高二数学数系的扩充与复数的概念1
- 格式:pdf
- 大小:1.23 MB
- 文档页数:11
《数系的扩充和复数的概念》教案及说明教学目标:1.了解数系的扩充,并能够理解自然数、整数、有理数、无理数、实数和复数之间的关系。
2.掌握复数的定义、运算规则和表示方法。
3.能够应用复数解决实际问题。
教学重点:1.数系的扩充和复数的定义。
2.复数的运算规则和表示方法。
教学难点:1.理解数系的扩充对于数学的意义。
2.掌握复数的运算规则和应用技巧。
教学内容:一、数系的扩充1.自然数:正整数,用于计数。
2.整数:包括正整数、负整数和0。
3.有理数:可表示为两个整数之比的数。
4.无理数:不可表示为两个整数之比的数。
5.实数:包括有理数和无理数。
6. 复数:形如a+bi的数,其中a和b为实数,i为虚数单位。
二、复数的定义和表示1. 复数的定义:形如a+bi的数称为复数,其中a为实部,b为虚部,i为虚数单位。
2.复数的表示:复数可以用平面直角坐标系中的点表示,a为横坐标,b为纵坐标。
3.复数的运算:复数的加减乘除法规则同实数运算,注意i的平方为-1三、复数的应用1.解方程:复数可以解决一些实数无解的方程。
2.代数表达式:复数可以简化代数表达式,并且在求根过程中十分有用。
3.物理问题:在电路、波动等问题中,复数有着广泛的应用。
教学步骤:一、引入复数的概念2.解释为什么需要引入复数。
3.引导学生构建复数概念。
二、复数的定义和表示1.讲解复数的定义和表示方法。
2.给出几个例子,让学生练习表示复数。
3.带领学生画出复数在平面直角坐标系中的位置。
三、复数的运算1.讲解复数的加减乘除法规则。
2.演示如何计算复数的运算。
3.给出一些练习题,让学生巩固运算技巧。
四、复数的应用1.解方程:举例说明复数如何解决一些实数无解的方程。
2.代数表达式:展示复数简化代数表达式的过程。
3.物理问题:讲解复数在物理问题中的应用实例。
五、综合练习和实践1.设计一些综合性的练习题,包括复数的定义、表示和运算。
2.提供一些实际问题,让学生尝试用复数解决。
1.1数系的扩充和复数的概念一等奖创新教学设计7.1.1数系的扩充和复数的概念人教版A版必修第二册一、教学目标1.了解引进虚数单位i的必要性,了解数系的扩充过程;2.理解复数的概念、表示法及相关概念;3.掌握复数的分类及复数相等的充要条件.二、教学重难点1.教学重点:复数的概念理解;2.教学难点:复数相等的理解和虚数、纯虚数的判断.三、教法讲练结合,小组合作四、教学过程(一)引入课前展示一段数系的扩充的视频问题:数系为什么会一次一次的被扩充?数系的每一次扩充都是为了满足社会生产实践的需要另一方面,数集的每次扩充都是为了解决数学内部的矛盾。
负数的发现___ +1=0有根啦!无理数的发现___ 有根啦!到此,数系扩充的脚步就停止了吗?【设计意图】从社会发展的角度回顾数系的扩充过程,一方面让学生感悟数学与生活息息相关,另一方面以图文的形式进行有利于调动学生学习的积极性.(二)新知探究【问题1】问题:求下列方程的解(1)(2)(3)?核心问题:需引进一个新数,使类方程有解,并将数系进一步扩充。
→→→【师生互动】教师提出问题1,学生回答,接着教师引出需要扩充数系,然后引入欧拉和高斯.【设计意图】在复习了前面数系扩充的基础上继续引出“负数不能开方”的方程问题,启发学生利用前有经验对数系进行进一步扩充,培养学生的逻辑推理能力和抽象概括能力.(三)复数概念把引进的新数加到实数集中,我们希望数和实数之间仍然能像实数那样进行加法和乘法运算,并希望加法和乘法都满足交换律、结合律,以及乘法对加法满足分配律. 那么实数系经过扩充后,得到的新数系由哪些数组成?依此设想①把实数b与相乘,结果记作b②把实数a与b相加,结果记作a+b所有实数以及都可写成a+b (a,b∈R)的形式,从而这些数都在扩充后的新数集中,我们把形如a+b (a,b∈R)的数叫做复数.1. 复数的概念形如a+b (a,b∈R)的数叫做复数. 叫做虚数单位.全体复数所构成的集合C={a+b |a,b∈R}叫做复数集.2. 复数的代数形式复数通常用字母z表示,即z=a+b (a,b∈R)a叫做复数的实部b 叫做复数的虚部注意:复数z的实部和虚部都是实数.练习:把下列式子化为a+b(a,b∈R)的形式,并分别指出它们的实部和虚部。
数系的扩充与复数的引入1.复数的有关概念 (1)复数的概念:形如a +b i(a ,b ∈R )的数叫做复数,其中a ,b 分别是它的实部和虚部。
若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数。
(2)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R )。
(3)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R )。
(4)复平面:建立直角坐标系来表示复数的平面,叫做复平面。
x 轴叫做实轴,y 轴叫做虚轴。
实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数。
(5)复数的模:向量OZ →的模r 叫做复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|,即|z |=|a +b i|=a 2+b 2。
2.复数的几何意义 (1)复数z =a +b i――→一一对应复平面内的点Z (a ,b )(a ,b ∈R )。
(2)复数z =a +b i ――→一一对应平面向量OZ →(a ,b ∈R )。
3.复数的运算(1)复数的加、减、乘、除运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R )则: ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i 。
②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i 。
③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i 。
④除法:z 1z 2=a +b i c +d i =(ac +bd )+(bc -ad )i c 2+d 2(c +d i ≠0)。
(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3)。
数系的扩充和复数的概念教学目标重点:复数的概念,虚数单位i ,复数的分类(实数、虚数、纯虚数)和复数相等。
复数在现代科学技术中以及在数学学科中的地位和作用.难点:虚数单位i 的引进以及对复数概念的理解.知识点:了解引进复数的必要性;理解并掌握复数的有关概念(复数集、代数形式、实部、虚部、实数、虚数、纯虚数、复数相等);理解虚数单位i 及i 与实数的运算规律能力点:探寻复数的形成过程,体会引入虚数单位i 和复数形式的合理性,以及等价转化思想、方程思想、分类讨论数学思想的运用。
教育点:通过问题情境,体会实际需求与数学内部矛盾在数系扩充过程中的作用,经历由实数系扩充到复数系的研究过程,感受人类理性思维的作用以及数与现实世界的联系.自主探究点:如何运用实数与虚数单位i 的加、乘运算得到复数代数形式及探索复数相等的充要条件. 考试点:用复数的基本概念解决简单的数学问题。
易错易混点:对复数代数形式的认识,及复数分类的把握。
拓展点:如何利用复数代数形式解题,理解复数的几何意义.一、 引入新课求下列方程的解:(1)24x = 2(2)40x -= (3)310x -= 2(4)20x -= 2(5)10x +=.学生分析各题的解:(1)2x =;(2)22x x ==-或;1(3)3x =;(4)22x x ==-或;(5)实数集内无解. 通过以上五题解的探讨,学生会发现方程(5)在实数集中遇到了无解现象.如何使方程(5)有解呢?类比引进2,就可以解决方程220x -=在有理数中无解的问题,就有必要扩充数集,今天我们来与大家一起学习“数系的扩充”。
【设计意图】通过类比,易引发学生的学习兴趣.使学生了解扩充数系要从引入新数开始,引出本课题.二、探究新知1.复习已学过的数系问题1:数,是数学中的基本概念。
到目前为止,我们学习了哪些数集?用符号如何表示?它们之间有怎样的包含关系?用图示法可以如何表示?答:自然数集、整数集、有理数集、实数集,符号分别表示为N ,Z ,Q ,R ; 其中它们之间的关系式:N Z Q R ; 用文氏图表示N ,Z ,Q ,R 的关系【设计意图】数集及其之间关系的回顾,特别是“图示法”的直观表示,旨在帮助学生对“数系的扩充”有个初步感受.我们将一个数集连同相应的运算及结构叫做一个数系。
数系的扩充与复数的概念》教案教案:数系的扩充与复数的概念一、教学目标:1.理解数系的扩充是为了解决方程$x^2=a$(a<0)而引入复数的概念;2.掌握复数的定义与基本运算;3.了解复数在平面直角坐标系中的表示方式;4.掌握解一元二次方程及其应用。
二、教学重难点:1.复数的定义与基本运算;2.复数在平面直角坐标系中的表示;3.解一元二次方程及其应用。
三、教学过程:Step 1: 引入教师在黑板上写下方程$x^2=-1$,并询问学生这个方程有没有实数解。
引导学生思考并让他们发表自己的观点。
Step 2: 数系的扩充1.教师讲解当a<0时,方程$x^2=a$没有实数解的情况。
为了解决这个问题,数学家们引入了复数的概念,即数系从实数扩充为复数。
2.教师简要介绍复数的历史背景和意义,以增加学生对复数概念的兴趣。
Step 3: 复数的定义与表示1. 教师引导学生理解复数的定义:复数表示为 a + bi,其中 a 和b 都是实数,i 是虚数单位,满足 $i^2 = -1$。
2. 通过例子引导学生掌握复数的表示方式,如 2 + 3i、-5i、$\sqrt{2} + \sqrt{3}i$。
Step 4: 复数的基本运算1.教师简要介绍复数的基本运算法则:加法、减法、乘法和除法。
2.通过例子分别演示复数的加减乘除运算,并指导学生进行练习。
Step 5: 复数的图示表示1. 教师引导学生理解复数在平面直角坐标系中的表示方法。
将实部和虚部分别看作是复平面上的横坐标和纵坐标,复数 a + bi 对应复平面上的一个点。
2.通过例子和练习让学生熟悉复数在复平面上的图示表示。
Step 6: 一元二次方程的解及其应用1. 教师复习一下一元二次方程的一般形式:$ax^2 + bx + c = 0$,其中 a、b 和 c 都是实数,且 $a \neq 0$。
2.教师讲解如何用复数解一元二次方程,通过例题引导学生理解。
四、课堂练习与讨论五、作业布置1.练习册上的相关习题;2.解一些一元二次方程。
第五章复数(讲义+典型例题)一.数系的扩充和复数的概念1.复数的定义:设i 为方程21x =-的根,i 称为虚数单位,形如()a bi a b R +∈、的数,称为复数.所有复数构成的集合称复数集,通常用C 来表示.a 为实部,b 为虚部2.复数集整 数有 理 数实数(0)分 数复 数(,)无理数(无限不循环小数)纯 虚 数(0)虚 数(0)非 纯 虚 数(0)b a bi a b R a b a ⎧⎧⎧⎪⎪⎨=⎨⎪⎩⎪⎪+∈⎨⎩⎪⎧≠⎪≠⎨⎪=⎩⎩例1(1).(2021·浙江·绍兴市柯桥区教师发展中心模拟预测)已知a ∈R ,若复数2i z a a a =++(i 是虚数单位)是纯虚数,则=a ( )A .0B .1C .1-D .2(2).(2021·全国·模拟预测)设i 是虚数单位,则下列是虚数的是( ) A .fB .gC .hD .i举一反三(1).(2021·广东佛山·模拟预测)在复数范围内方程230x +=的解为( ) A .3i -B 3iC .3i ±D .3(2).(2021·福建泉州·一模)已知i 是虚数单位,则“i a =”是“21a =-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件二.复数的几何意义1. 复平面在直角坐标系里,点z 的横坐标是a ,纵坐标是b ,复数i z a b =+可用点(,)Z a b 来表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴为实轴,y 轴出去原点的部分称为虚轴.2.复数的坐标表示 点(,)Z a b3.复数的向量表示 向量OZ .4.复数的模在复平面内,复数i z a b =+对应点(,)Z a b ,点Z 到原点的距离OZ 叫做复数z 的模,记作z .由定义知,22z a b =+.例2(1).(2021·四川自贡·一模(理))复数(3)i z a a =+-(a ∈R ,i 为虚数单位),在复平面内所对应的点在2y x =上,则||z =( ) A .3B .5C .7D .10(2).(2021·全国·模拟预测)已知i 是虚数单位,复数3i2iz -=+的共轭复数在复平面中对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限举一反三(1).(山东省大教育联盟学校2021-2022学年高三下学期收心考试(开学考试)数学试题)已知a ∈R ,若在复平面内复数185i z =+与24i z a =+对应的两点之间的距离为4,则=a ( ). A .4B .5C .6D .81(2).(2022·河南濮阳·高三开学考试(理))已知复数z 满足34i z z =+,则=z ( ) A .1B 5C 10D .5复数bia z +=复平面 内的点 Z (a,b )平面向量OZ(3).(2022·上海市崇明区横沙中学高一期末)若复数(2)(2)i,(R)z m m m =++-∈在复平面上对应的点在第四象限,则m 的取值范围是__.(4).(2022·江西上饶·高二期末(文))已知复数()()226832i z m m m m =-++-+,其中i 是虚数单位,m 为实数.(1)当复数z 为纯虚数时,求m 的值;(2)当复数i z ⋅在复平面内对应的点位于第三象限时,求m 的取值范围.三. 两个复数相等的定义:a bi c di a c +=+⇔=且b d =(其中a b c d R ∈,,,,)特别地,00a bi a b +=⇔==.例3(2022·浙江·模拟预测)设2,1i i a R a a ∈+=+(i 为虚数单位),则a =( ) A .-1B .0C .1D .1或-1举一反三(1).(2021江苏无锡·模拟预测)已知,x y R ∈,且32x i yi +=+,则,x y 的值分别为( ) A .21,3B .3,1C .2,13D .1,3(2)(2021·河南·模拟预测(文))已知a 、R b ∈,()()()12i 131i a a b -+=-+-,则( )A .2b a =-B .2b a =C .2a b =-D .2a b =四.共轭复数若两个复数的实部相等,而虚部是互为相反数时,这两个复数叫互为共轭复数;特别地,虚部不为0的两个共轭复数也叫做共轭虚数;【注:两个共轭复数之差是纯虚数.(×)[之差可能为零,此时两个复数是相等的]】若z=a+bi ,则z a bi =+的共轭复数记作z a bi =-;例4.(2019·全国·高考真题(理))设z =-3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限举一反三(1).(2021·浙江·模拟预测)复数1i +(i 为虚数单位)的共轭复数在复平面中对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限(2).(2021·黑龙江·哈九中模拟预测(理))满足条件34z i i -=+的复数z 的共轭复数在复平面上对应的点所在象限是( ) A .一B .二C .三D .四五.复数的加减运算 设111z a b i =+,222z a b i =+(1)加法:()()121212z z a a b b i +=+++,即实部与实部相加,虚部与虚部相加;几何意义: 设1i z a b =+对应向量1(,)OZ a b =,2i z c d =+对应向量2(,)OZ c d =,则12z z +对应的向量为12(,)OZ OZ a c b d +=++.因此复数的和可以在复平面上用平行四边形法则解释.例5(2020·上海普陀·三模)在复平面内,点()2,1A -对应的复数z ,则1z +=___________举一反三(1).(2022·全国·高一课时练习)已知复数1234i,34i z z =+=-,则12z z +等于( ) A .8i B .6 C .68i + D .68i -(2).(2022·全国·高一)如图所示,已知复数111i z a b =+,()2221122i ,,,z a b a b a b R =+∈所对应的向量()11,OA a b =,()22,OB a b =,它们的和为向量OC .请根据两个向量相加的运算写出对应的复数运算过程.(2)减法:()()121212z z a a b b i -=-+-,即实部与实部相减,虚部与虚部相减;几何意义: 设1i z a b =+对应向量1(,)OZ a b =,2i z c d =+对应向量2(,)OZ c d =,则12z z -对应的向量为1221(,)OZ OZ Z Z a c b d -==--.2212()()i ()()z z a c b d a c b d -=-+-=-+-表示1Z 、2Z 两点之间的距离,也等于向量12Z Z 的模.例6(1)(2021·全国·高考真题(理))设()()2346z z z z i ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -(2)(2022·四川省高县中学校模拟预测(文))在复平面内,O 为原点,四边形OABC 是复平面内的平行四边形,且A ,B ,C 三点对应的复数分别为z 1,z 2,z 3,若131,2i ==-+z z ,则z 2=( ) A .1+iB .1-iC .-1+iD .-1-i举一反三(1).(2022·河南·模拟预测(理))已知3225i z z -=-,则z =( ) A .2i - B .2i + C .2i --D .2i -+(2).(2021·山东章丘·模拟预测)复数z 1,z 2满足z 1∈R ,2121,2z i z z =+-z 1=( ) A .1B .2C .0或2D .1或2六、复数的乘除运算 设111z a b i =+,222z a b i =+(1)乘法:()()1212122112z z a a b b a b a b i ⋅=-++ , 特别22z z a b ⋅=+;例7(1).(2021·全国·高考真题)已知2i z =-,则()i z z +=( ) A .62i -B .42i -C .62i +D .42i +(2).(2019·北京·高考真题(理))已知复数z =2+i ,则z z ⋅= A 3B 5C .3D .5举一反三(1).(2022·浙江·模拟预测)复数()i 2i z =-(i 为虚数单位)的共扼复数在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限(2).(2022·山西临汾·一模(理))已知a ,R b ∈,i 是虚数单位.若i 3i a b +=-,则()2i b a -( ) A .106i +B .86i -+C .96i -D .86i -(3).(2022·四川攀枝花·二模(理))若复数()()2i 1i z b b R =+∈的实部与虚部相等,则b 的值为( ) A .2-B .1-C .1D .2(2)除法c diz a bi+=+(,a b 是均不为0的实数)的化简就是通过分母实数化的方法将分母化为实数,即分子分母同时乘以分母的共轭复数,然后再化简:()()22ac bd ad bc ic di c di a bi z a bi a bi a bi a b++-++-==⋅=++-+; (3四则运算的交换率、结合率;分配率都适合于复数的情况。