值为()min 3f x =,因此,3m ≤,故答案为3m ≤. 【点睛】本题考查不等式恒成立问题,考查参变量分离与分类讨论思想,对于这类问题,一般转化为最值来求解,考查化归与转化思想,考查运算求解能力,属于中等题.16.【解析】试题分析:由题意得对任意总成立即对任意总成立而当且仅当时取=则实数的取值范围是考点:基本不等式求最值 解析:()2,π-+∞【解析】试题分析:由题意得()=()f x x a x π-<对任意0x <总成立,即a x xπ>+对任意0x <总成立,而2x xππ+≤-,当且仅当x π=-时取“=”,则实数的取值范围是()2,π-+∞考点:基本不等式求最值17.①③【分析】由条件可知利用作差或是不等式的性质或是代特殊值判断不等式是否正确【详解】则正确故①正确;但不确定和的大小关系所以的正负不确定故②不正确;即故③正确;当时当时故④不正确;故答案为:①③【点解析:①③ 【分析】由条件可知0b a >>,利用作差,或是不等式的性质,或是代特殊值,判断不等式是否正确. 【详解】1100a b a b>>⇒<<,则33a b <正确,故①正确;()()()()()()33213333log 1log 211log 3log 3log 2log 1log 2log 1a b b a a b a b +++-+-=-=++++,()()33log 20,log 10a b +>+>,但不确定1b +和2a +的大小关系,所以()()33log 1log 2b a +-+的正负不确定,故②不正确;0b a >>,0>,(()22b a b a -=+---,20a =-=<<③正确; 当1,2a b ==时,33220a b ab +-> 当2,3a b ==时,33220a b ab +-<,故④不正确;故答案为:①③【点睛】方法点睛:1.利用不等式的性质判断,把要判断的结论和不等式的性质联系起来考虑,先找到与结论相近的性质,再判断.2.作差(或作商)比较法,先作差(商),变形整理,判断符号(或与1比较),最后判断大小;3.特殊值验证的方法,运用赋值法排除选项.18.【分析】由题意得由绝对值三角不等式求出函数的最小值从而可求出实数的取值范围【详解】由题意得由绝对值三角不等式得因此实数的取值范围是故答案为【点睛】本题考查不等式恒成立问题同时也考查了利用绝对值三角不 解析:(],3-∞-【分析】 由题意得()min 12m x x ≤+--,由绝对值三角不等式求出函数12y x x =+--的最小值,从而可求出实数m 的取值范围.【详解】 由题意得()min 12m x x ≤+--, 由绝对值三角不等式得()()12123x x x x +--≥-+--=-,3m ∴≤-, 因此,实数m 的取值范围是(],3-∞-,故答案为(],3-∞-.【点睛】本题考查不等式恒成立问题,同时也考查了利用绝对值三角不等式求最值,解题时要结合题中条件转化为函数的最值来求解,考查化归与转化数学思想,属于中等题.19.【分析】由等式x+4y ﹣xy =0变形得将代数式x+y 与代数式相乘并展开利用基本不等式可求出x+y 的最小值从而可求出m 的取值范围【详解】由于x+4y ﹣xy =0即x+4y =xy 等式两边同时除以xy 得由基解析:9m ≤【分析】由等式x +4y ﹣xy =0,变形得411x y +=,将代数式x +y 与代数式41x y+相乘并展开,利用基本不等式可求出x +y 的最小值,从而可求出m 的取值范围.【详解】由于x +4y ﹣xy =0,即x +4y =xy ,等式两边同时除以xy 得,411x y+=,由基本不等式可得()414559y x x y x y x y x y ⎛⎫+=++=++≥=⎪⎝⎭, 当且仅当4y x x y=,即当x =2y=6时,等号成立, 所以,x +y 的最小值为9.因此,m ≤9.故答案为m ≤9.【点睛】本题考查基本不等式及其应用,解决本题的关键在于对代数式进行合理配凑,考查计算能力与变形能力,属于中等题.20.②③【分析】欲判断函数是不是保三角形函数只需要任给三角形设它的三边长分别为则不妨设判断是否满足任意两数之和大于第三个数即任意两边之和大于第三边即可【详解】任给三角形设它的三边长分别为则不妨设①可作为 解析:②③【分析】欲判断函数()f x 是不是保三角形函数,只需要任给三角形,设它的三边长分别为a b c ,,,则a b c +>,不妨设a c ≤,b c ≤,判断()()()f a f b f c ,,是否满足任意两数之和大于第三个数,即任意两边之和大于第三边即可【详解】任给三角形,设它的三边长分别为a b c ,,,则a b c +>,不妨设a c ≤,b c ≤,①()()20f x x x =>,335,,可作为一个三角形的三边长,但222335+<,则不存在三角形以222335,,为三边长,故此函数不是保三角形函数②())0f x x =>,b c a +>>>())0f x x =>是保三角形函数 ③()02f x sinx x π⎛⎫=<< ⎪⎝⎭,02a b c π>+>>,()()()sin sin sin f a f b a b c f c +=+>=()02f x sinx x π⎛⎫∴=<< ⎪⎝⎭是保三角形函数 ④()02f x cosx x π⎛⎫=<< ⎪⎝⎭,当512a b π==,12c π=时,55 121212cos cos cos πππ+<,故此函数不是保三角形函数综上所述,为保三角形函数的是②③【点睛】要想判断()f x 是保三角形函数,要经过严密的论证说明()f x 满足保三角形函数的概念,但要判断()f x 不是保三角形函数,仅需要举出一个反例即可三、解答题21.(Ⅰ)93,,24⎛⎫⎛⎫-∞-⋃-+∞ ⎪ ⎪⎝⎭⎝⎭;(Ⅱ)15. 【分析】(1)两边平方,再利用一元二次不等式的解法即可求出不等式的解集;(2)转化为min (3633)x x a ++-≥对于任意x ∈R 恒成立,利用绝对值三角不等式求出min (3633)15x x ++-=,进而可得答案.【详解】(Ⅰ)由()()f x g x >,得363x x +>-,平方得()()22363x x +>-, 得2842270x x ++>,即()()29430x x ++>,解得92x <-或34x >-. 故不等式()()f x g x >的解集是93,,24⎛⎫⎛⎫-∞-⋃-+∞ ⎪ ⎪⎝⎭⎝⎭. (Ⅱ)若()()3f x g x a +≥恒成立,即3639x x a ++-≥恒成立. 只需min (3633)x x a ++-≥即可. 而()3639363915x x x x ++-≥+--=,所以15a ≤故实数a 的最大值为15.【点睛】不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在y g x 上方即可);③ ()min 0f x ≥或()max 0f x ≤恒成立22.(1)52;(2)证明见解析. 【分析】 (1)采用零点分段的方法将定义域分为三段:(],2-∞-、12,2⎛⎫- ⎪⎝⎭、1,2⎡⎫+∞⎪⎢⎣⎭,由此求解出每一段定义域对应的()f x 的值域,由此确定出()f x 的最小值;(2)由(1)确定出M 的值,采用常数代换的方法将14213a b +++变形并利用基本不等式完成证明.【详解】解:(1)()31,212123,22131,2x x f x x x x x x x ⎧⎪--≤-⎪⎪=-++=-+-<<⎨⎪⎪+≥⎪⎩, 当2x -≤时,()5f x ≥; 当122x -<<时,()552f x <<; 当12x ≥时,()52f x ≥. 所以()f x 的最小值为52. (2)由(1)知52M =,即25a b +=, 又因为0a >,0b >, 所以()()141142132139213a b a b a b ⎛⎫+=++++⎡⎤ ⎪⎣⎦++++⎝⎭ ()4211359213a b a b +⎛⎫+=++ ⎪++⎝⎭1519⎛ ≥+= ⎝ 当且仅当()253221a b b a +=⎧⎨+=+⎩,即1a =,3b =时,等号成立, 所以141231a b +≥++. 【点睛】本题考查绝对值函数的最值以及运用基本不等式证明不等式,难度一般.(1)求解双绝对值函数的最值常用的方法:零点分段法、图象法、几何意义法;(2)利用基本不等式完成证明或者求解最值时,要注意说明取等号的条件.23.(1)证明见详解;(2)证明见详解.【分析】(1)根据题意,首先对原不等式进行变形,()()21xy x y x y xy ++≤++,再做差,通过变形、整理化简,利用已知条件判断可得结论,从而不等式得到证明;(2)首先换元,设log ,log a b b x c y ==,利用换底公式转化为关于,x y 的式子,即为111x y xy xy x y++≤++,借助(1)的结论,可得证明. 【详解】证明:(1)由于1≥x ,1y ≥, 则111x y xy xy x y++≤++()()21xy x y x y xy ⇔++≤++, 将上式中的右边式子减左边式子得:()()21x y xy xy x y ⎡⎤++-++⎡⎤⎣⎦⎣⎦ ()()()()111xy xy x y xy =+--+-()()11xy xy x y =---+()()()111xy x y =---,又由1≥x ,1y ≥,则1xy ≥;即()()()1110xy x y ---≥,从而不等式得到证明.(2)设log ,log a b b x c y ==,则1,1x y ≥≥, 由换底公式可得:111log ,log ,log ,log b c a c a b c xy a x y xy====, 于是要证明的不等式可转化为111x y xy xy x y ++≤++, 其中log 1,log 1a b b x c y =≥=≥,由(1)的结论可得,要证明的不等式成立.【点睛】本题主要考查了不等式的证明,要掌握不等式证明常见的方法,如做差法、放缩法;其次注意(2)证明在变形后用到(1)的结论.属于中档题.24.(1)24;(2)4433a -≤≤. 【分析】(1)利用零点分段法将()f x 表示为分段函数的形式,由此画出直线8y =与函数()y f x =的图象.根据等腰梯形面积公式求得所围图形的面积.(2)先求得()f x 的最小值,由此得到4211a a ≥++-,由零点分段法进行分类讨论,由此求得a 的取值范围.【详解】(1)因为()22,14,1322,3x x f x x x x -+≤-⎧⎪=-<≤⎨⎪->⎩,如图所示:直线8y =与函数()y f x =的图象所围图形是一个等腰梯形,令228x -+=,得3x =-;令228x -=,得5x =, 所以等腰梯形的面积()1484242S =⨯+⨯=. (2)要使()211f x a a ≥++-对一切实数x 成立,只须()min 211f x a a ≥++-,而()13134f x x x x x =++-≥+-+=,所以()min 4f x =,故4211a a ≥++-.①由122114a a a ⎧<-⎪⎨⎪---+≤⎩,得4132a -≤<-; ②由1122114a a a ⎧-≤≤⎪⎨⎪+-+≤⎩,得112a -≤≤; ③由12114a a a >⎧⎨++-≤⎩,得413a <≤, 故4433a -≤≤.【点睛】本小题主要考查含有绝对值的不等式的解法,考查不等式恒成立问题的求解,考查分类讨论的数学思想方法,属于中档题.25.(1)(0,2);(2)[2,)+∞【分析】(1)把()|1||21|f x x x =+--分段表示,后解不等式(2)不等式()23f x x a ≤+-恒成立等价于()23f x x a -≤-恒成立,则max 23[()]a f x x -≥-,2,11()()2,12122,2x g x f x x x x x x ⎧⎪-<-⎪⎪=-=-≤≤⎨⎪⎪->⎪⎩,求其最大值即可. 【详解】解:(1)2,11()1213,1212,2x x f x x x x x x x ⎧⎪-<-⎪⎪=+--=-≤≤⎨⎪⎪->⎪⎩当1x <-时,由20x ->得2x >,即解集为∅, 当112x ≤≤-时,由30x >得0x >,解集为1(0]2,, 当12x >时,由20x ->得2x <,解集为1,22⎛⎫ ⎪⎝⎭, 综上所述,()0f x >的解集为(0,2)(2)不等式()23f x x a ≤+-恒成立等价于()23f x x a -≤-恒成立,则max 23[()]a f x x -≥-, 令2,11()()2,12122,2x g x f x x x x x x ⎧⎪-<-⎪⎪=-=-≤≤⎨⎪⎪->⎪⎩, 则max 1()12g x g ⎛⎫==⎪⎝⎭,即2312a a -≥⇒≥ 所以实数a 的取值范围是[2,)+∞ 【点睛】考查含两个绝对值号的不等式解法以及不等式恒成立求参数的范围,中档题. 26.(1)22a b +=(2)92t ≤【分析】(1)用分段函数表示()f x ,分析单调性,得到min ()122b b f x f a ⎛⎫==+= ⎪⎝⎭,即得解(2)原式转化为2a b t ab+≤,结合22a b +=,252a b a b ab b a +=++利用均值不等式即得解【详解】 (1)令0x a +=得x a =-,令20x b -=得2b x =, ∵0a >0b >,∴2b a -<, 则3,(),23,2x a b x a b f x x a b a x b x a b x ⎧⎪--+≤-⎪⎪=-++-<<⎨⎪⎪+-≥⎪⎩, ∴()f x 在,2b ⎛⎤-∞ ⎥⎝⎦上单调递减,在,2b ⎛⎫+∞ ⎪⎝⎭上单调递增, ∴min ()122b b f x f a ⎛⎫==+= ⎪⎝⎭,22a b +=; (2)∵2a b tab +≥恒成立,∴2a b t ab +≤恒成立, ∵22a b +=,∴112a b +=, ∴1212255922222a b a b a b a b ab b a b a b a +++=+=+=++≥+=,(当且仅当a b =时取等号) ∴2a b ab +的最小值为92, ∴92t ≤. 【点睛】 本题考查了绝对值函数的最值问题和均值不等式的应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题。
第一章预备知识第3节不等式3.1不等式的性质与相等关系一样,不等关系是数学中最基本的数量关系,作为预备知识,掌握好不等关系和不等式的基本性质,是证明和求解不等式的基础,是解决二次函数和二次不等式问题的前提,通过不等关系和不等式性质的学习,有助于提高学生的数学运算能力和逻辑推理能力,同时为培养学生数学建模能力奠定基础。
(1)知识目标:掌握作差法比较两个实数(代数式)大小的基本方法;掌握不等式的基本性质;熟练运用不等式的基本性质进行不等式的变形、运算和证明。
(2)核心素养目标:通过不等式性质的运用,提高学生数学运算能力和数学建模能力。
(1)作差法比较两个实数(代数式)的大小;(2)不等式的基本性质;(3)熟练运用不等式的基本性质进行不等式的变形、运算和证明。
多媒体课件一、复习引入一天,同学甲问同学乙:“你今年多少岁了?”乙回答说:“16岁了,你呢?”“我满15岁了,哈哈!再过一年,明年我们就一样大了!”乙默然。
这个对话里面包含了什么数学知识呢?提示:两人相差1岁,过一年,两人的年龄同时加1,不可能相等。
思考讨论:高速路上的限速标志,上面的数字是什么意思?提示:车速为v,行车道上的车速应该满足100km/ℎ≤v≤120km/ℎ.二、新知识在生活中,有很多数量关系的问题,它们既有相等关系,又有不等关系。
在数学中,用不等式来表示不等关系。
1、实数大小的比较两个实数a,b,如果a−b>0,那么a>b;如果a−b=0,那么a=b;如果a−b<0,那么a<b.即注意:①这种比较实数大小的方法叫作“作差法”,另外在数轴上可以更加直观的看出两个实数的大小;②比较两个代数式的大小,基本方法也是“作差法”,作差后的结果一般要进行因式分解或配方,然后与0相比较。
如:已知实数a,试比较a2+2与2a的大小.a2+2−2a=a2−2a+1+1=(a−1)2+1>0 ∴a2+2>2a例1.试比较(x+1)(x+5)与(x+3)2的大小.解:作差比较,(x+1)(x+5)−(x+3)2=(x2+6x+5)−(x2+6x+9)=−4<0∴(x+1)(x+5)<(x+3)2例2.试证明:若0<a<b,m>0,则a+mb+m >ab.证明:作差比较,a+mb+m −ab=b(a+m)−a(b+m)b(b+m)=m(b−a)b(b+m)a−b>0⇔a>b a−b=0⇔a=b a−b<0⇔a<b因为a <b ,所以b −a >0,又因a >0,b >0,m >0,所以m(b−a)b (b+m )>0∴a +mb +m >ab2、不等式的基本性质性质 内容备注性质1 如果a >b ,且b >c ,那么a >c 传递性性质2 如果a >b ,那么a +c >b +c 加(减)乘(除)运算性质3如果a >b ,c >0,那么ac >bc如果a >b ,c <0,那么ac <bc性质4 如果a >b ,c >d ,那么a +c >b +d 同向不等式相加 性质5如果a >b >0,c >d >0,那么ac >bd如果a >b >0,c <d <0,那么ac <bd不等式相乘注意:①以上性质均可以利用“作差法”给出证明,下面以性质4为例给出证明,其它,请同学们自行完成.性质4的证明:(a +c )−(b +d )=(a −b )+(c −d)因为a >b ,c >d ,有a −b >0,c −d >0,所以有(a −b )+(c −d )>0 得a +c >b +d②根据性质5,可以得出不等式乘方(开方)的运算性质.即:如果a >b >0,n ∈N +,那么a n >b n如果a >b >0,n ∈N +,那么√a n>√b n③不等式的变形、运算等,务必根据性质进行,避免错误. 如:如果a >b ,那么1a<1b ,对吗?提示:不正确,要由a >b 得到1a <1b ,应该将不等式两边同乘以1ab ,但条件并没有给出ab 的正负,所以结论错误例3. (1)已知a >b ,ab >0,求证:1a <1b ;(2)已知a >b ,c <d ,求证:a −c >b −d .证明:(1)因ab>0,则1ab >0,由不等式的性质3,a·1ab>b·1ab,得1a<1b.(2)因c<d. 由不等式的性质3,−c>−d再由a>b,利用不等式的性质4,同向不等式相加,得a−c>b−d思考讨论(综合练习):(1)已知a>0,b>0,求证:a3+b3≥a2b+ab2;(2)已知2≤x≤4,1≤y≤2,求x−2y的范围;(3)已知1≤a−b≤2,2≤a+b≤3,求2a−4b的范围.提示:(1)作差,(a3+b3)−(a2b+ab2)=(a3−a2b)+(b3−ab2)=a2(a−b)+b2(b−a)=(a−b)2(a+b)因a>0,b>0,(a−b)2≥0,所以(a−b)2(a+b)≥0得a3+b3≥a2b+ab2.(2)由 1≤y≤2得−4≤−2y≤−2,与2≤x≤4不等式相加得−2≤x−2y≤2即x−2y∈[−2,2].(3)设a−b=x,a+b=y,则1≤x≤2, 2≤y≤3,且a=x+y2,b=y−x2所以2a−4b=2·x+y2−4·y−x2=3x−y,与上(2)小题一样得2a−4b∈[0,4].三、课堂练习教材P26,练习1~6.四、课后作业教材P30,习题1-3,A组1~5(1)“作差法”比较大小,是证明不等式的基础,另外还可以采用“作商法”,即如果a>0,b>0,则ba>1⇔b>a;(2)不等式的基本性质是不等式变形、化简、证明的基础,不仅要熟练运用基本性质,还要特别注意性质中的条件.。
一、选择题1.若0,0,0a b m n >>>>,则a b ,b a ,b m a m ++,a n b n++按由小到大的顺序排列为( ) A .b b m a n a a a m b n b ++<<<++ B .b a n b m a a b n a m b ++<<<++ C .b b m a a n a a m b b n++<<<++ D .b a a n b m a b b n a m++<<<++ 2.已知函数22()x x af x x-+=,若[2,)x ∈+∞,()0f x >,则实数a 的取值范围是( ). A .(,0)-∞ B .(0,)+∞ C .[0,)+∞ D .(1,)+∞3.设0.3log 0.6m =,21log 0.62n =,则( ) A .m n m n mn ->+> B .m n mn m n ->>+ C .m n m n mn +>->D .mn m n m n >->+4.已知x ,y ∈R ,且0x y >>,则( ) A .11x y> B .11()()22xy<C .1122x y <D .sin sin x y >5.若a 、b 、c ,d ∈R ,则下面四个命题中,正确的命题是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,则ac 2>bc 2 D .若a >b ,c >d ,则ac >bd 6.下列命题中错误..的是( ) A .若,a b b c >>,则a c > B .若0a b >>,则ln ln b a < C .若a b >,则22a b > D .若a b >, 则22ac bc > 7.若a >b ,c 为实数,下列不等式成立是()A .ac >bcB .ac <bcC . 22ac bc >D . 22ac bc8.已知x ,y ∈R ,且x >y >0,则( ) A .11x y x y->- B .cos cos 0x y -< C .110x y->D .ln x +ln y >09.不等式536x x -++≥的解集是 ( ) A .[]5,7- B .(),-∞+∞C .()(),57,-∞-+∞ D .[]4,6-10.已知a ,b R ∈,且a b >,则下列不等式恒成立的是( )A .22a b >B .lg()0a b ->C .11()()22ab<D .1a b> 11.若,则下列结论不正确的是A .B .C .D .12.实数,a b 满足0a b >>,则下列不等式成立的是( ) A .1a b< B .1133a b<C a b a b <-.2a ab <二、填空题13.已知实数a ,b ,c 满足a >c ﹣2且1333abc++<,则333a bc-的取值范围是_______.14.已知不等式116a x y x y+≥+对任意正实数,x y 恒成立,则正实数a 的最小值为_______. 15.已知R a ∈,若关于x 的方程2210x x a a -+++=有实根,则a 的取值范围是__________.16.已知,,a b c R +∈,设a b c S b c a c a b=+++++,则S 与1的大小关系是__________.(用不等号连接) 17.已知ln ln x y <,则21x y y x-++的最小值为___________________. 18.设5x >,45P x x --23Q x x --,则P 与Q 的大小关系是P ______Q .19.设()f x x a x =-+,且|()|2f x ≤在[1,1]x ∈-上恒成立,则实数a 的取值范围为_________.20.定义运算x ·y ,,1,,x x y m y x y ≤⎧=-⎨>⎩若·m=|m-1|,则m 的取值范围是_____. 三、解答题21.已知函数()|21||23|f x x x =++-. (1)求不等式()6f x ≤的解集;(2)若关于x 的不等式22()log (3)2f x a a -->恒成立,求实数a 的取值范围. 22.(1)解不等式:1|1||2|2x x --->; (2)设集合P 表示不等式121x x a -+->对任意x ∈R 恒成立的a 的集合,求集合P ; (3)设关于x 的不等式22||200ax x a +--<的解集为A ,试探究是否存在a ∈N ,使得不等式.220x x +-<与|212x x -<+的解都属于A ,若不存在,说明理由.若存在,请求出满足条件的a 的所有值.23.(1)已知a <b <c ,且a +b +c =0,证明:a a a cb c--<. (224.已知数列{}n a 满足:12a =,1122n n n a a ++=+,*n N ∈.(1)求证2n n a ⎧⎫⎨⎬⎩⎭是等差数列并求n a ; (2)求数列{}n a 的前n 项和n S ; (3)求证:2132431111112n n a a a a a a a a ++++⋅⋅⋅+<----. 25.比较log (1) n n +与()*(1)log (2),2n n n N n ++∈≥大小,并证明.26.(1)若0a >,0b >,求证:11()4a b a b ⎛⎫++≥ ⎪⎝⎭; (2【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据不等式的性质,利用怍差法求解. 【详解】()()()-++---==+++b a m b b m ba bm ab am a a m a a m a a m , 因为0,0a b m >>>,所以()()0-<+b a m a a m ,所以b b m a a m+<+, ()()()()()()()()22b a b a b a n m b m a n b bn bm mn a am an nm a m b n a m b n a m b n +-+-++++++-----==++++++,因为0,0,0a b m n >>>>,所以()()()()()()0+-+-+<++b a b a b a n m a m b n ,所以++<++b m a na mb n, ()()()-++---==+++b a na n a ab bn ab an b n b b b n b b n , 因为0,0>>>a b n ,所以()()0-<+b a n b b n ,所以a n ab n b+<+, 所以b b m a n a a a m b n b ++<<<++。
必修1 第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算3.1 交集与并集3.2 全集与补集第二章函数§1 生活中的变量关系§2 对函数的进一步认识2.1 函数概念2.2 函数的表示法2.3 映射§3 函数的单调性§4 二次函数性质的再研究4.1 二次函数的图像4.2 二次函数的性质§5 简单的幂函数课题学习个人所得税的计算第三章指数函数和对数函数§1 正整数指数函数§2 指数扩充及其运算性质2.1 指数概念的扩充2.2 指数运算的性质§3指数函数3.1 指数函数的概念3.2 指数函数和的图像和性质3.3 指数函数的图像和性质§4 对数4.1 对数及其运算4.2 换底公式§5 对数函数5.1 对数函数的概念5.2 y=log2x的图像和性质5.3 对数函数的图像和性质§6 指数函数、幂函数、对数函数增长的比较第四章函数应用§1 函数与方程1.1 利用函数性质判定方程解的存在1.2 利用二分法求方程的近似解§2 实际问题的函数建模2.1 实际问题的函数刻画2.2 用函数模型解决实际问题2.3 函数建模案例必修2第一章立体几何初步§1 简单几何体 1.1 简单旋转体1.2 简单多面体§2 直观图§3 三视图3.1 简单组合体的三视图3.2 由三视图还原成实物图§4 空间图形的基本关系与公理4.1 空间图形基本关系的认识4.2 空间图形的公理§5 平行关系5.1 平型关系的判定5.2 平行关系的性质§6 垂直关系6.1 垂直关系的判定6.2 垂直关系的性质§7 简单几何体的面积和体积7.1 简单几何体的侧面积7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积课题学习正方体截面的形状第二章解析几何初步§1 直线与直线的方程1.1 直线的倾斜角和斜率1.2 直线的方程1.3 两条直线的位置关系1.4 两条直线的交点1.5 平面直角坐标系中的距离公式§2 圆与圆的方程2.1 圆的标准方程2.2 圆的一般方程2.3 直线与圆、圆与圆的位置关系§3 空间直角坐标系3.1 空间直角坐标系的建立3.2 空间直角坐标系中点的坐标3.3 空间两点间的距离公式必修3第一章统计§1 从普查到抽样§2 抽样方法2.1 简单随机抽样2.2 分层抽样与系统抽样§3 统计图表§4 数据的数字特征4.1 平均数、中位数、众数、极差、方差4.2 标准差§5 用样本估计总体5.1 估计总体的分布5.2 估计总体的数字特征§6 统计活动:结婚年龄的变化§7 相关性§8 最小二乘估计第二章算法初步§1 算法的基本思想 1.1 算法案例分析1.2 排序问题与算法的多样性§2 算法框图的基本结构及设计2.1 顺序结构与选择结构2.2变量与赋值2.3 循环结构§3 几种基本语句3.1 条件语句3.2 循环语句第三章概率§1 随机事件的概率 1.1 频率与概率1.2 生活中的概率§2 古典概型2.1 古典概型的特征和概率计算公式2.2 建立概率模型2.3 互斥事件§3 模拟方法—概率的应用必修4第一章三角函数§1 周期现象§2 角的概念的推广§3 弧度制§4 正弦函数和余弦函数的定义与诱导公式4.1 任意角的正弦函数、余弦函数的定义4.2 单位圆与周期性4.3 单位圆与诱导公式§5 正弦函数的性质与图像5.1 从单位圆看正弦函数的性质5.2 正弦函数的图像5.3正弦函数的性质§6 余弦函数的性质与图像6.1正弦函数的图像6.2 正弦函数的性质§7 正切函数7.1 正切函数的定义7.2 正切函数的图像与性质7.2 正切函数的诱导公式§8 函数y=Asin 的图像§9 三角函数的简单应用第二章平面向量§1 从位移、速度、力到向量1.1 位移、速度、和力1.2 向量的概念§2 从位移的合成到向量的加法2.1 向量的加法2.2 向量的减法§3 从速度的倍数到数乘向量3.1 数乘向量3.2 平面向量基本定理§4 平面向量的坐标 4.1 平面向量的坐标表示4.2 平面向量线性运算的坐标表示4.3 向量平行的坐标表示§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例7.1 点到直线的距离公式7.2 向量的应用举例第三章三角恒等变形§1 同角三角函数的基本关系§2 两角和与差的三角函数2.1 两角差的余弦函数2.2 两角和与差的正弦、余弦函数2.3 两角和与差的正切函数§3 二倍角的三角函数必修5第一章数列§1 数列1.1 数列的概念1.2 数列的函数特征§2 等差数列2.1 等差数列2.2 等差数列的前n项和§3 等比数列3.1 等比数列3.2 等比数列的前n项和§4 数列在日常经济生活中的应用第二章解三角形§1 正弦定理与余弦定理1.1 正弦定理 1.2 余弦定理§2 三角形中的几何计算§3 解三角形的实际应用举例第三章不等式§1 不等关系1.1 不等关系1.2 比较大小§2 一元二次不等式2.1 一元二次不等式的解法2.2 一元二次不等式的应用§3 基本不等式3.1 基本不等式3.2 基本不等式与最大(小)值§4 简单线性规划4.1 二元一次不等式(组)与平面区域4.2 简单线性规划4.3 简单线性规划的应用选修1-1第一章常用逻辑用语§1 命题§2 充分条件与必要条件2.1 充分条件2.2 必要条件2.3 充要条件§3 全称量词与存在量词3.1 全称量词与全称命题3.2 存在量词与特称命题3.3 全。
1.1.1 不等式的基本性质A 级 基础巩固一、选择题1.已知m ,n ∈R ,则1m >1n成立的一个充要条件是() A .m >0>n B .n >m >0C .m <n <0D .mn (m -n )<0 解析:1m >1n ⇔1m -1n >0⇔n -m mn>0⇔mn (n -m )>0⇔mn (m -n )<0. 答案:D2.已知a ,b ,c ,d 为实数,且c >d ,则“a >b ”是“a -c >b -d ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由⎩⎪⎨⎪⎧a -c >b -d ,c >d ⇒a >b ; 而当a =c =2,b =d =1时,满足⎩⎪⎨⎪⎧a >b ,c >d ,但a -c >b -d 不成立,所以“a >b ”是“a -c >b -d ”的必要不充分条件.答案:B3.已知实数a ,b ,c 满足c <b <a 且ac <0,那么下列选项中一定成立的是()A .ab >acB .c (b -a )<0C .ab 2>cb 2D .a (a -c )<0解析:由题意,知a >0,c <0,b 的符号不确定.不等式两端同乘以一个正数,不等号的方向不改变.答案:A4.设a ,b 为正实数,则“a <b ”是“a -1a <b -1b”成立的() A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件解析:若a <b 且a >0,b >0,则1a >1b ⇒-1a <-1b , 所以a -1a <b -1b. 若a -1a <b -1b, 且a >0,b >0⇒a 2b -b <ab 2-a ⇒a 2b -ab 2-b +a <0,ab (a -b )+(a -b )<0⇒(a -b )(ab +1)<0⇒a -b <0⇒a <b .答案:C5.已知x ,y ∈R ,且x >y >0,则()A.1x -1y >0 B .sin x -sin y >0 C.⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫12y <0 D .ln x +ln y >0 解析:函数y =⎝ ⎛⎭⎪⎫12x 在(0,+∞)上为减函数,所以当x >y >0时,⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫12y ,即⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫12y <0,故C 正确;函数y =1x 在(0,+∞)上为减函数,所以由x >y >0⇒1x <1y ⇒1x -1y <0,故A 错误;函数y =sin x 在(0,+∞)上不单调,当x >y >0时,不能比较sin x 与sin y 的大小,故B 错误;x >y >0xy >1 ln(xy )>0 ln x +ln y >0,故D 错误. 答案:C二、填空题6.已知0<a <1,则a ,1a,a 2的大小关系是________. 解析:因为a -1a =(a +1)(a -1)a<0, 所以a <1a. 又因为a -a 2=a (1-a )>0,所以a >a 2,所以a 2<a <1a. 答案:a 2<a <1a7.若1<a <3,-4<b <2,那么a -|b |的取值X 围是______.解析:因为-4<b <2,所以0≤|b |<4,所以-4<-|b |≤0.又1<a <3,所以-3<a -|b |<3.答案:(-3,3)8.设a >0,b >0,则b 2a +a 2b与a +b 的大小关系是________. 解析:b 2a +a 2b -(a +b )=(a +b )(a 2-ab +b 2)ab -(a +b )=(a +b )(a -b )2ab .因为a >0,b >0,所以a +b >0,ab >0,(a -b )2≥0.所以b 2a +a 2b ≥a +b .答案:b 2a +a 2b ≥a +b三、解答题9.已知1≤a +b ≤5,-1≤a -b ≤3,求3a -2b 的取值X 围.解:设3a -2b =x (a +b )+y (a -b ),则3a -2b =(x +y )a +(x -y )b .从而⎩⎪⎨⎪⎧x +y =3,x -y =-2,解得⎩⎪⎨⎪⎧x =12,y =52.所以3a -2b =12(a +b )+52(a -b ).因为1≤a +b ≤5,-1≤a -b ≤3,所以12≤12(a +b )≤52,-52≤52(a -b )≤152,所以-2≤3a -2b ≤10.10.已知a >b >0,比较a b 与a +1b +1的大小.解:a b -a +1b +1=a (b +1)-b (a +1)b (b +1)=a -bb (b +1).因为a >b >0,所以a -b >0,b (b +1)>0.所以a -bb (b +1)>0.所以a b >a +1b +1.B 级 能力提升1.(2016·全国卷Ⅰ)若a >b >1,0<c <1,则()A .a c <b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c解析:法一 由0<c <1知y =x c 在(1,+∞)上单调递增,故由a >b >1知a c >b c ,A 错;因为0<c <1,所以-1<-c <0,所以y =xc -1在x ∈(0,+∞)上是减函数,所以b c -1>a c -1,又ab >0,所以ab ·b c -1>ab ·a c -1,即ab c>ba c ,B 错; 易知y =log c x 是减函数,所以0>log c b >log c a ,所以log b c <log a c ,D 错; 由log b c <log a c <0,得-log b c >-log a c >0,又a >b >1>0,所以-a log b c >-b log a c >0,所以a log b c <b log a c ,故C 正确.法二 依题意,不妨取a =10,b =2,c =12.易验证A 、B 、D 均是错误的,只有C 正确. 答案:C2.若a ,b ∈R ,且a >b ,下列不等式:①b a >b -1a -1;②(a +b )2>(b +1)2;③(a -1)2>(b -1)2. 其中不成立的是________.解析:①b a -b -1a -1=ab -b -ab +a a (a -1)=a -b a (a -1). 因为a -b >0,a (a -1)的符号不确定,①不成立;②取a =2,b =-2,则(a +b )2=0,(b +1)2=1,②不成立;③取a =2,b =-2,则(a -1)2=1,(b -1)2=9,③不成立.答案:①②③3.已知c a >d b,bc >ad ,求证:ab >0. 证明:⎩⎪⎨⎪⎧c a >d b ,bc >ad ⇒⎩⎪⎨⎪⎧c a -d b >0, ①bc -ad >0. ②又bc >ad ,则bc -ad >0.由②得bc -ad >0.故ab >0.。
一、选择题1.若a 、b 、R c ∈,且a b >,则下列不等式中一定成立的是( )A .11a b<B .ac bc ≥C .20c a b>-D .()20a b c -≥2.若112a b <<<,01c <<,则下列不等式不成立...的是( ) A .log log a b c c < B .log log b a a c b c < C .c c ab ba <D .c c a b <3.若a 、b 、c ,d ∈R ,则下面四个命题中,正确的命题是( )A .若a >b ,c >b ,则a >cB .若a >-b ,则c -a <c +bC .若a >b ,则ac 2>bc 2D .若a >b ,c >d ,则ac >bd4.已知01a <<,01c b <<<,下列不等式成立的是( ) A .b c b a c a>++ B .c c a b b a+>+ C .log log b c a a < D .b c a a >5.已知1a >,实数,x y 满足x y a a >,则下列不等式一定成立的是( ) A .11x y x y+>+ B .()()22ln 1ln 1x y +>+C .sin sin x y >D .33x y >6.已知a b R ∈,,且a b >,则下列不等式中恒成立的是( ) A .22a b >B .()lg a b 0->C .a b 22--<D .a 1b> 7.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是( ) A .a +c >b -cB .(a -b )c 2>0C .a 3>b 3D .a 2>b 28.若0a b <<,则下列各式一定..成立的是( ) A .a c b c +>+B .22a b <C .ac bc >D .11a b> 9.若a b >,则下列不等式成立的是( ) A .22a b >B .11a b< C .a b >D .a b e e >10.给出以下四个命题:( ) ①若a>b ,则 11a b<; ②若ac 2>bc 2,则a>b ; ③若a>|b|,则a>b ;④若a>b ,则a 2>b 2.其中正确的是( ) A .②④B .②③C .①②D .①③11.若0a b >>,则( )A .11a b>B .22log log a b <C .22a b <D .1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭12.如果a b >,那么下列不等式一定成立的是( ) A .a b >B .33a b >C .11a b< D .22a b <二、填空题13.设()23f x x x =-+-,若不等式121()a a f x a+--≥对任意实数0a ≠恒成立,则x 取值集合是_______.14.关于x 的不等式22a x x ->-在[]0,2上恒成立,则a 的取值范围是__________. 15.若关于x 的不等式215x a x x -+-≥-在R 上恒成立,则实数a 的取值范围为________.16.若存在实数x ,使得12-++<x x a 成立,则实数a 的取值范围为______. 17.已知不等式222xy ax y +,对任意[1,2],[4,5]x y ∈∈恒成立,则实数a 的取值范围是__________.18.若1a 2-<<,21b -<<,则-a b 的取值范围是 .19.某学习小组,调查鲜花市场价格得知,购买2支玫瑰与1支康乃馨所需费用之和大于8元,而购买4支玫瑰与5支康乃馨所需费用之和小于22元.设购买2支玫瑰花所需费用为A 元,购买3支康乃馨所需费用为B 元,则A 、B 的大小关系是______________ 20.若存在实数a 使得44max cos 3,cos 710cos 3cos 3c c a a a a ⎧⎫++++≥⎨⎬++⎩⎭成立,则实数c 的取值范围是_____.三、解答题21.已知()211f x x x =-++.(1)画出函数()f x 的图象; (2)求不等式()()1f x f x <-的解集. 22.已知函数()f x x x m =-. (1)若3m =,解不等式()2f x >;(2)若0m >,且()f x 在[]0,2上的最大值为3,求正实数m 的值. 23.选修4-5:不等式选讲已知函数()121f x x x =--+的最大值为k . (1)求k 的值;(2)若,,a b c ∈R , 2222a cb k ++=,求()b ac +的最大值.24.当,p q 都为正数且1p q +=时,试比较代数式2()px qy +与22+px qy 的大小. 25.已知函数()12f x x a x a=-++. (1)当1a =时,求不等式()4f x >的解集;(2)若不等式()222f x m m ≥-+对任意实数x 及a 恒成立,求实数m 的取值范围.26.已知函数()|21|||2g x x x =-+++. (1)解不等式()0g x ≤;(2)若存在实数x ,使得()||g x x a ≥--,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用不等式的性质证明,或者构造反例说明,即得解. 【详解】由题意可知,a 、b 、R c ∈,且a b > A .若1,2a b ==-,满足a b >,则11a b>,故本选项不正确; B .若1,2a b =-=-,满足,1a b c >=-,则ac bc <,故本选项不正确; C . 若0c,则20c a b=-,故本选项不成立;D .22,0,()0a b c a b c >≥∴-≥ 故选:D 【点睛】本题考查了利用不等式的性质,判断代数式的大小,考查了学生综合分析,转化与划归的能力,属于基础题.2.B解析:B 【分析】根据幂函数和对数函数的图象和性质,结合不等式的基本性质,对各选项逐一判断即可. 【详解】 对于A :当112a b <<<,01c <<,由对数函数的单调性知,0log log a b c c <<,故A 正确; 对于B :当112a b <<<,01c <<,设函数log c y x =为减函数,则log log 0c c a b >>,所以log log 0b a c c >>,因112a b <<<,则log b a c 与log a b c 无法比较大小,故B 不正确; 对于C :当112a b <<<,01c <<,则10c -<,由指数函数的单调性知,11c c b a --<,将不等式11c c b a --<两边同乘ab ,得c c ab ba <,故C 正确;对于D :当112a b <<<,01c <<,由不等式的基本性质知,c c a b <,故D 正确. 故选: B 【点睛】本题考查了幂函数和对数函数的图象和性质,不等式的基本性质,属于基础题.3.B解析:B 【分析】对于A ,C ,D 举反例即可判断,对于B ,根据不等式的性质即可判断. 【详解】解:对于A ,例如1a =,0b =,2c =,则不满足,故A 错误, 对于B ,若a b >-,则a b -<,则c a c b -<+,成立,故B 正确, 对于C ,若0c ,则不成立,故C 错误,对于D ,例如1a =,0b =,2c =-,3D =-,则不满足,故D 错误,故选:B . 【点睛】本题主要考查了不等式的性质的简单应用,要注意不等式应用条件的判断,属于基础题.4.A解析:A 【分析】由作差法可判断出A 、B 选项中不等式的正误;由对数换底公式以及对数函数的单调性可判断出C 选项中不等式的正误;利用指数函数的单调性可判断出D 选项中不等式的正误. 【详解】对于A 选项中的不等式,()()()a b c b cb ac a a b a c --=++++,01a <<,01c b <<<, ()0a b c ∴->,0a b +>,0a c +>,b cb ac a∴>++,A 选项正确; 对于B 选项中的不等式,()()a cbc c a b b a b b a -+-=++,01a <<,01c b <<<, ()0a c b ∴-<,0a b +>,c c abb a+∴<+,B 选项错误; 对于C 选项中的不等式,01c b <<<,ln ln 0c b ∴<<,110ln ln b c∴<<, 01a <<,ln 0a ∴<,ln ln ln ln a ab c∴>,即log log b c a a >,C 选项错误; 对于D 选项中的不等式,01a <<,∴函数x y a =是递减函数,又c b <,所以c b a a >,D 选项错误.故选A. 【点睛】本题考查不等式正误的判断,常见的比较大小的方法有:(1)比较法;(2)中间值法;(3)函数单调性法;(4)不等式的性质.在比较大小时,可以结合不等式的结构选择合适的方法来比较,考查推理能力,属于中等题.5.D解析:D 【分析】根据指数函数的单调性,得到x y >,再利用不等式的性质,以及特殊值法,即可求解. 【详解】根据指数函数的单调性,由1a >且x y a a >,可得x y >,对于A 中,由111()()(1)x y x y x y x y x y xy xy-+--=--=--,此时不能确定符号,所以不正确;对于B 中,当x 1,y 2==-时,2211x y +<+,此时()()22ln 1ln 1x y +<+,所以不正确;对于C 中,例如:当2,32x y ππ==时,此时sin sin x y <,所以不正确; 对于D 中,由33222213()()()[()]024x y x y x xy y x y x y y -=-++=--+>,所以33x y >,所以是正确的.故选D . 【点睛】本题主要考查了指数函数的单调性,以及不等式的性质的应用,其中解答中合理利用特殊值法判定是解答的关键,着重考查了推理与运算能力,属于基础题.6.C解析:C 【分析】主要利用排除法求出结果. 【详解】 对于选项A :当0a b >>时,不成立;对于选项B :当10a b >>>时,()lg 0a b -<,所以不成立; 对于选项D :当0a b >>时,不成立; 故选C . 【点睛】本题考查的知识要点:不等式的基本性质的应用,排除法的应用,主要考查学生的运算能力和转化能力,属于基础题型.7.C解析:C 【解析】 【分析】由不等式性质及举反例逐个分析各个选项可判断正误。
§3 平均值不等式1.掌握定理1和定理2及其证明,并能灵活应用. 2.理解定理3和定理4及其证明,并能简单应用. 3.会用相关定理解决简单的最大(最小)值问题.1.二元均值不等式 (1)定理1:对任意实数a ,b ,有a 2+b 2≥____(此式当且仅当a =b 时取“=”号). (2)定理2:对任意两个正数a ,b ,有______≥ab (此式当且仅当a =b 时取“=”号). 我们称______为正数a 与b 的算术平均值,______为正数a 与b 的几何平均值. 定理2可叙述为:两个正数的__________不小于它们的__________.【做一做1-1】函数y =1x -3+x (x >3)的最小值是( ).A .5B .4C .3D .2【做一做1-2】“a >b >0”是“ab <a 2+b 22”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 2.三元均值不等式及其推广 (1)定理3:对任意三个正数a ,b ,c ,有a 3+b 3+c 3≥____(此式当且仅当a =b =c 时取“=”号). (2)定理4:对任意三个正数a ,b ,c ,有a +b +c3≥3abc (此式当且仅当a =b =c 时取“=”号).定理4可叙述为:三个正数的__________不小于它们的__________. (3)n 个正数的算术几何平均不等式:一般地,对n 个正数a 1,a 2,…,a n (n ≥2),我们把数值______________,__________分别称为这n 个正数的算术平均值与几何平均值,且有______________≥na 1a 2…a n ,此式当且仅当____________时取“=”号,即n 个正数的算术平均值不小于它们的__________.【做一做2】设x ,y ,z ∈R +,且x +y +z =1.求证:1x +4y +9z≥36.答案: 1.(1)2ab (2)a +b 2a +b2ab 算术平均值 几何平均值【做一做1-1】A 原式变形为y =1x -3+x -3+3. ∵x >3,∴x -3>0,∴1x -3>0. ∴y ≥2x -1x -3+3=5. 当且仅当x -3=1x -3,即x =4时等号成立. 【做一做1-2】A 当a >b >0时,a 2+b 22>2ab 2=ab 成立,当ab <a 2+b 22时,不能推出“a >b>0”,故选A .2.(1)3abc (2)算术平均值 几何平均值(3)a 1+a 2+…+a n n n a 1a 2…a n a 1+a 2+…+a nna 1=a 2=…=a n 几何平均值【做一做2】分析:本题需变式出现积为定值的情况,而条件中是和为定值x +y +z =1,所以对所证不等式的左边需变形出现积为定值的情况.证明:1x +4y +9z =x +y +z x +x +y +z y+x +y +z z=14+⎝ ⎛⎭⎪⎫y x +4x y +⎝ ⎛⎭⎪⎫z x +9x z +⎝ ⎛⎭⎪⎫4z y +9y z ≥14+4+6+12=36.当且仅当y x =4x y ,z x =9x z ,4z y =9y z ,且x +y +z =1,即x =16,y =13,z =12时取等号.对定理1和定理2的理解剖析:(1)a 2+b 2≥2ab 与a +b 2≥ab 成立的条件是不同的:前者只要求a ,b 都是实数,而后者要求a ,b 都是正数.有些同学易忽略这一点,例如:(-1)2+(-4)2≥2×(-1)×(-4)成立,而-+-2≥--不成立.(2)这两个不等式都带有等号,应从两方面理解,“当且仅当……时,取‘=’号”这句话:①当a =b 时,取等号,其意义是a =b ⇒a +b2=ab ;②仅当a =b 时,取等号,其意义是a +b2=ab ⇒a =b .综合起来,其意义是:a =b 是a +b2=ab 成立的充要条件.(3)从这两个不等式我们可以得到如下结论:a b +b a ≥2(ab >0);21a +1b≤ab ≤a +b2≤a 2+b 22(a>0,b >0).(4)式子中的a ,b 可以是数字,也可以是复杂的代数式.题型一利用平均值不等式证明不等式【例1】若x >0,y >0,x +y =1,求证:⎝⎛⎭⎪⎫1+1x ⎝⎛⎭⎪⎫1+1y ≥9.分析:本题是有条件的证明不等式问题,要巧用“x +y =1”来证明.反思:利用平均值不等式证明不等式时,要注意把握平均值不等式的结构特点,以便灵活地用于解题,另外,式子的灵活变形,进行拆项、凑项,也是常用的方法.题型二利用平均值不等式求最值【例2】设x ≥0,y ≥0,x 2+y 22=1,求x 1+y 2的最大值.分析:利用x 2+y 22=1,将式子进行变形再利用定理进行求解.反思:在解题过程中,要拼凑出和为定值,利用ab ≤a +b2(a >0,b >0)来求解最大值.。
2017-2018学年高中数学第一章不等关系与基本不等式1.4 不等式的证明(三)训练北师大版选修4-5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第一章不等关系与基本不等式1.4 不等式的证明(三)训练北师大版选修4-5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第一章不等关系与基本不等式1.4 不等式的证明(三)训练北师大版选修4-5的全部内容。
1。
4 不等式的证明(三)一、选择题1。
已知p =a +错误!,q =2-a 2+4a -2 (a >2),则( )A 。
p 〉qB.p 〈qC.p ≥qD.p ≤q 解析 ∵p =(a -2)+错误!+2,又a -2〉0,∴p ≥2+2=4,而q =2-(a -2)2+2,根据a 〉2,可得q 〈22=4,∴p 〉q 。
答案 A2。
不等式a >b 与错误!>错误!能同时成立的充要条件是( )A 。
a >b >0B.a 〉0〉bC.错误!〈错误!〈0 D 。
错误!>错误!〉0 解析 充分性显然.下面用反证法说明必要性。
若a ,b 同号且a 〉b ,则有错误!<错误!,此时不能保证a 〉b 与错误!>错误!同时成立,∴a ,b 只能异号,即a 〉0〉b 。
答案 B3.若f (x )=错误!错误!,a ,b 都为正数,A =f 错误!,G =f (错误!),H =f 错误!,则( ) A 。
A ≤G ≤HB 。
A ≤H ≤G C.G ≤H ≤AD 。
H ≤G ≤A 解析 ∵a ,b 为正数,∴a +b 2≥错误!=错误!≥错误!=错误!,又∵f (x )=错误!错误!为单调减函数,∴f 错误!≤f (错误!)≤f 错误!,∴A ≤G ≤H .答案 A4。
必考内容(必修+选修系列1,2)《数学1》(必修)全书共分四章:第一章集合;第二章函数;第三章指数函数和对数函数;第四章函数的应用全书目录:第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算阅读材料康托与集合论第二章函数§1 生活中的变量关系§2 对函数的进一步认识§3 函数的单调性§4 二次函数性质的再研究§5 简单的幂函数阅读材料函数概念的发展课题学习个人所得税的计算第三章指数函数和对数函数§1 正整数指数函数§2 指数概念的扩充§3 指数函数§4 对数§5 对数函数§6 指数函数、幂函数、对数函数增长的比较阅读材料历史上数学计算方面的三大发明第四章函数应用§1 函数与方程§2 实际问题的函数建模阅读材料函数与中学数学探究活动同种商品不同型号的价格问题《数学2》(必修)本书是根据《普通高中数学课程标准(实验)》编写的,包括两部分内容:第一部分是立体几何初步,第二部分是解析几何初步。
全书目录:第一章立体几何初步§1 简单几何体§2 三视图§3 直观图§4 空间图形的基本关系与公理§5 平行关系§6 垂直关系§7 简单几何体的面积和体积§8 面积公式和体积公式的简单应用阅读材料蜜蜂是对的课题学习正方体截面的形状第二章解析几何初步§1 直线与直线的方程§2 圆与圆的方程§3 空间直角坐标系阅读材料笛卡儿与解析几何探究活动1 打包问题探究活动2 追及问题《数学3》(必修)本书是根据《普通高中数学课程标准(实验)》编写的。
共分三章:第一章统计,第二章算法初步,第三章概率。
全书目录第一章统计§1 统计活动:随机选取数字§2 从普查到抽样§3 抽样方法§4 统计图表§5 数据的数字特征§6 用样本估计总体§7 统计活动:结婚年龄的变化§8 相关性§9 最小二乘法阅读材料统计小史课题学习调查通俗歌曲的流行趋势第二章算法初步§1 算法的基本思想§2 算法的基本结构及设计§3 排序问题§4 几种基本语句课题学习确定线段n等分点的算法第三章概率§1 随机事件的概率§2 古典概型§3模拟方法――概率的应用探究活动用模拟方法估计圆周率π的值《数学4》(必修)全书共三章:第一章三角函数;第二章平面向量;第三章三角恒等变形。
1.1 不等式的性质
一、选择题
1.若a <b <0,则下列不等式不能成立的是( ) A.
1a -b >1a
B.1a >1b
C.|a |>|b |
D.a 2
>b 2
解析 取a =-2,b =-1,则1a -b >1
a
不成立,选A. 答案 A
2.已知a >b ,则下列不等式成立的是( ) A.a 2
-b 2
≥0 B.ac >bc C.|a |>|b |
D.2a
>2b
解析 A 中,若a =-1,b =-2,则a 2
-b 2
≥0不成立;当c =0时,B 不成立;当0>a >b 时,C 不成立;由a >b 知2a >2b
成立,故选D. 答案 D
3.设{a n }是等差数列,下列结论中正确的是( ) A.若a 1+a 2>0,则a 2+a 3>0 B.若a 1+a 3<0,则a 1+a 2<0 C.若0<a 1<a 2,则a 2>a 1a 3 D.若a 1<0,则(a 2-a 1)(a 2-a 3)>0
解析 利用所给条件结合等差数列的相关知识直接判断.
设等差数列{a n }的公差为d ,若a 1+a 2>0,a 2+a 3=a 1+d +a 2+d =(a 1+a 2)+2d ,由于d 正负不确定,因而a 2+a 3符号不确定,故选项A 错;若a 1+a 3<0,a 1+a 2=a 1+a 3-d =(a 1+a 3)-d ,由于d 正负不确定,因而a 1+a 2符号不确定,故选项B 错;若0<a 1<a 2,可知
a 1>0,d >0,a 2>0,a 3>0,∴a 22-a 1a 3=(a 1+d )2-a 1(a 1+2d )=d 2
>0,∴a 2>a 1a 3,故
选项C 正确;若a 1<0,则(a 2-a 1)(a 2-a 3)=d ·(-d )=-d 2
≤0,故选项D 错. 答案 C
4.已知实数x ,y 满足a x <a y
(0<a <1),则下列关系式恒成立的是( ) A.
1x 2
+1>1
y 2+1
B.ln(x 2+1)>ln(y 2
+1) C.sin x >sin y
D.x 3
>y 3
解析 先依据指数函数的性质确定出x ,y 的大小,再逐一对选项进行判断.因为0<a <1,
a x <a y ,所以x >y .采用赋值法判断,A 中,当x =1,y =0时,12
<1,A 不成立.B 中,当x =
0,y =-1时,ln 1<ln 2,B 不成立.C 中,当x =0,y =-π时,sin x =sin y =0,C
不成立.D 中,因为函数y 3=x 3
在R 上是增函数,故选D. 答案 D
5.设a ,b ∈R ,若a -|b |>0,则下列不等式中正确的是( ) A.b -a >0 B.a 3+b 3
<0 C.a 2
-b 2
<0
D.b +a >0
解析 ∵a -|b |>0,∴a >|b |>0. ∴不论b 正或b 负均有a +b >0. 答案 D 二、填空题
6.已知60<x <84,28<y <33,则x -y 的取值范围为________,x y
的取值范围为________. 解析 x -y =x +(-y ),所以需先求出-y 的范围;
x y =x ×1y ,所以需先求出1
y
的范围. ∵28<y <33,
∴-33<-y <-28,133<1y <128
.
又60<x <84,∴27<x -y <56,6033<x y <84
28,
即2011<x y
<3. 答案 (27,56) ⎝ ⎛⎭
⎪⎫2011,3 7.已知实数a ,b ,c 满足a +b +c =0,a 2
+b 2
+c 2
=1,则a 的最大值是________. 解析 利用不等式求解.
因为a +b +c =0,所以b +c =-a . 因为a 2
+b 2
+c 2
=1,
所以-a 2
+1=b 2
+c 2
=(b +c )2
-2bc =a 2
-2bc , 所以2a 2
-1=2bc ≤b 2
+c 2
=1-a 2
, 所以3a 2≤2,所以a 2
≤23,
所以-
63≤a ≤63,所以a max =63. 答案
63
三、解答题
8.已知a ,b ∈(0,+∞)且a ≠b ,比较a 2b +b 2
a 与a +
b 的大小.
解 ∵⎝ ⎛⎭
⎪⎫a 2
b +b 2
a -(a +
b )=a 2
b -b +b 2
a -a =a 2-
b 2b +b 2-a 2a =(a 2-b 2)⎝ ⎛⎭
⎪⎫1
b -1a
=(a 2
-b 2
)(a -b )ab =(a -b )2
(a +b )ab
,
∵a ,b ∈(0,+∞)且a ≠b , ∴(a -b )2
>0,a +b >0,ab >0,
∴(a -b )2
(a +b )ab >0,∴a 2
b +b 2
a
>a +b .
9.已知a ,b ∈R ,求证:a 2+b 2
≥ab +a +b -1. 证明 (a 2
+b 2
)-(ab +a +b -1) =12
(2a 2+2b 2
-2ab -2a -2b +2) =12
[(a 2-2ab +b 2)+(a 2-2a +1)+(b 2
-2b +1)] =12
[(a -b )2+(a -1)2+(b -1)2
]≥0, ∴a 2
+b 2≥ab +a +b -1.
10.已知α,β满足⎩
⎪⎨⎪⎧-1≤α+β≤1, ①
1≤α+2β≤3 ②
试求α+3β的取值范围.
解 设α+3β=λ(α+β)+v (α+2β) =(λ+v )α+(λ+2v )β.
比较α、β的系数,得⎩
⎪⎨⎪⎧λ+v =1,
λ+2v =3,
从而解出λ=-1,v =2.
分别由①、②得-1≤-α-β≤1,2≤2α+4β≤6, 两式相加,得1≤α+3β≤7.。