第5章 存储器系统设计
- 格式:ppt
- 大小:504.00 KB
- 文档页数:22
第1章 概述1.电子计算机主要由.电子计算机主要由 运算器运算器 、 控制器控制器 、 存储器存储器 、 输入设备输入设备 和 输出设备输出设备 等五部分组成。
等五部分组成。
等五部分组成。
2. 运算器运算器 和 控制器控制器 集成在一块芯片上,被称作CPU CPU。
3.总线按其功能可分.总线按其功能可分 数据总线数据总线 、 地址总线地址总线 和 控制总线控制总线 三种不同类型的总线。
三种不同类型的总线。
4.计算机系统与外部设备之间相互连接的总线称为.计算机系统与外部设备之间相互连接的总线称为 系统总线(或通信总线)系统总线(或通信总线) ;用于连接微型机系统内各插件板的总线称为系统内总线(板级总线) ; CPU 内部连接各寄存器及运算部件之间的总线称为内部连接各寄存器及运算部件之间的总线称为 内部总线内部总线 。
5.迄今为止电子计算机所共同遵循的工作原理是迄今为止电子计算机所共同遵循的工作原理是 程序存储程序存储 和 程序控制程序控制 的工作原理。
的工作原理。
这种原理又称这种原理又称为 冯·诺依曼型冯·诺依曼型 原理。
原理。
第3章 微处理器及其结构1.8086/8088 CPU 执行指令中所需操作数地址由执行指令中所需操作数地址由 EU EU EU 计算出计算出计算出 16 16 16 位偏移量部分送位偏移量部分送位偏移量部分送 BIU BIU BIU ,由,由,由 BIU BIU BIU 最后最后形成一个形成一个 20 20 20 位的内存单元物理地址。
位的内存单元物理地址。
2.8086/8088 CPU CPU在总线周期的在总线周期的在总线周期的T1 T1 T1 时刻,用时刻,用时刻,用A19/S6A19/S6A19/S6~~A16/S3 A16/S3 输出输出输出 20 20 20 位地址信息的最高位地址信息的最高位地址信息的最高 4 4 4 位,而在位,而在其他时钟周期,则输出其他时钟周期,则输出 状态状态 信息。
单⽚微机原理系统设计与应⽤课后部分习题答案第⼆章 MCS-51单⽚机硬件结构2-5. 8051单⽚机堆栈可以设置在什么地⽅?如何实现?答:8051单⽚机堆栈可以设置在内部RAM中。
当系统复位时,堆栈指针地址为07H,只要改变堆栈指针SP的值,使其为内部RAM中地址量,就可以灵活的将堆栈设置在内部RAM中。
2-16. 8051单⽚机内部数据存储器可以分为⼏个不同的区域?各有什么特点?2-21.复位后,CPU内部RAM各单元内容是否被清除?CPU使⽤的是哪⼀组⼯作寄存器?它们的地址是什么?如何选择确定和改变当前⼯作寄存器组?答:复位并不清除CPU内部RAM单元中内容,掉电会清除内部RAM 中内容。
复位以后因为PSW=00H,所以选择⼯作寄存器0区,所占地址空间为00H-07H。
⼯作寄存器组可以查询PSW中的RS1(PSW.4)和RS0(PSW.3)来确定,改变当前RS1和RS0的值即可改变当前⼯作寄存器组。
2-22.指出复位后⼯作寄存器组R0-R7的物理地址,若希望快速保护当前⼯作寄存器组,应采取什么措施?答:复位⼯作寄存器组R0-R7的物理地址为00H-07H。
如希望快速保护当前⼯作寄存器组,可以通过改变PSW中RS1(PSW.4)和RS0(PSW.3)的当前值来完成。
第三章 MCS-51指令系统3-6.设系统晶振为12MHz,阅读下列程序,分析其功能,并⼈⼯汇编成机器代码。
答:因为AJMP指令必须有PC指针地址,所以本题解题时设程序开始地址为1000H。
本程序完成功能是使P1.0⼝输出⽅波:T=2*((3*250+2+2)*10+1+2+2)=15090us=15.09ms翻译成机器语⾔的难点在于AJMP⼀句,根据AJMP指令代码可知,该指令为2个字节,⾼8为字节构成为“A10A9A800001”,低8位字节构成为“A7-A0”。
⼜有设置了程序起始地址为1000H,很容易可以写出各指令的地址,AJMP的绝对转移⽬标地址为1002H,A10=0、A9=0、A8=0,所以机器代码为“01 02”,⽬标地址在2区,因为A15-A11为“00010”。
第5章存储器管理习题与解答5.2 例题解析例5.2.1 为什么要引入逻辑地址?解引入逻辑地址有如下原因:(1) 物理地址的程序只有装入程序所规定的内存空间上才能正确执行,如果程序所规定内存空间不空闲或不存在,程序都无法执行;(2) 使用物理地址编程意味着由程序员分配内存空间,这在多道程序系统中,势必造成程序所占内存空间的相互冲突;(3) 在多道程序系统中,程序员门无法事先协商每个程序所应占的内存空间的位置,系统也无法保证程序执行时,它所需的内存空间都空闲。
(4) 基于上述原因,必须引入一个统一的、在编程时使用的地址,它能够在程序执行时根据所分配的内存空间将其转换为对应的物理地址,这个地址就是逻辑地址。
(5) 逻辑地址的引入为内存的共享、保护和扩充提供方便。
例5.2.2 静态重定位的特点有哪些?(1) 实现容易,无需增加硬件地址变换机构;(2) 一般要求为每个程序分配一个连续的存储区;(3) 在重定位过程中,装入内存的代码发生了改变;(4) 在程序执行期间不在发生地址的变换;(5) 在程序执行期间不能移动,且难以做到程序和数据的共享,其内存利用率低。
例5.2.3 动态重定位的特点有哪些?(1) 动态重定位的实现要依靠硬件地址变换机构,且存储管理的软件算法比较复杂;(2) 程序代码是按原样装入内存的,在重定位的过程中也不发生变化,重定位产生的物理地址存放在内存地址寄存器中,因此不会改变代码;(3) 同一代码中的同一逻辑地址,每执行一次都需要重位一次;(4) 只要改变基地址,就可以很容易地实现代码在内存中的移动;(5) 动态重定位可以将程序分配到不连续的存储区中;(6) 实现虚拟存储器需要动态重定位技术的支持;尽管动态重定位需要硬件支持,但他支持程序浮动,便于利用零散的内存空间,利于实现信息共享和虚拟存储,所以现代计算机大都采用动态重定位。
例5.2.4 装入时动态链接的优点有哪些?(1)便于软件版本的修改和更新在采用装入时动态链接方式时,要修改或更新各个目标模块,是件非常容易的事,但对于经静态链接以装配在一起的装入模块,如果要修改或更新其中的某个目标模块时,则要求重新打开装入模块,这不仅是低效的,而且对于普通用户是不可能的。