新人教版高中数学必修第二册 第7章 复数 7.1.1 数系的扩充和复数的概念
- 格式:ppt
- 大小:3.73 MB
- 文档页数:30
7.1复数的概念7.1.1数系的扩充和复数的概念考点学习目标核心素养复数的有关概念了解数系的扩充过程,理解复数的概念数学抽象复数的分类理解复数的分类数学抽象复数相等掌握复数相等的充要条件及其应用数学运算问题导学预习教材P68-P70的内容,思考以下问题:1.复数是如何定义的?其表示方法又是什么?2.复数分为哪两大类?3.复数相等的条件是什么?1.复数的有关概念(1)复数的定义形如a+b i(a,b∈R)的数叫做复数,其中i叫做虚数单位,满足i2=-1.(2)复数集全体复数所构成的集合C={a+b i|a,b∈R}叫做复数集.(3)复数的表示方法复数通常用字母z表示,即z=a+b i(a,b∈R),其中a叫做复数z的实部,b叫做复数z的虚部.■名师点拨对复数概念的三点说明(1)复数集是最大的数集,任何一个数都可以写成a+b i(a,b∈R)的形式,其中0=0+0i.(2)复数的虚部是实数b而非b i.(3)复数z =a +b i 只有在a ,b ∈R 时才是复数的代数形式,否则不是代数形式. 2.复数相等的充要条件在复数集C ={a +b i|a ,b ∈R }中任取两个数a +b i ,c +d i(a ,b ,c ,d ∈R ),我们规定:a +b i 与c +d i 相等当且仅当a =c 且b =d .3.复数的分类(1)复数z =a +b i(a ,b ∈R )⎩⎪⎨⎪⎧实数(b =0),虚数(b ≠0)⎩⎪⎨⎪⎧纯虚数a =0,非纯虚数a ≠0W. (2)复数集、实数集、虚数集、纯虚数集之间的关系■名师点拨复数b i(b ∈R )不一定是纯虚数,只有当b ≠0时,复数b i(b ∈R )才是纯虚数.判断(正确的打“√”,错误的打“×”) (1)若a ,b 为实数,则z =a +b i 为虚数.( ) (2)复数z 1=3i ,z 2=2i ,则z 1>z 2.( ) (3)复数z =b i 是纯虚数.( )(4)实数集与复数集的交集是实数集.( ) 答案:(1)× (2)× (3)× (4)√若z =a +(a 2-1)i(a ∈R ,i 为虚数单位)为实数,则a 的值为( ) A .0 B .1 C .-1 D .1或-1 答案:D以3i -2的虚部为实部,以-3+2i 的实部为虚部的复数是( ) A .3-3i B .3+i C .-2+2i D.2+2i 答案:A若(x -2y )i =2x +1+3i ,则实数x ,y 的值分别为________. 答案:-12 -74复数的概念下列命题:①若a∈R,则(a+1)i是纯虚数;②若a,b∈R,且a>b,则a+i>b+i;③若(x2-4)+(x2+3x+2)i是纯虚数,则实数x=±2;④实数集是复数集的真子集.其中正确的命题是()A.①B.②C.③D.④【解析】对于复数a+b i(a,b∈R),当a=0且b≠0时,为纯虚数.对于①,若a=-1,则(a+1)i不是纯虚数,即①错误;两个虚数不能比较大小,则②错误;对于③,若x =-2,则x2-4=0,x2+3x+2=0,此时(x2-4)+(x2+3x+2)i=0不是纯虚数,则③错误;显然,④正确.故选D.【答案】 D判断与复数有关的命题是否正确的方法(1)举反例:判断一个命题为假命题,只要举一个反例即可,所以解答这种类型的题时,可按照“先特殊,后一般,先否定,后肯定”的方法进行解答.(2)化代数形式:对于复数实部、虚部的确定,不但要把复数化为a+b i的形式,更要注意这里a,b均为实数时,才能确定复数的实部、虚部.[提醒]解答复数概念题,一定要紧扣复数的定义,牢记i的性质.对于复数a+b i(a,b∈R),下列说法正确的是()A.若a=0,则a+b i为纯虚数B.若a+(b-1)i=3-2i,则a=3,b=-2C.若b=0,则a+b i为实数D.i的平方等于1解析:选C.对于A,当a=0时,a+b i也可能为实数;对于B,若a+(b-1)i=3-2i,则a=3,b=-1;对于D,i的平方为-1.故选C.复数的分类当实数m 为何值时,复数z =m 2+m -6m+(m 2-2m )i :(1)为实数?(2)为虚数?(3)为纯虚数?【解】 (1)当⎩⎪⎨⎪⎧m 2-2m =0,m ≠0,即m =2时,复数z 是实数.(2)当m 2-2m ≠0且m ≠0,即m ≠0且m ≠2时,复数z 是虚数.(3)当⎩⎨⎧m ≠0,m 2+m -6m=0,m 2-2m ≠0,即m =-3时,复数z 是纯虚数.解决复数分类问题的方法与步骤(1)化标准式:解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部.(2)定条件:复数的分类问题可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)即可.(3)下结论:设所给复数为z =a +b i(a ,b ∈R ), ①z 为实数⇔b =0; ②z 为虚数⇔b ≠0;③z 为纯虚数⇔a =0且b ≠0.1.若复数a 2-a -2+(|a -1|-1)i(a ∈R )不是纯虚数,则( ) A .a =-1 B .a ≠-1且a ≠2 C .a ≠-1D .a ≠2解析:选C.复数a 2-a -2+(|a -1|-1)i(a ∈R )不是纯虚数,则有a 2-a -2≠0或|a -1|-1=0,解得a ≠-1.故选C.2.当实数m 为何值时,复数lg(m 2-2m -7)+(m 2+5m +6)i 是: (1)纯虚数;(2)实数.解:(1)复数lg(m 2-2m -7)+(m 2+5m +6)i 是纯虚数,则⎩⎪⎨⎪⎧m 2-2m -7=1m 2+5m +6≠0,解得m =4.(2)复数lg(m 2-2m -7)+(m 2+5m +6)i 是实数,则⎩⎪⎨⎪⎧m 2-2m -7>0,m 2+5m +6=0,解得m =-2或m=-3.复数相等(1)(2019·浙江杭州期末考试)若z 1=-3-4i ,z 2=(n 2-3m -1)+(n 2-m -6)i(m ,n ∈R ),且z 1=z 2,则m +n =( )A .4或0B .-4或0C .2或0D .-2或0(2)若log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,则实数x 的值是________.【解析】 (1)由z 1=z 2,得n 2-3m -1=-3且n 2-m -6=-4,解得m =2,n =±2,所以m +n =4或0,故选A.(2)因为log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,所以⎩⎪⎨⎪⎧log 2(x 2-3x -2)>1,log 2(x 2+2x +1)=0,即⎩⎪⎨⎪⎧x 2-3x -2>2,x 2+2x +1=1,解得x =-2.【答案】 (1)A (2)-2复数相等的充要条件复数相等的充要条件是“化虚为实”的主要依据,多用来求解参数.解决复数相等问题的步骤是:分别分离出两个复数的实部和虚部,利用实部与实部相等、虚部与虚部相等列方程(组)求解.[注意] 在两个复数相等的充要条件中,注意前提条件是a ,b ,c ,d ∈R ,即当a ,b ,c ,d ∈R 时,a +b i =c +d i ⇔a =c 且b =d .若忽略前提条件,则结论不能成立.已知A ={1,2,a 2-3a -1+(a 2-5a -6)i},B ={-1,3},A ∩B ={3},求实数a 的值.解:由题意知,a 2-3a -1+(a 2-5a -6)i =3(a ∈R ),所以⎩⎪⎨⎪⎧a 2-3a -1=3,a 2-5a -6=0,即⎩⎪⎨⎪⎧a =4或a =-1,a =6或a =-1,所以a =- 1.1.若复数z =a i 2-b i(a ,b ∈R )是纯虚数,则一定有( ) A .b =0 B .a =0且b ≠0 C .a =0或b =0D .ab ≠0解析:选B.z =a i 2-b i =-a -b i ,由纯虚数的定义可得a =0且b ≠0. 2.若复数z =m 2-1+(m 2-m -2)i 为实数,则实数m 的值为( ) A .-1 B .2 C .1D .-1或2解析:选D.因为复数z =m 2-1+(m 2-m -2)i 为实数, 所以m 2-m -2=0,解得m =-1或m =2.3.若复数z =(m +1)+(m 2-9)i <0,则实数m 的值等于____________.解析:因为z <0,所以⎩⎪⎨⎪⎧m 2-9=0,m +1<0,解得m =-3.答案:-34.已知x 2-x -6x +1=(x 2-2x -3)i(x ∈R ),则x =________.解析:因为x ∈R ,所以x 2-x -6x +1∈R ,由复数相等的条件得⎩⎪⎨⎪⎧x 2-x -6x +1=0,x 2-2x -3=0,x +1≠0,解得x =3. 答案:3[A基础达标]1.以-3+i的虚部为实部,以3i+i2的实部为虚部的复数是()A.1-i B.1+iC.-3+3i D.3+3i解析:选A.-3+i的虚部为1,3i+i2=-1+3i的实部为-1,故所求复数为1-i.2.在复平面内,复数z=(a2-2a)+(a2-a-2)i是纯虚数,则()A.a=0或a=2 B.a=0C.a≠1且a≠2 D.a≠1或a≠2解析:选B.因为复数z=(a2-2a)+(a2-a-2)i是纯虚数,所以a2-2a=0且a2-a-2≠0,所以a=0.3.若x i-i2=y+2i,x,y∈R,则复数x+y i=()A.-2+i B.2+iC.1-2i D.1+2i解析:选B.由i2=-1,得x i-i2=1+x i,则由题意得1+x i=y+2i,根据复数相等的充要条件得x=2,y=1,故x+y i=2+i.4.复数z=a2-b2+(a+|a|)i(a,b∈R)为实数的充要条件是()A.|a|=|b| B.a<0且a=-bC.a>0且a≠b D.a≤0解析:选D.复数z为实数的充要条件是a+|a|=0,即|a|=-a,得a≤0,故选D.5.下列命题:①若z=a+b i,则仅当a=0且b≠0时,z为纯虚数;②若z21+z22=0,则z1=z2=0;③若实数a与a i对应,则实数集与纯虚数集可建立一一对应关系.其中正确命题的个数是()A.0 B.1C.2 D.3解析:选A.在①中未对z=a+b i中a,b的取值加以限制,故①错误;在②中将虚数的平方与实数的平方等同,如若z1=1,z2=i,则z21+z22=1-1=0,但z1≠z2≠0,故②错误;在③中忽视0·i=0,故③也是错误的.故选A.6.如果x-1+y i与i-3x为相等复数,x,y为实数,则x=________,y=________.解析:由复数相等可知⎩⎪⎨⎪⎧x -1=-3x ,y =1,所以⎩⎪⎨⎪⎧x =14,y =1.答案:1417.复数z 1=(2m +7)+(m 2-2)i ,z 2=(m 2-8)+(4m +3)i ,m ∈R ,若z 1=z 2,则m =________. 解析:因为m ∈R ,z 1=z 2,所以(2m +7)+(m 2-2)i =(m 2-8)+(4m +3)i.由复数相等的充要条件得⎩⎪⎨⎪⎧2m +7=m 2-8,m 2-2=4m +3,解得m =5. 答案:58.设z =log 2(1+m )+ilog 12(3-m )(m ∈R )是虚数,则m 的取值范围是________.解析:因为z 为虚数,所以log 12(3-m )≠0,故⎩⎪⎨⎪⎧1+m >0,3-m ≠1,3-m >0,解得-1<m <3且m ≠2. 答案:(-1,2)∪(2,3)9.已知复数z =(m 2+5m +6)+(m 2-2m -15)i(m ∈R ). (1)若复数z 是实数,求实数m 的值; (2)若复数z 是虚数,求实数m 的取值范围; (3)若复数z 是纯虚数,求实数m 的值; (4)若复数z 是0,求实数m 的值.解:(1)当m 2-2m -15=0时,复数z 为实数, 所以m =5或-3.(2)当m 2-2m -15≠0时,复数z 为虚数. 所以m ≠5且m ≠-3.所以实数m 的取值范围为{m |m ≠5且m ≠-3}.(3)当⎩⎪⎨⎪⎧m 2-2m -15≠0,m 2+5m +6=0时,复数z 是纯虚数,所以m =-2.(4)当⎩⎪⎨⎪⎧m 2-2m -15=0,m 2+5m +6=0时,复数z 是0,所以m =-3.10.已知关于x ,y 的方程组⎩⎪⎨⎪⎧⎝⎛⎭⎫x +32+2(y +1)i =y +4x i ,(2x +ay )-(4x -y +b )i =9-8i有实数解,求实数a ,b 的值. 解:设(x 0,y 0)是方程组的实数解,由已知及复数相等的条件,得⎩⎪⎨⎪⎧x 0+32=y 0 ①,2(y 0+1)=4x 0②,2x 0+ay 0=9 ③,-(4x 0-y 0+b )=-8④,由①②得⎩⎪⎨⎪⎧x 0=52,y 0=4,代入③④得⎩⎪⎨⎪⎧a =1,b =2.所以实数a ,b 的值分别为1,2.[B 能力提升]11.“复数4-a 2+(1-a +a 2)i(a ∈R )是纯虚数”是“a =-2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B.因为1-a +a 2=⎝⎛⎭⎫a -122+34>0,所以若复数4-a 2+(1-a +a 2)i(a ∈R )是纯虚数,则4-a 2=0,即a =±2;当a =-2时,4-a 2+(1-a +a 2)i =7i 为纯虚数,故选B.12.满足方程x 2-2x -3+(9y 2-6y +1)i =0的实数对(x ,y )表示的点的个数为________.解析:由题意知⎩⎪⎨⎪⎧x 2-2x -3=0,9y 2-6y +1=0,解得⎩⎪⎨⎪⎧x =3,y =13或⎩⎪⎨⎪⎧x =-1,y =13.所以实数对(x ,y )表示的点有⎝⎛⎭⎫3,13,⎝⎛⎭⎫-1,13,共有2个. 答案:213.已知复数z =m 2+3m +1+(m 2+5m +6)i<0(m ∈R ),则m 的值为________. 解析:因为z <0,所以z ∈R ,所以m 2+5m +6=0, 解得m =-2或m =-3.当m =-3时,z =1>0,不符合题意,舍去; 当m =-2时,z =-1<0,符合题意. 故m 的值为-2. 答案:-214.已知集合M ={(a +3)+(b 2-1)i ,8},集合N ={3i ,(a 2-1)+(b +2)i},且M ∩N M ,M ∩N ≠∅,求整数a ,b 的值.解:若M ∩N ={3i},则(a +3)+(b 2-1)i =3i ,即a +3=0且b 2-1=3,得a =-3,b =±2.当a =-3,b =-2时,M ={3i ,8},N ={3i ,8},M ∩N =M ,不合题意,舍去; 当a =-3,b =2时,M ={3i ,8},N ={3i ,8+4i}.符合题意. 所以a =-3,b =2.若M ∩N ={8},则8=(a 2-1)+(b +2)i , 即a 2-1=8且b +2=0,得a =±3,b =-2. 当a =-3,b =-2时,不合题意,舍去;当a =3,b =-2时,M ={6+3i ,8},N ={3i ,8},符合题意. 所以a =3,b =-2.若M ∩N ={(a +3)+(b 2-1)i}={(a 2-1)+(b +2)i},则⎩⎪⎨⎪⎧a +3=a 2-1,b 2-1=b +2,即⎩⎪⎨⎪⎧a 2-a -4=0,b 2-b -3=0,此方程组无整数解. 综上可得a =-3,b =2或a =3,b =-2.[C 拓展探究]15.已知复数z 1=-a 2+2a +a i ,z 2=2xy +(x -y )i ,其中a ,x ,y ∈R ,且z 1=z 2,求3x +y 的取值范围.解:由复数相等的充要条件,得⎩⎪⎨⎪⎧-a 2+2a =2xy a =x -y,消去a ,得x 2+y 2-2x +2y =0,即(x -1)2+(y +1)2=2.法一:令t =3x +y ,则y =-3x +t .分析知圆心(1,-1)到直线3x +y -t =0的距离d =|2-t |10≤2, 解得2-25≤t ≤2+25,即3x +y 的取值范围是[2-25,2+25].法二:令⎩⎪⎨⎪⎧x -1=2cos α,y +1=2sin α, 得⎩⎪⎨⎪⎧x =2cos α+1,y =2sin α-1.(α∈R ) 所以3x +y =2sin α+32cos α+2=25sin(α+φ)+2(其中tan φ=3),于是3x +y 的取值范围是[2-25,2+2 5 ].。
人教版高中数学必修二《第七章 复数》课后作业《7.1.1 数系的扩充和复数的概念》课后作业基础巩固1.复数2i -的虚部为( ) A .2B .1C .-1D .-i2.适合2()x i x y i -=+的实数x ,y 的值为( ) A .0x =,2y = B .0x =,2y =- C .2x =,2y =D .2x =,0y =3.设i 是虚数单位,如果复数()()17a a i ++-+的实部与虚部相等,那么实数a 的值为( )A .4B .3C .2D .14.若2(1)z a a i =+-,a R ∈(i 为虚数单位)为实数,则a 的值为( ) A .0B .1C .1-D .1或1-5.下列命题中,正确命题的个数是( )①若x ,y ∈C ,则x +yi =1+i 的充要条件是x =y =1; ②若a ,b ∈R 且a >b ,则a +i >b +i ; ③若x 2+y 2=0,则x =y =0. A .0 B .1 C .2 D .36.以复数3i 3-的实部为虚部的复数是________. 7.若x 是实数,y 是纯虚数,且()212i x y -+=,则x ,y 的值为______. 8.(1)已知21(2)0x y y i -++-=,其中i 为虚数单位,求实数x ,y 的值; (2)已知()(1)(23)(21)x y y i x y y i ++-=+++,其中i 为虚数单位,求实数x 、y 的值.能力提升9.若复数()234sin 12cos z i θθ=-++为纯虚数,()0,θπ∈,则θ=( )A .6π B .3π C .23π D .3π或23π 10.若不等式()2222i 9i m m m m m---<+成立,则实数m 的值为______. 11.已知复数()()2123i z m m m m =-++-,当实数m 取什么值时,(1)复数z 是零; (2)复数z 是实数; (3)复数z 是纯虚数.素养达成12.已知复数()2227656 ()1a a z a a i a R a -+=+--∈-,实数a 取什么值时,z 是:①实数?②虚数?③纯虚数?《7.1.1 数系的扩充和复数的概念》课后作业答案解析基础巩固1.复数2i -的虚部为( ) A .2 B .1C .-1D .-i【答案】C【解析】复数2i -的虚部为-1,故选C .2.适合2()x i x y i -=+的实数x ,y 的值为( ) A .0x =,2y = B .0x =,2y =- C .2x =,2y = D .2x =,0y =【答案】B【解析】由题意得:02x x y =⎧⎨+=-⎩,解得:02x y =⎧⎨=-⎩故选:B3.设i 是虚数单位,如果复数()()17a a i ++-+的实部与虚部相等,那么实数a 的值为( )A .4B .3C .2D .1【答案】B【解析】由题意得17,3a a a +=-=,选B.4.若2(1)z a a i =+-,a R ∈(i 为虚数单位)为实数,则a 的值为( )A .0B .1C .1-D .1或1-【答案】D【解析】若()21z a a i =+-,a R ∈(i 为虚数单位)为实数,则210, 1.a a -=∴=±本题选择D 选项.5.下列命题中,正确命题的个数是( ) ①若,,则的充要条件是;②若,且,则;③若,则.A .B .C .D . 【答案】A【解析】对①,由于x ,y ∈C ,所以x ,y 不一定是x +yi 的实部和虚部,故①是假命题;对②,由于两个虚数不能比较大小,故②是假命题;③是假命题,如12+i 2=0,但1≠0,i≠0.6.以复数32i 32i -的实部为虚部的复数是________. 【答案】33i -. 【解析】32i -的虚部为3,32i -的实部为3- ∴所求复数为33i -故答案为:33i -7.若x 是实数,y 是纯虚数,且()212i x y -+=,则x ,y 的值为______.【答案】12x =,2i y = 【解析】由()212i x y -+=,得210,2i ,x y -=⎧⎨=⎩解得12x =,2i y =.故答案为:12x =,2i y =. 8.(1)已知21(2)0x y y i -++-=,其中i 为虚数单位,求实数x ,y 的值; (2)已知()(1)(23)(21)x y y i x y y i ++-=+++,其中i 为虚数单位,求实数x 、y 的值.【答案】(1)122x y ⎧=⎪⎨⎪=⎩;(2)42x y =⎧⎨=-⎩ 【解析】(1)()2120x y y i -++-= 21020x y y -+=⎧∴⎨-=⎩,解得:122x y ⎧=⎪⎨⎪=⎩(2)由()()()()12321x y y i x y y i ++-=+++得:23121x y x y y y +=+⎧⎨-=+⎩,解得:42x y =⎧⎨=-⎩能力提升9.若复数()234sin 12cos z i θθ=-++为纯虚数,()0,θπ∈,则θ=( )A .6πB .3π C .23π D .3π或23π 【答案】B【解析】若复数()23412z sin cos i θθ=-++为纯虚数,则:234sin 012cos 0θθ⎧-=⎨+≠⎩,即:23sin 41cos 2θθ⎧=⎪⎪⎨⎪≠-⎪⎩, 结合()0,θπ∈,可知:sin 21cos 2θθ⎧=⎪⎪⎨⎪=⎪⎩,故3πθ=.10.若不等式()2222i 9i m m m m m---<+成立,则实数m 的值为______. 【答案】2【解析】依题意可得2220209m m m m m ⎧-=⎪-⎪=⎨⎪<⎪⎩,即0? 22033m m m m =⎧⎪=≠⎨⎪-<<⎩或且,解得2m =.故答案为:2. 11.已知复数()()2123i z m m m m =-++-,当实数m 取什么值时,(1)复数z 是零; (2)复数z 是实数; (3)复数z 是纯虚数.【答案】(1)1m =(2)1m =或3m =-(3)0m = 【解析】(1)若复数z 是零,则()210230m m m m ⎧-=⎨+-=⎩,解得1m =,即当1m =时,复数z 是零.(2)若复数z 是实数,则2230m m +-=,解得1m =或3m =-, 即当1m =或3m =-时,复数z 是实数. (3)若复数z 是纯虚数,则()210230m m m m ⎧-=⎨+-≠⎩,解得0m =,即当0m =时,复数z 是纯虚数.素养达成12.已知复数()2227656 ()1a a z a a i a R a -+=+--∈-,实数a 取什么值时,z 是:①实数?②虚数?③纯虚数?【答案】①6a =;②1a ≠±且6a ≠;③无解.【解析】()2227656 ()1a a z a a i a R a -+=+--∈- ①若复数z 是实数,则22560,10,a a a ⎧--=⎨-≠⎩即16,1,a a a =-=⎧⎨≠±⎩或即6a =.②若复数z 是虚数,则22560,10,a a a ⎧--≠⎨-≠⎩即16,1,a a a ≠-≠⎧⎨≠±⎩且即1a ≠±且6a ≠.③若复数z 是纯虚数,则222560,760,10,a a a a a ⎧--≠⎪-+=⎨⎪-≠⎩即16161a a a a a ≠-≠⎧⎪==⎨⎪≠±⎩且,且,,此时无解.《7.1.2 复数的几何意义》课后作业基础巩固1.在复平面内,复数-2+3i 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限2.设O 是原点,向量OA →,OB →对应的复数分别为2-3i ,-3+2i ,那么向量BA →对应的复数是( )A .-5+5iB .-5-5iC .5+5iD .5-5i3.如果z 是34i +的共轭复数,则z 对应的向量OA 的模是( ) A .1BCD .54.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B ,若C 为线段AB 的中点,则点C 对应的复数是( )A .4+8iB .8+2iC .2+4iD .4+i5.已知0<a <2,复数z =a +i(i 是虚数单位),则|z |的取值范围是( ) A .(1,3) B .(1,5) C .(1,3)D .(1,5)6.已知复数z 1=a +i ,z 2=2-i ,且|z 1|=|z 2|,则实数a =________.7.复数3-5i,1-i 和-2+a i 在复平面上对应的点在同一条直线上,则实数a 的值为________.8.若复数z =(m 2+m -2)+(4m 2-8m +3)i(m ∈R)的共轭复数z 对应的点在第一象限,求实数m 的集合.能力提升9.已知复数z 的模为2,则|z -i|的最大值为( ) A .1 B .2 C. 5D .310.若复数z =(m 2-9)+(m 2+2m -3)i 是纯虚数,其中m ∈R ,则|z |=________. 11.已知复数z 1=3+i ,z 2=-12+32i.(1)求|z 1|及|z 2|并比较大小;(2)设z ∈C ,满足条件|z 2|≤|z |≤|z 1|的点Z 的轨迹是什么图形?素养达成12.设复数z =log 2(m 2-3m -3)+ilog 2(m -2),m ∈R 对应的向量为OZ →. (1)若OZ →的终点Z 在虚轴上,求实数m 的值及|OZ →|; (2)若OZ →的终点Z 在第二象限内,求m 的取值范围.《7.1.2 复数的几何意义》课后作业答案解析基础巩固1.在复平面内,复数-2+3i 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B【解析】复数-2+3i 在复平面内对应的点为(-2,3),故复数-2+3i 对应的点位于第二象限.2.设O 是原点,向量OA →,OB →对应的复数分别为2-3i ,-3+2i ,那么向量BA →对应的复数是( )A .-5+5iB .-5-5iC .5+5iD .5-5i【答案】D【解析】 由复数的几何意义,得OA →=(2,-3),OB →=(-3,2),BA →=OA →-OB →=(2,-3)-(-3,2)=(5,-5).所以BA →对应的复数是5-5i.3.如果z 是34i +的共轭复数,则z 对应的向量OA 的模是( )A .1BCD .5【答案】D【解析】由题意,34z i =-,∴z 对应的向量OA 的坐标为()3,4-5=.故选:D .4.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B ,若C 为线段AB 的中点,则点C 对应的复数是( )A .4+8iB .8+2iC .2+4iD .4+i【答案】C【解析】 复数6+5i 对应的点为A (6,5),复数-2+3i 对应的点为B (-2,3).利用中点坐标公式得线段AB 的中点C (2,4),故点C 对应的复数为2+4i.5.已知0<a <2,复数z =a +i(i 是虚数单位),则|z |的取值范围是( ) A .(1,3) B .(1,5) C .(1,3) D .(1,5)【答案】B【解析】 |z |=a 2+1,∵0<a <2,∴1<a 2+1<5,∴|z |∈(1,5). 6.已知复数z 1=a +i ,z 2=2-i ,且|z 1|=|z 2|,则实数a =________. 【答案】±2【解析】依题意,a 2+1=4+1,∴a =±2.7.复数3-5i,1-i 和-2+a i 在复平面上对应的点在同一条直线上,则实数a 的值为________.【答案】5【解析】由点(3,-5),(1,-1),(-2,a )共线可知a =5.8.若复数z =(m 2+m -2)+(4m 2-8m +3)i(m ∈R)的共轭复数z 对应的点在第一象限,求实数m 的集合.【答案】m 的集合为⎩⎨⎧m ⎪⎪⎪⎭⎬⎫1<m <32.【解析】由题意得z =(m 2+m -2)-(4m 2-8m +3)i ,z 对应的点位于第一象限,所以有⎩⎪⎨⎪⎧m 2+m -2>0,-(4m 2-8m +3)>0,所以⎩⎪⎨⎪⎧m 2+m -2>0,4m 2-8m +3<0,所以⎩⎪⎨⎪⎧m <-2或m >1,12<m <32,即1<m <32,故所求m 的集合为⎩⎨⎧m ⎪⎪⎪⎭⎬⎫1<m <32.能力提升9.已知复数z 的模为2,则|z -i|的最大值为( ) A .1 B .2 C. 5 D .3【答案】D【解析】 ∵|z |=2,∴复数z 对应的轨迹是以原点为圆心,2为半径的圆,而|z -i|表示圆上一点到点(0,1)的距离,∴|z -i|的最大值为圆上点(0,-2)到点(0,1)的距离,易知此距离为3,故选D.10.若复数z =(m 2-9)+(m 2+2m -3)i 是纯虚数,其中m ∈R ,则|z |=________. 【答案】12【解析】由条件知⎩⎪⎨⎪⎧m 2+2m -3≠0,m 2-9=0,∴m =3,∴z =12i ,∴|z |=12.11.已知复数z 1=3+i ,z 2=-12+32i.(1)求|z 1|及|z 2|并比较大小;(2)设z ∈C ,满足条件|z 2|≤|z |≤|z 1|的点Z 的轨迹是什么图形? 【答案】(1)|z 1|>|z 2|. (2)见解析 【解析】(1)|z 1|= (3)2+12=2,|z 2|=⎝ ⎛⎭⎪⎫-122+322=1,∴|z 1|>|z 2|. (2)由|z 2|≤|z |≤|z 1|及(1)知1≤|z |≤2.因为|z |的几何意义就是复数z 对应的点到原点的距离,所以|z |≥1表示|z |=1所表示的圆外部所有点组成的集合,|z |≤2表示|z |=2所表示的圆内部所有点组成的集合,故符合题设条件点的集合是以O 为圆心,以1和2为半径的两圆之间的圆环(包含圆周),如图所示.素养达成12.设复数z =log 2(m 2-3m -3)+ilog 2(m -2),m ∈R 对应的向量为OZ →. (1)若OZ →的终点Z 在虚轴上,求实数m 的值及|OZ →|; (2)若OZ →的终点Z 在第二象限内,求m 的取值范围.【答案】(1)m =4,|OZ →|=1. (2)m ∈⎝ ⎛⎭⎪⎫3+212,4.【解析】(1)log 2(m 2-3m -3)=0,所以m 2-3m -3=1. 所以m =4或m =-1;因为⎩⎪⎨⎪⎧m 2-3m -3>0,m -2>0,所以m =4,此时z =i ,OZ →=(0,1),|OZ →|=1.(2)⎩⎪⎨⎪⎧log 2(m 2-3m -3)<0,log 2(m -2)>0,m 2-3m -3>0,m -2>0,所以m ∈⎝ ⎛⎭⎪⎫3+212,4.《7.2.1 复数的加、减法运算及其几何意义》课后作业基础巩固1.计算(3)(2)i i +-+的结果为( ) A .52i +B .i -C .1D .1- i2.若5634z i i +-=+,则复数z 的值为( ) A .210i -+B .15i -+C .410i -+D .110i -+3.34i z =-,则复数()1i z z -+-在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限4.在平行四边形ABCD 中,对角线AC 与BD 相交于点O,若向量OA ,OB 对应的复数分别是3+i,-1+3i,则CD 对应的复数是 ( )A .2+4iB .-2+4iC .-4+2iD .4-2i5.已知i 为虚数单位,实数x ,y 满足1z y xi =+,2z yi x =-,且122z z -=,则xy 的值是( )A .1B .2C .2-D .1-6.复平面内122,3z i z i =+=-两个复数122,3z i z i =+=-对应的两点之间的距离为_______.7.复数65i +与34i -+分别表示向量OA 与OB ,则表示向量BA 的复数为_________. 8.已知i 为虚数单位,计算: (1)(12)(34)(56)i i i ++--+;(2)5[(34)(13)]i i i -+--+; (3)()(23)3(,)a bi a bi i a b R +---∈.能力提升9.设f(z)=|z|,z 1=3+4i,z 2=-2-i,则f(z 1-z 2)= ( )A B .CD .10.已知复数12z ai =+,()2z a i a R =+∈,且复数12z z -在复平面内对应的点位于第二象限,则a 的取值范围是________.11.如图所示,平行四边形OABC ,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:(1) ,AO BC 所表示的复数; (2)对角线CA 所表示的复数; (3)B 点对应的复数.素养达成12.已知平行四边形OABC 的三个顶点O A C ,,对应的复数为032i -24i ++,,. (1)求点B 所对应的复数0z ;(2)若01z z -=,求复数z 所对应的点的轨迹.《7.2.1 复数的加、减法运算及其几何意义》课后作业答案解析基础巩固1.计算(3)(2)i i +-+的结果为( ) A .52i + B .i -C .1D .1- i【答案】C【解析】由题得()()32i i +-+=3+i-2-i=1.故选C 2.若5634z i i +-=+,则复数z 的值为( ) A .210i -+ B .15i -+C .410i -+D .110i -+【答案】A【解析】∵5634z i i +-=+,∴()3456210z i i i =+--=-+,故选:A 3.34i z =-,则复数()1i z z -+-在复平面内对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C 【解析】34i z =-,5z ∴=,∴()1i 34i 51i 15i z z -+-=--+-=--,∴复数()1i z z -+-在复平面内对应的点为()1,5--,在第三象限.故选:C.4.在平行四边形ABCD 中,对角线AC 与BD 相交于点O,若向量OA ,OB 对应的复数分别是3+i,-1+3i,则CD 对应的复数是 ( )A .2+4iB .-2+4iC .-4+2iD .4-2i【答案】D【解析】 由题意可得,在平行四边形中CD BA OA OB ==-, 则(3)(13)42i i i +--+=-,所以CD 对应的复数为42i -,故选D .5.已知i 为虚数单位,实数x ,y 满足1z y xi =+,2z yi x =-,且122z z -=,则xy 的值是( )A .1B .2C .2-D .1-【答案】A【解析】12()()i 2z z y x x y -=++-=,即2,0,x y x y +=⎧⎨-=⎩1x y ∴==,1xy ∴=.故选:A6.复平面内122,3z i z i =+=-两个复数122,3z i z i =+=-对应的两点之间的距离为_______.【解析】21|12|d z z i =-=-==7.复数65i +与34i -+分别表示向量OA 与OB ,则表示向量BA 的复数为_________. 【答案】9i + 【解析】BA OA OB =-,所以,表示向量BA 的复数为()()65349i i i +--+=+.故答案为:9i +.8.已知i 为虚数单位,计算: (1)(12)(34)(56)i i i ++--+; (2)5[(34)(13)]i i i -+--+; (3)()(23)3(,)a bi a bi i a b R +---∈.【答案】(1)18i --;(2)44i -+;(3)(43)a b i -+-【解析】(1)(12)(34)(56)(42i)(56)18i i i i i ++--+=--+=--. (2)5[(34)(13)]5(4)44i i i i i i -+--+=-+=-+.(3)()(23)3(2)[(3)3](43)a bi a bi i a a b b i a b i +---=-+---=-+-能力提升9.设f(z)=|z|,z 1=3+4i,z 2=-2-i,则f(z 1-z 2)= ( )A B .C D .【答案】D【解析】 由题意得1255z z i -=+,所以12()(55)55f z z f i i -=+=+==故选D .10.已知复数12z ai =+,()2z a i a R =+∈,且复数12z z -在复平面内对应的点位于第二象限,则a 的取值范围是________.【答案】(2,)+∞【解析】由题得12z z -=(2-a )+(a-1)i ,因为复数12z z -在复平面内对应的点位于第二象限,所以20,210a a a -<⎧∴>⎨->⎩.故答案为(2,)+∞ 11.如图所示,平行四边形OABC ,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:(1) ,AO BC 所表示的复数; (2)对角线CA 所表示的复数; (3)B 点对应的复数.【答案】(1) -3-2i (2) 5-2i (3) 1+6i【解析】(1) AO OA =-,所以AO 所表示的复数为-3-2i . 因为BC AO =,所以BC 所表示的复数为-3-2i .(2) CA OA OC =-,所以CA 所表示的复数为(3+2i )-(-2+4i )=5-2i . (3) OB OA OC =+,所以OB 所表示的复数为(3+2i )+(-2+4i )=1+6i , 即B 点对应的复数为1+6i .素养达成12.已知平行四边形OABC 的三个顶点O A C ,,对应的复数为032i -24i ++,,. (1)求点B 所对应的复数0z ;(2)若01z z -=,求复数z 所对应的点的轨迹.【答案】(1)016z i =+;(2)复数z 对应点的轨迹为以1,6B ()为圆心,1为半径的圆【解析】(1)由已知得(3,2),(2,4)OA OC ==-, ∴(1,6)OB OA OC =+=, ∴点B 对应的复数016z i =+. (2)设复数z 所对应的点Z , ∵01z z -=,∴点Z 到点()1,6B 的距离为1,∴复数z 所对应的点Z 的轨迹为以()1,6B 为圆心,1为半径的圆, 且其方程为()()22161x y -+-=.《7.2.2 复数的乘除运算》课后作业基础巩固1.已知复数z =2+i ,则z z ⋅=( )AB C .3D .52.设复数z 满足(1+i)z =2i ,则|z |=( )A .12B .2C D .23.若复数12az i i=+-(i 为虚数单位,a R ∈)的实部与虚部互为相反数,则a =( ) A .53-B .13- C .1- D .5-4.在复平面内,复数11i-的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5.若为a 实数,且2i3i 1ia +=++,则a =( ) A .4-B .3-C .3D .46.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是_____. 7.设复数z 满足(23)64z i i -=+(其中i 为虚数单位),则z 的模为______. 8.计算:(1)(4)(62)(7)(43)i i i i -+--+; (2)32322323i ii i+-+-+; (3)(2)(1)(1)(1)i i i i i--+-+.能力提升9.设i 是虚数单位,复数1a ii-+为纯虚数,则实数a 的值为( ) A .1 B .1- C .12D .2-10.在复平面内,复数z 与52i-对应的点关于实轴对称,则z =______.11.在复数范围内解下列一元二次方程: (1)290x +=;(2)210x x -+=.素养达成12.古代以六十年为一个甲子用十天干和十二地支相配六十年轮一遍,周而复始。
第七章复数7.1.1 数系的扩充和复数的概念一、教学目标1. 了解数系的扩展过程以及虚数单位i的引入;2.理解复数的基本概念、表示法及相关概念(复数集、代数形式、虚数、纯虚数、实部、虚部);3.掌握复数的分类及复数相等的充要条件;4.通过对数系的扩充和复数的概念的学习,培养学生数学抽象、数学运算、直观想象等数学素养。
二、教学重难点1.对虚数单位i的规定以及复数的有关概念;2.虚数单位i的引入以及复数概念的理解。
三、教学过程:1、创设情境:(阅读)数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N随着生产和科学的发展,数的概念也得到发展为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q.显然N Q.如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z,则有Z Q、N Z.如果把整数看作分母为1的分数,那么有理数集实际上就是分数集有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R.因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R以后,数集是否完整?问题1.对于实系数一元二次方程,在实数集中我们无法解决.通过以上阅读我大胆地想象一下,能否再次将实数集进行扩充,使得在新的数集中,这个问题能得到圆满解决?2、建构数学1.复数的相关概念:(1).虚数单位i(两个规定)引入新数,并规定: ①;②实数可以与它进行四则运算,进行四则运算时,原有的加、乘运算律仍然成立.叫做虚数单位。