各向异性弹性体的应力和应变关系精编版
- 格式:docx
- 大小:226.74 KB
- 文档页数:7
弹性体与变形弹性体的应力与应变关系弹性体是指在外部施加力后能够发生形变,但在去除力后能够恢复原状的物质。
而变形弹性体则是指在外力作用下形变后不能完全恢复原状的物质。
弹性体与变形弹性体在受力时会出现应力与应变的关系,这种关系是研究材料力学性能的重要内容。
一、弹性体的应力与应变关系弹性体在外力作用下,发生形变。
应力是单位面积上的力,定义为单位面积上的力与面积的比值,通常用σ表示,单位为帕斯卡(Pa)。
应变是物体的相对形变,定义为单位长度的变化量与被测长度的比值,通常用ε表示,无单位。
根据弹性体的应力与应变关系,我们可以得到胡克定律,即应力与应变成正比关系。
弹性体的胡克定律可表示为:σ = E * ε其中,E表示弹性体的弹性模量,是反映弹性体变形能力大小的重要参数,单位为帕斯卡(Pa)。
弹性模量越大,代表弹性体越难形变,具有较好的弹性性能。
根据胡克定律,当外力施加于弹性体上时,应力与应变成正比,且两者之间的关系是线性的。
即在弹性极限之内,如果应力增大,应变也会相应增大;如果应力减小,应变也会相应减小。
而且,当外力去除后,弹性体会恢复到原来的形状和大小,应变会回到零。
二、变形弹性体的应力与应变关系变形弹性体与弹性体不同,其在外力作用下形变后不能完全恢复原状。
因此,其应力与应变关系也存在一定的差异。
变形弹性体的应力与应变关系可以用应力-应变曲线来描述。
在应力-应变曲线中,随着应变的逐渐增大,物体的应力并不是线性变化的,而是呈现出一定的非线性特性。
应力-应变曲线通常可以分为弹性阶段、屈服阶段、塑性阶段和断裂阶段。
在弹性阶段,应力与应变基本保持线性关系,符合胡克定律;而在屈服阶段,应力增加的同时,应变开始出现非比例增长。
当应力达到一定程度后,材料会发生塑性变形,进入塑性阶段;在断裂阶段,材料发生破裂。
变形弹性体的应力与应变关系还可以通过一些指标进行描述,如屈服强度、断裂强度、延伸率等。
这些指标是衡量材料变形能力和抗破坏能力的重要参数。
弹性力学弹性体的应力与应变关系弹性力学是一门研究固体材料在外力作用下的变形和应力分布规律的学科。
其中,弹性体是一类能够在外力作用下发生形变,但恢复力可以将其恢复到原始状态的物质。
弹性体的应力与应变关系是弹性力学中的基本概念和重要理论。
一、什么是应力与应变在力学中,应力是物体受来自外界作用的力引起的单位面积内的力的大小。
它是描述物体受力情况的物理量。
应力可分为正应力和剪应力两种,正应力作用于物体的表面上的垂直方向,而剪应力则作用于物体的表面上的切向方向。
应变是描述材料形变程度的物理量,是物体在受力下发生变形时单位长度的变化。
应变也可分为正应变和剪应变两种,正应变是物体长度在受力作用下产生的相对变化量,而剪应变则是物体形状的变化量与原始尺寸之比。
二、背景知识弹性体的应力与应变关系可以通过背景知识来理解。
弹性体的主要特性是能够在外力的作用下发生形变,但当外力消失时,它能够恢复到原来的形状和尺寸。
这是因为弹性体的分子或原子之间存在着弹性力,当外力作用结束时,弹性力将趋于平衡,使得物体恢复到原来的状态。
三、胡克定律胡克定律是描述弹性体应力与应变关系的基本定律。
根据胡克定律,当外力作用于弹性体时,弹性体内部的应力与应变成正比。
具体数学描述如下:σ = Eε其中,σ代表应力,单位为帕斯卡(Pa),E代表弹性模量,单位为帕斯卡(Pa),ε代表应变,为无单位。
胡克定律适用于弹性体在线性弹性范围内,即应力与应变成正比,并且比例系数恒定。
此时的应力-应变关系为线性关系,称为胡克定律。
超出线性弹性范围后,材料会发生塑性变形。
四、弹性模量弹性模量是表征弹性体抵抗形变的能力大小的物理量。
它是胡克定律中比例系数的倒数,可以用来度量弹性体的刚度。
常见的弹性模量有:1. 杨氏模量(Young's Modulus):用E表示,描述的是物体在拉伸或压缩时的应变与应力之间的关系。
2. 剪切模量(Shear Modulus):用G表示,描述的是物体在受剪时的应变与应力之间的关系。
(整理)弹性⼒学第四章应⼒和应变关系第四章应⼒和应变关系知识点应变能原理应⼒应变关系的⼀般表达式完全各向异性弹性体正交各向异性弹性体本构关系弹性常数各向同性弹性体应变能格林公式⼴义胡克定理⼀个弹性对称⾯的弹性体本构关系各向同性弹性体的应⼒和应变关系应变表⽰的各向同性本构关系⼀、内容介绍前两章分别从静⼒学和运动学的⾓度推导了静⼒平衡⽅程,⼏何⽅程和变形协调⽅程。
由于弹性体的静⼒平衡和⼏何变形是通过具体物体的材料性质相联系的,因此,必须建⽴了材料的应⼒和应变的内在联系。
应⼒和应变是相辅相成的,有应⼒就有应变;反之,有应变则必有应⼒。
对于每⼀种材料,在⼀定的温度下,应⼒和应变之间有着完全确定的关系。
这是材料的固有特性,因此称为物理⽅程或者本构关系。
对于复杂应⼒状态,应⼒应变关系的实验测试是有困难的,因此本章⾸先通过能量法讨论本构关系的⼀般形式。
分别讨论⼴义胡克定理;具有⼀个和两个弹性对称⾯的本构关系⼀般表达式;各向同性材料的本构关系等。
本章的任务就是建⽴弹性变形阶段的应⼒应变关系。
⼆、重点1、应变能函数和格林公式;2、⼴义胡克定律的⼀般表达式;3、具有⼀个和两个弹性对称⾯的本构关系;4、各向同性材料的本构关系;5、材料的弹性常数。
§4.1 弹性体的应变能原理学习思路:弹性体在外⼒作⽤下产⽣变形,因此外⼒在变形过程中作功。
同时,弹性体内部的能量也要相应的发⽣变化。
借助于能量关系,可以使得弹性⼒学问题的求解⽅法和思路简化,因此能量原理是⼀个有效的分析⼯具。
本节根据热⼒学概念推导弹性体的应变能函数表达式,并且建⽴应变能函数表达的材料本构⽅程。
根据能量关系,容易得到由于变形⽽存储于物体内的单位体积的弹性势能,即应变能函数。
探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。
如果材料的应⼒应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐⼆次函数。
因此由齐次函数的欧拉定理,可以得到⽤应变或者应⼒表⽰的应变能函数。
各向异性材料的应力应变关系各向异性材料是指在力学性能方面存在明显差异的材料,其应力应变关系是描述这种材料在外力作用下的变形规律。
与各向同性材料不同,各向异性材料的力学性能在不同的方向上有所不同,体现为不同的应力应变关系。
本文将介绍各向异性材料的应力应变关系,并探讨其应用。
各向异性材料的应力应变关系通常通过弹性常数矩阵来描述,即Hooke定律。
弹性常数矩阵是一个6x6的矩阵,其元素代表了材料在不同方向上的刚度。
根据物理对称性的不同,各向异性材料可以分为各种不同类型,包括各向异性、正交各向异性、轴对称各向异性和平面应力各向异性等。
以各向异性材料中最简单的铜单晶为例,其结构具有高度的各向异性。
在外力作用下,铜单晶沿着特定方向上的应力和应变不同于其他方向。
其应力应变关系可以通过线性弹性理论来描述。
假设应力和应变之间的关系为线性,即应力和应变之间满足线性比例关系,如下所示:σ=Cε其中,σ为应力矢量,C为弹性常数矩阵,ε为应变矢量。
对于各向异性材料,弹性常数矩阵C是一个对称矩阵,其中包含了各向异性材料在不同方向上的弹性模量和剪切模量等信息。
对于各向异性材料,应力和应变之间的关系不再是一维的线性关系,而是一个多维的关系。
因此,需要使用弹性常数矩阵来准确描述材料的力学性能。
通常,各向异性材料通过试验测定弹性常数矩阵。
测定的方法可以有很多种,包括单轴加载、多轴加载和声波测量等。
通过得到的弹性常数矩阵,可以确定各向异性材料在不同方向上的应力应变关系。
在工程实践中,各向异性材料的应力应变关系具有广泛的应用。
例如,在材料设计中,可以通过调整材料的各向异性来实现特定的力学性能。
各向异性材料也被广泛应用于复合材料、纤维材料和生物材料等领域。
在这些领域中,材料的各向异性通常被用来提高其强度、韧性和耐久性等性能。
总之,各向异性材料的应力应变关系描述了材料在外力作用下的变形规律。
通过弹性常数矩阵来准确描述材料的力学性能。
各向异性材料的应力应变关系在材料设计和工程实践中具有重要的应用。
第四章应力与应变关系§4-1 应力和应变的最一般关系式§4-2 弹性体变形过程中的功和能§4-3 各向异性弹性体§4-4 各向同性弹性体§4-5 弹性常数的测定§4-6 各向同性体应变能密度的表达式显然有5225C C =同理可证nmmn C C =这样就证明了极端各向异性体,只有6+30/2=21个独立的弹性常数。
⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧xy xz yz z y x xy xzyz z y x C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C γγγεεετττσσσ66564636266156554535255146454434244 136353433233 126252423222 16 15 14 13 12 111②具有一个弹性对称面的各向异性弹性体如果物体内的每一点都具有这样一个平面,关于该平面对称的两个方向具有相同的弹性,则该平面称为物体的弹性对称面,而垂直于弹性对称面的方向,称为物体的弹性主方向。
这样,物体的弹性常数从21个变为13个。
若Oyz 为弹性对称面,则(可用坐标变换公式得到)⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧xy xz yz z y x xy xzyz z y x C C C C C C C C C C C C C C C C C C C C γγγεεετττσσσ665656554434244 13433233 1242322214 13 1211100000000000000如果互相垂直的3个平面中有2个式弹性对称面,则第3个平面必然也是弹性对称面。
σx=f1 εx,εy,εz,γyz,γxz,γxyσy=f2 εx,εy,εz,γyz,γxz,γxyσz=f3 εx,εy,εz,γyz,γxz,γxyτyz=f4 εx,εy,εz,γyz,γxz,γxyτxz=f5 εx,εy,εz,γyz,γxz,γxyτxy=f6 εx,εy,εz,γyz,γxz,γxy或者简写为:σi=f i εj,i,j=1,6满足小变形假设的弹性体,应力可以表示为应变的线性函数:σi=C ijεj,C ij为常数弹性体的应变能可以表示为:Vε=vεdVVvε为应变能密度,可以表示为:vε=1σiεi≥0,i=1,6且满足:σi=ðvεi该式称为格林公式,通过热力学第一定律和第二定律导出。
σ1=ðvεðε1=C11ε1+C12ε2+C13ε3+C14ε4+C15ε5+C16ε6σ5=ðvε5=C51ε1+C52ε2+C53ε3+C54ε4+C55ε5+C56ε6ð2vεðε1ðε5=C15ð2vεðε5ðε1=C51由于偏导的次序可以交换,因此必满足:C15=C51说明C ij是对称的,则对于各向异性体,具有6+30/2=21个独立的弹性常数。
下面考虑材料性能对称问题。
若材料存在对称面,则材料在与该对称面对称的两个方向上具有相同的弹性,称该对称面为弹性对称面,而垂直于弹性对称面的方向称为弹性主方向。
例如:设X轴为材料弹性主方向,则OYZ面为弹性对称面,X轴转动180度后,应力与应变σi′j′=σij n i′i n j′jεi′j′=εij n i′i n j′jσx =C 11εx +C 12εy +C 13εz +C 14γyz +C 15γxz +C 16γxy σy =C 21εx +C 22εy +C 23εz +C 24γyz +C 25γxz +C 26γxy σz =C 31εx +C 32εy +C 33εz +C 34γy′z′+C 35γxz +C 36γxy τyz =C 41εx +C 42εy +C 43εz +C 44γyz +C 45γxz +C 46γxy τxz =C 51εx +C 52εy +C 53εz +C 54γyz +C 55γxz +C 56γxy τxy =C 61εx +C 62εy +C 63εz +C 64γyz +C 65γxz +C 66γxy 坐标变换后应力分量满足以下关系:σx′=σx ,σy′=σy ,σz′=σzτx′y′=−τxy ,τx′z′=−τxz ,τy′z′=τyz 应变分量满足以下关系:εx′=εx ,εy′=εy ,εz′=εzγx′y′=−γxy ,γx′z′=−γxz ,γy′z′=γyz那么,应力——应变关系成为:σx′=C 11εx′+C 12εy′+C 13εz′+C 14γy′z′−C 15γx ′z ′−C 16γx′y′ σy′=C 21εx′+C 22εy′+C 23εz′+C 24γy′z′−C 25γx ′z ′−C 26γx′y′ σz′=C 31εx′+C 32εy′+C 33εz′+C 34γy′z′−C 35γx ′z ′−C 36γx′y′ τy′z′=C 41εx′+C 42εy′+C 43εz′+C 44γy′z′−C 45γx ′z ′−C 46γx′y′ −τx′z′=C 51εx′+C 52εy′+C 53εz′+C 54γy′z′−C 55γx ′z ′−C 56γx′y′ −τx′y′=C 61εx′+C 62εy′+C 63εz′+C 64γy′z′−C 65γx ′z ′−C 66γx′y′ 为了满足坐标变换后应力——应变关系不变,必须满足:C 15=C 16=C 25=C 26=C 35=C 36=C 45=C 46=0则应力——应变关系为:σx =C 11εx +C 12εy +C 13εz +C 14γyz σy =C 21εx +C 22εy +C 23εz +C 24γyz σz =C 31εx +C 32εy +C 33εz +C 34γy′z′ τyz =C 41εx +C 42εy +C 43εz +C 44γyzτxz =C 55γxz +C 56γxy τxy =C 65γxz +C 66γxy 根据对称性,独立的弹性常数为:6+(30-16)/2=13个(21-8=13)。
各向异性弹性体的应力和应变关系下面从广义胡克定理公式出发,用应变能的概念建立常见的各向异性弹性体的应力和应变关系。
1.完全各向异性弹性体根据格林公式和广义胡克定律,有;对于上式,如果对切应变γxy求偏导数,有。
同理,有;对于上式,如果对正应变εx求偏导数,有。
因此,C14=C41。
对于其它的弹性常数可以作同样的分析,则C mn=C nm上述结论证明完全各向异性弹性体只有21个弹性常数。
其本构方程为2.具有一个弹性对称面的各向异性弹性体如果弹性体内每一点都存在这样一个平面,和该面对称的方向具有相同的弹性性质,则称该平面为物体的弹性对称面。
垂直于弹性对称面的方向称为物体的弹性主方向。
若设yz为弹性对称面,则x轴为弹性主方向。
以下根据完全各向异性弹性体本构方程,推导具有一个弹性对称面的各向异性弹性体的本构方程。
将x轴绕动z 轴转动π 角度,成为新的Ox'y'z'坐标系。
新旧坐标系之间的关系为x y z x'l1=-1m1=0n1=0y'l2=-1m2=0n2=0z'l3=-1m3=0n3=0根据弹性对称性质。
关于x轴对称的应力和应变分量在坐标系变换时保持不变,而关于x轴反对称的应力和应变分量在坐标系变换时取负值。
所以σx' =σx,σy' =σy,σz' =σz,τx'y' =τxy,τy'z' =τyz,τz'x' =τzxεx' =εx,εy' =εy,εz' =εz,γx'y' =γxy,γy'z' =γyz,γz'x' =γzx根据弹性主方向性质,作这一坐标变换时,本构关系将保持不变。
根据完全各向异性弹性体的本构方程,将上述关系式代入广义胡克定理,可得将上式与广义胡克定理相比较,要使变换后的应力和应变关系保持不变,则必有C14=C16=C24=C26=C34=C36=C54=C56=0这样,对于具有一个弹性对称面的弹性体,其弹性常数由21个将减少为13个。
各向异性弹性体的应力
和应变关系
公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]
下面从广义胡克定理公式出发,用应变能的概念建立常见的各向异性弹性体的应力和应变关系。
1.完全各向异性弹性体
根据格林公式和广义胡克定律,有
;对于上式,如果
对切应变xy 求偏导数,有。
同理,有
;对于上
式,如果对正应变x 求偏导数,有。
因此,C 14=C 41。
对于其它的弹性常数可以作同样的分析,则
C mn =C nm
上述结论证明完全各向异性弹性体只有21个弹性常数。
其本构方程为
2.具有一个弹性对称面的各向异性弹性体?
如果弹性体内每一点都存在这样一个平面,和该面对称的方向具有相同的弹性性质,则称该平面为物体的弹性对称面。
垂直于弹性对称面的方向称为物体的弹性主方向。
若设yz为弹性对称面,则x轴为弹性主方向。
以下根据完全各向异性弹性体本构方程,推导具有一个弹性对称面的各向异性弹性体的本构方程。
将x轴绕动 z 轴转动π角度,成为新的Ox'y'z'坐标系。
新旧坐标系之间的关系为
x y z
x'l
1=-1 m
1
=0 n
1
=0
y'l
2=-1 m
2
=0 n
2
=0
z'l
3=-1 m
3
=0 n
3
=0
根据弹性对称性质。
关于x轴对称的应力和应变分量在坐标系变换时保持不变,而关于x轴反对称的应力和应变分量在坐标系变换时取负值。
所以
x'
=x,y' =y,z' =z,x'y' =xy,y'z' =yz,z'x' =zx
x'
=x,y' =y,z' =z,x'y' =xy,y'z' =yz,z'x' =zx
根据弹性主方向性质,作这一坐标变换时,本构关系将保持不变。
根据完全各向异性弹性体的本构方程,将
代入广义胡克定理,可得
将上式与广义胡克定理相比较,要使变换后的应力和应变关系保持不变,则必有
C 14=C
16
=C
24
=C
26
=C
34
=C
36
=C
54
=C
56
=0
这样,对于具有一个弹性对称面的弹性体,其弹性常数由21个将减少为13个。
具有一个弹性对称面的弹性体的应力应变关系为
3.正交各向异性弹性体
若物体每一点有两个弹性对称面,称为正交各向异性弹性体。
以下根据完全具有一个弹性对称面的各向异性弹性体本构方程
推导具有两个弹性对称面的各向异性弹性体的本构方程。
设 xz 平面也是弹性对称面,即y 轴也是弹性主方向。
在具有一个弹性对称面的基础上,
将 y 轴绕动z 轴转动角度,成为新的Ox'y'z'坐标系,。
根据弹性对称性质。
关于y轴对称的应力和应变分量在坐标系变换时也保持不变,而关于y轴反对称的应力和应变分量在坐标系变换时取负值。
所以,则新旧坐标系下的应力和应变分量的关系为
=x,y' =y,z' =z,x'y' =-xy,y'z' =-yz,z'x' =zx
x'
=x,y' =y,z' =z,x'y' =-xy,y'z' =-yz,z'x' =zx
x'
将上述关于y 轴弹性对称的应力应变关系代入具有一个弹性对称面的各向异性材料本构关系。
为保持应力和应变在坐标变换后不变,则必有
C
= C25= C35= C64=0
15
这样,对于具有二个弹性对称面的弹性体,
,其弹性常数由13个将减少为9个。
于是其应力应变关系简化为
假如弹性体有3个弹性对称面,也就是说,如果设xy平面也是弹性对称面,z 轴也为弹性主方向,则类似的推导可以证明,本构方程不会出现有新的变化。
因此,如果相互垂直的3个平面中有两个弹性对称面,则第三个必为弹性对称面。
二个弹性对称面的弹性体本构方程表明:如果坐标轴与弹性主方向一致时,正应力仅与正应变有关,切应力仅与对应的切应变有关,因此拉压与剪切之间,以及不同平面内的剪切之间将不存在耦合作用。
这种弹性体称为正交各向异性弹性体,其独立的弹性常数为9个。