2.5有理数的加法与减法(1)
- 格式:ppt
- 大小:3.40 MB
- 文档页数:16
2.5有理数的加法和减法【学习目标】1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算;2.掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系;3.熟练将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算律合理简算,并会解决简单的实际问题.【要点梳理】要点一、有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.要点诠释:利用法则进行加法运算的步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).3.运算律:要点诠释:交换加数的位置时,不要忘记符号.要点二、有理数的减法1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.要点诠释:(1)任意两个数都可以进行减法运算.(2)几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2.法则:减去一个数,等于加这个数的相反数,即有:. 要点诠释: 将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:要点三、有理数加减混合运算将加减法统一成加法运算,适当应用加法运算律简化计算. 【典型例题】类型一、有理数的加法运算例1.计算:(1)(+20)+(+12); (2); (3)(+2)+(-11);类型二、有理数的减法运算例2. 计算:(1)(-32)-(+5); (2)(+2)-(-25).类型三、有理数的加减混合运算例3、(-2.4)+(-4.2)+(-3.8)+(+3.1)+(+0.8)+(-0.7)()a b a b -=+-1223⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭【基础巩固】1.计算:-8+5=________,-8-(-5)=________.2.珠穆朗玛峰的海拔高度约为8 844 m,吐鲁番盆地的海拔高度约为-155 m,则珠穆朗玛峰比吐鲁番盆地高________m.3.已知a+1b =0,则a-b的值为________.4.若a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a+b-c=______.5.下列各式中与a-b-c相同的是( )A.a+(-b)+(-c) B.a-(-b)-(+c)C.a-(+b) -(-c) D.a-(-b)-(-c)6.下列计算中,错误的是( )A.-3+( -3)=-6 B.-1-(-2) =1C.0-(-1)=-1 D.0+(-1)=-17.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有( )A.4个B.3个C.2个D.1个8.若三个互不相等的有理数的和为0,则下面结论中正确的是( )A.三个数全为0B.至少有两个数是负数C.三个数全为负数D.至少有一个数是负数9.若家用电冰箱冷藏室的温度是4℃,冷冻室比冷藏室的温度低22℃,则冷冻室的温度为( )A.-18℃B.18℃C.-26℃D.26℃10.-2比-3大( )A.-1 B.1C.-5 D.511.4-(-7)等于( )A.3 B.11 C.-3 D.-1112.计算下列各题:(1)(-6)-5; (2)(+25)-(-13);(3)(-1.7)-2.5; (4)2132⎛⎫-- ⎪⎝⎭(5)1163---; (6)()46 1.85⎛⎫--- ⎪⎝⎭.13.某中学生足球队在县足球比赛中,踢了4场比赛,战绩是:第一场3:1胜;第二场2:3负;第三场0:0平;第四场2:5负.(1)该中学生足球队在4场比赛中总的净胜球数是多少?(2)如果胜一场得3分,平一场得1分,负一场得0分,又已知积分超过8分方可出线,那么该中学生足球队能否出线?为什么?【拓展提优】14.当a =-3.4,b =2时,a -b =_______.15.任意写出三个互不相等的有理数,使这三个数的和等于0:_______. 16.一个数是6,另一个数比6的相反数小3,那么这两个数的差是________. 17.计算(-10)-(+11)+(-7)所得的结果是 ( )A .-28B .-6C .-14D .8 18.下列说法正确的是 ( ) A .0减去一个有理数,仍得这个数 B .互为相反数的两个数之差一定不等于0 C .两个有理数的差一定小于它们的和D .较小的有理数减去较大的有理数,所得差必是负数19.如果点A 在数轴上表示数-3,将点A 向左平移7个单位长度到达点B ,再将点B 向右平移8个单位长度到达点C ,则终点C 表示的数是 ( ) A .-4. B .-18 C .15 D .-220.某天银行储蓄所办理了7笔业务,取出9.5万元,存进5万元,取出8万元,存进12万元,存进25万元,取出10. 25万元,取出2万元,那么这一天银行增加的现款数额(单位:万元)是 ( )A .-12. 25B .-2.25C .2. 25D .12. 25 21.若a<0,b>0,则a 、a +b 、a -b 、b 中最大的是 ( ) A .a B .a +b C .a -b D .b 22.计算:(1)-2011-2012; (2)(+17)-(-32)-(+23);12(3)(+6)-(+12)+(+8.3)-(+7.4); (4)()342.43.155⎛⎫--+-+ ⎪⎝⎭.课后练习1.把(-8)-(-1)+(+3)-(-2)转化为只含有加法的算式:_______. 2.把(-7)-(+5)+(- 4)-(-10)写成省略括号的形式是________.3.-8-3+1-7,按“和”的意义读作:_______;按“运算”意义读作:________. 4.根据加法的交换律或结合律计算:(1)3-10+7=3__________7________10=_________;(2) 6+12-3-5=________6________3________5________12=________. 5.从-2中减去-512与-49的和,差是_______.6.算式-4-5不能读作 ( )A .-4与5的差B .-4与-5的和C .-4减去5的差D .-4与-5的差 7.把+3-(+2)-(-4)+(-1)写成省略括号的形式是 ( ) A .-3-2+4-1 B .3-2+4-1 C .3-2-4-1 D .3+2-4-1 8.下列各式与a -b +c 的值相等的是 ( )A .a +(-b)+(-c)B .a -(+b)+(-c)C . a -(+b)-(-c)D .a -(-b)-(-c) 9.-7、-12、+2的和比它们的绝对值的和小 ( ) A .-38 B .-4 C .4 D .38 10.计算6-(+3) -(-7)+(-5)所得的结果是 ( ) A .-7 B .-9 C .5 D .-3 11.一个数加上-3.6的和为-0.36,那么这个数是 ( ) A .-2.24 B .-3.96 C .3.24 D .3.96 12.下列运算中正确的是 ( ) A .3.58-(-1.58)=3.58+(-1.58)=2B .(-2.6)-(-4)=2.6+4=6.6C .27272701555555⎛⎫⎛⎫⎛⎫-+-=+-=+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .3439571858540⎛⎫-=+-=- ⎪⎝⎭13.计算:(1)-2.8-6.2+(-3. 4)-(-5.6); (2)0-1+2-3+4-5;(3)1116312⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭; (4)()1310 3.2527242---+-;(5)()2123 2.44335⎛⎫⎛⎫⎛⎫-+----- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (6)3111741868242⎛⎫-++-+-- ⎪⎝⎭.14.把(+3)-(-2)+(-4)-(+5)写成省略括号的形式为________.15.红领巾小银行储蓄所办理了6笔储蓄业务:取出9.5元,存入5元,取出8元,存入14元,存入12.5元,取出10. 25元,这时储蓄所存款增加了________.16.7-3-4+18-11=(7+18)+(-3-4-11)是应用了( ) A.加法交换律B.加法结合律C.分配律D.加法的交换律与结合律17.若b<0,则a-b、a、a+b的大小关系是( )A.a-b<a<a+b B.a<a-b<a+bC.a+b<a-b<a D.a+b<a<a-b18.已知甲地高度是-25 m,甲地比乙地高15 m,乙地比丙地高9m甲地比丙地高多少米?预习:2.6有理数的乘法与除法1.一个有理数与它的相反数的积 ( ) A .是正数 B .是负数 C .一定不大于0 D .一定不小于0 2.下列说法中正确的是 ( ) A .同号两数相乘,符号不变B .异号两数相乘,取绝对值较大的因数的符号C .两数相乘,积为正数,那么这两个数都为正数D .两数相乘,积为负数,那么这两个数异号3.如果两个有理数的积小于0,和大于0,那么这两个有理数 ( ) A .符号相反B .符号相反且绝对值相等C .符号相反且负数的绝对值大D .符号相反且正数的绝对值大 4.若ab =0,则 ( )A .a =0B .b =0C .a =0或b =0D .a =0且b =0 5.计算:(1)(-2)×(-7)=________;(2)6×(-8)=________.6.一架直升机从高度为650 m 的位置开始,先以20 m /s 的速度上升60 s ,后以15ms 的速度下降100 s ,这时直升机的高度是________m . 7.计算下列各题:(1)(-25)×16; (2)531245⎛⎫-⨯- ⎪⎝⎭;(3)3×(-5)×(-7)×4;(4)15×(-17)×(-2012)×0;。
有理数的加法与减法(1)(教案)【教学目标】1、了解有理数加法的意义,理解有理数加法法则的合理性;2、能运用有理数加法法则,正确进行有理数加法运算;3、经历探索有理数加法法则的过程,感受数学学习的方法.【教学重点】1、有理数的加法法则的生成过程;2、能运用有理数加法法则正确进行有理数加法运算.【问题导学】1、通过实例引导学生理解有理数加法法则的算理。
2、利用数形结合理解有理数加法法则的算理。
3、引导学生对有理数加法法则中的不同类型进行合理分类。
4、能准确地有理数加法计算。
【教学过程】一、情境创设小学里,我们学过加法和减法运算,引进负数后,怎样进行有理数的加法和减法运算呢?二、探索活动活动一、甲、乙两队进行足球比赛•如果甲队在主场赢了3球,在客场输了2球,那么两场比赛后甲队净胜1球.你能把上面比赛的过程及结果用有理数的算式表示出来吗?做一做:比赛中胜负难料,两场比赛的结果还可能有哪些情况呢?动动手填表:注意:先写净胜球数,再写算式,最后写“=”号.【学生活动】由学生完成这份表格,在填写过程中,引导学生用生活情境化的语言来表述问题的结果,这样有助于学生对加法法则后面的算理的理解。
活动一、.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,这时笔尖停在“2”的位置上.用数轴和算式可以将以上过程及结果分别表示为:-S -5 -3 -1 0 1 2 3 4 5算式: ___________________________2 .把笔尖放在数轴的原点,沿数轴先向右移动3个单位长度,再向左移动2个单位长度,这时笔尖停在“ 1”的位置上.用数轴和算式可以将以上过程及结果分别表示为:3.把笔尖放在数轴的原点,沿数轴先向左移动 3个单位长度,再向左移动 2个单位长度,这时笔尖的位置表示什么数?请用数轴和算式分别表示以上过程及结果:-S --5 -3 -1 0 1 2 3 4 5算式: ___________________________对照上述两组算式,讨论:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定? 【学生活动】请学生表述,在表述过程中老师要渗透,同号两数表示相同性质的两个量相 加,结果是量叠加的,异号两数表示性质相反的两个量相加,结果是相抵消的,这样的一 个基本思想意识。
2.5有理数的加法与减法一、选择题(本大题共10小题,每小题2分,共20分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•仪征市模拟)某城市在冬季某一天的气温为﹣3℃~3℃.则这一天的温差是()A.3℃B.﹣3℃C.6℃D.﹣6℃2.(2019秋•张家港市期末)如图是我市十二月份某一天的天气预报,该天的温差是()A.2℃B.5℃C.7℃D.3℃3.(2019秋•丹徒区月考)下列各式中,正确的是()A.﹣4﹣2=﹣2 B.3﹣(﹣3)=0C.10+(﹣8)=﹣2 D.﹣5﹣4﹣(﹣4)=﹣5 4.(2020•江汉区校级一模)计算﹣3﹣1的结果是()A.2 B.﹣2 C.4 D.﹣45.(2019秋•广陵区校级期中)已知|x|=1,y2=4,且x>y,则x+y值为()A.±3 B.±5 C.+1或+3 D.﹣1或﹣3 6.(2019秋•沭阳县期中)下列说法正确的有()A.﹣a一定是负数B.两个数的和一定大于每一个加数C.绝对值等于本身的数是正数D.最大的负整数是﹣17.(2019秋•南通期中)已知|a|=6,|b|=2,且a>0,b<0,则a+b的值为()A.8 B.﹣8 C.4 D.﹣48.(2019秋•新北区期中)小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将﹣1、2、﹣3、4、﹣5、6、﹣7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b 的值为()A.﹣6或﹣3 B.﹣8或1 C.﹣1或﹣4 D.1或﹣1 9.(2019秋•武进区月考)写成省略加号和的形式后为﹣6﹣7﹣2+9的式子是()A.(﹣6)﹣(+7)﹣(﹣2)+(+9)B.﹣(+6)﹣(﹣7)﹣(+2)﹣(+9)C.(﹣6)+(﹣7)+(+2)﹣(﹣9)D.﹣6﹣(+7)+(﹣2)﹣(﹣9)10.(2020春•淮阴区期中)如图,已知表格中竖直、水平、对角线上的三个数的和都相等,则m+n等于()m﹣3 43 1nA.7 B.5 C.﹣1 D.﹣2二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在横线上)11.(2019秋•崇川区校级期中)若x是3的相反数,|y|=4,则x﹣y的值是.12.(2019秋•秦淮区期中)把式子﹣2﹣3写成﹣2+(﹣3)的依据是.13.(2019秋•江阴市期中)计算:﹣20+(﹣14)﹣(﹣18)+13=.14.(2019秋•兴化市期中)一天早晨的气温是﹣5℃,中午又上升了8℃,半夜又下降了10℃,则这天半夜的气温是.15.(2019秋•玄武区期中)一个数加﹣0.5等于﹣3,则这个数是.16.(2019秋•东台市期中)a是绝对值最小的数,b的相反数是最大的负整数,则a+b =.17.(2019秋•睢宁县期中)某天中午,泰山山顶的气温由早晨的零下4℃上升了7℃,傍晚下降了5℃,这天傍晚泰山山顶的气温是℃.18.(2019秋•宿豫区期中)若|x|=9,|y|=6,且|x﹣y|=y﹣x,则x+y=.19.(2020春•栖霞区期中)如图是某市连续5天的天气情况,最大的日温差是℃.20.(2019秋•海安市期中)若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e=.三、解答题(本大题共6小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(2019秋•兴化市校级月考)计算:(1)7﹣(﹣4)+(﹣5)(2)(3)﹣7.2﹣0.8﹣5.6+11.6(4)22.(2019秋•泰兴市校级月考)计算题(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7(2)﹣20+(﹣14)﹣(﹣18)﹣13(3)(4)(﹣3)+12.5+(16)﹣(﹣2.5)(5)0.75+0.125+(﹣2)﹣(﹣12)+(﹣4)23.(2019秋•清江浦区期中)小明在电脑中设置了一个有理数的运算程序:输入数a,加*键,在输入数b,就可以得到运算:a*b=(a﹣b)﹣|b﹣a|.(1)求(﹣3)*2的值;(2)求(3*4)*(﹣5)的值.24.(2016秋•简阳市期中)先阅读第(1)小题,仿照其解法再计算第(2)小题:(1)计算:解:原式=15=13;(2)计算.25.(2019秋•常州月考)出租车司机小傅某天下午营运全是在东西走向的大道上行驶的,如果规定向东为正,行车里程(单位:km)如下:+11,﹣2,+3,+10,﹣11,+5,﹣15,﹣8(1)当把最后一名乘客送到目的地时,小傅距离出车地点的距离为多少?(2)若每千米的营运额为7元,成本为1.5元/km,则这天下午他盈利多少元?26.(2019秋•虎丘区校级期中)探索性问题:已知点A、B在数轴上分别表示m、n.(1)填写下表:m 5 ﹣5 ﹣6 ﹣6 ﹣10n 3 0 4 ﹣4 2A、B两点的距离 2(2)若A、B两点的距离为d,则d与m、n有何数量关系;(3)在数轴上标出所有符合条件的整数点P,使它到3和﹣3的距离之和为6,并求出所有这些整数的和;(4)若点C表示的数为x,当C在什么位置时,|x+2|+|x﹣3|取得值最小?答案解析一、选择题(本大题共10小题,每小题2分,共20分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•仪征市模拟)某城市在冬季某一天的气温为﹣3℃~3℃.则这一天的温差是()A.3℃B.﹣3℃C.6℃D.﹣6℃【分析】根据题意列出算式,再利用减法法则计算可得.【解析】3﹣(﹣3)=3+3=6(℃).即这一天的温差是6℃.故选:C.2.(2019秋•张家港市期末)如图是我市十二月份某一天的天气预报,该天的温差是()A.2℃B.5℃C.7℃D.3℃【分析】用最高气温减去最低气温列出算式,然后再依据有理数的减法法则计算即可.【解析】该天的温差为5﹣(﹣2)=5+2=7(℃),故选:C.3.(2019秋•丹徒区月考)下列各式中,正确的是()A.﹣4﹣2=﹣2 B.3﹣(﹣3)=0C.10+(﹣8)=﹣2 D.﹣5﹣4﹣(﹣4)=﹣5【分析】直接利用有理数的混合运算法则计算得出答案.【解析】A、﹣4﹣2=﹣6,故此选项不合题意;B、3﹣(﹣3)=6,故此选项不合题意;C、10+(﹣8)=2,故此选项不合题意;D、﹣5﹣4﹣(﹣4)=﹣5,正确,符合题意.故选:D.4.(2020•江汉区校级一模)计算﹣3﹣1的结果是()A.2 B.﹣2 C.4 D.﹣4【分析】根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可求解.【解析】﹣3﹣1=﹣3+(﹣1)=﹣(3+1)=﹣4.故选:D.5.(2019秋•广陵区校级期中)已知|x|=1,y2=4,且x>y,则x+y值为()A.±3 B.±5 C.+1或+3 D.﹣1或﹣3【分析】首先根据|x|=1,y2=4,可得:x=±1,y=±2;然后根据x>y,可得:x=±1,y=﹣2,据此求出x+y值为多少即可.【解析】∵|x|=1,y2=4,∴x=±1,y=±2;∵x>y,∴x=±1,y=﹣2,∴x+y=1+(﹣2)=﹣1或x+y=﹣1+(﹣2)=﹣3.故选:D.6.(2019秋•沭阳县期中)下列说法正确的有()A.﹣a一定是负数B.两个数的和一定大于每一个加数C.绝对值等于本身的数是正数D.最大的负整数是﹣1【分析】根据﹣(﹣3)=3可得﹣a不一定是负数;两个负数之和小于每一个加数;非负数的绝对值等于本身,最大的负整数是﹣1可得答案.【解析】A、﹣a一定是负数,说法错误;B、两个数的和一定大于每一个加数,说法错误;C、绝对值等于本身的数是正数,说法错误;D、最大的负整数是﹣1,说法正确;故选:D.7.(2019秋•南通期中)已知|a|=6,|b|=2,且a>0,b<0,则a+b的值为()A.8 B.﹣8 C.4 D.﹣4【分析】根据|a|=6,|b|=2,可得:a=±6,b=±2,再根据a>0,b<0,可得:a=6,b=﹣2,据此求出a+b的值是多少即可.【解析】∵|a|=6,|b|=2,∴a=±6,b=±2,∵a>0,b<0,∴a=6,b=﹣2,∴a+b=6+(﹣2)=4.故选:C.8.(2019秋•新北区期中)小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将﹣1、2、﹣3、4、﹣5、6、﹣7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b 的值为()A.﹣6或﹣3 B.﹣8或1 C.﹣1或﹣4 D.1或﹣1【分析】由于八个数的和是4,所以需满足两个圈的和是2,横、竖的和也是2.列等式可得结论.【解析】设小圈上的数为c,大圈上的数为d,﹣1+2﹣3+4﹣5+6﹣7+8=4,∵横、竖以及内外两圈上的4个数字之和都相等,∴两个圈的和是2,横、竖的和也是2,则﹣7+6+b+8=2,得b=﹣5,6+4+b+c=2,得c=﹣3,a+c+4+d=2,a+d=1,∵当a=﹣1时,d=2,则a+b=﹣1﹣5=﹣6,当a=2时,d=﹣1,则a+b=2﹣5=﹣3,故选:A.9.(2019秋•武进区月考)写成省略加号和的形式后为﹣6﹣7﹣2+9的式子是()A.(﹣6)﹣(+7)﹣(﹣2)+(+9)B.﹣(+6)﹣(﹣7)﹣(+2)﹣(+9)C.(﹣6)+(﹣7)+(+2)﹣(﹣9)D.﹣6﹣(+7)+(﹣2)﹣(﹣9)【分析】根据有理数的减法运算,减去一个数等于加上这个数的相反数对各选项进行省略整理即可得解.【解析】A、(﹣6)﹣(+7)﹣(﹣2)+(+9)=﹣6﹣7+2+9,故本选项错误;B、﹣(+6)﹣(﹣7)﹣(+2)﹣(+9)=﹣6+7﹣2﹣9,故本选项错误;C、(﹣6)+(﹣7)+(+2)﹣(﹣9)=﹣6﹣7+2+9,故本选项错误;D、﹣6﹣(+7)+(﹣2)﹣(﹣9)=﹣6﹣7﹣2+9,故本选项正确.故选:D.10.(2020春•淮阴区期中)如图,已知表格中竖直、水平、对角线上的三个数的和都相等,则m+n等于()m﹣3 43 1nA.7 B.5 C.﹣1 D.﹣2【分析】由题意竖直、水平、对角线上的三个数的和都相等,则有3+1+n﹣(m+3)=﹣3+1+n﹣(4+1),即可解出m=2,从而求出n值即可【解析】由题意得竖直、水平、对角线上的三个数的和都相等,则有3+1+n﹣(m+3)=﹣3+1+n﹣(4+1),整理得m=2则有2﹣3+4=﹣3+1+n,解得n=5∴m+n=5+2=7故选:A.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在横线上)11.(2019秋•崇川区校级期中)若x是3的相反数,|y|=4,则x﹣y的值是1或﹣7.【分析】分别求出x与y的值,然后代入x﹣y中即可求出答案.【解析】由题意可知:x=﹣3,y=±4,当y=4时,x﹣y=﹣3﹣4=﹣7当y=﹣4时,x﹣y=﹣3+4=1,故答案为:1或﹣7.12.(2019秋•秦淮区期中)把式子﹣2﹣3写成﹣2+(﹣3)的依据是有理数减法法则.【分析】根据有理数减法法则解答即可.【解析】把式子﹣2﹣3写成﹣2+(﹣3)的依据是有理数减法法则.故答案为:有理数减法法则.13.(2019秋•江阴市期中)计算:﹣20+(﹣14)﹣(﹣18)+13=﹣3.【分析】根据有理数的加减法法则计算即可.【解析】﹣20+(﹣14)﹣(﹣18)+13=﹣(20+14)+(18+13)=﹣34+31=﹣3.故答案为:﹣314.(2019秋•兴化市期中)一天早晨的气温是﹣5℃,中午又上升了8℃,半夜又下降了10℃,则这天半夜的气温是﹣7℃.【分析】根据有理数的加减混合运算列式即可求解.【解析】﹣5+8﹣10=﹣7故答案为﹣7°C.15.(2019秋•玄武区期中)一个数加﹣0.5等于﹣3,则这个数是﹣2.5.【分析】直接利用有理数的加法运算法则得出答案.【解析】∵一个数加﹣0.5等于﹣3,∴这个数是:﹣3﹣(﹣0.5)=﹣2.5.故答案为:﹣2.516.(2019秋•东台市期中)a是绝对值最小的数,b的相反数是最大的负整数,则a+b=1.【分析】首先根据题意确定a、b的值,再进一步根据有理数的运算法则进行计算.【解析】∵a是绝对值最小的数,b的相反数是最大的负整数,∴a=0,﹣b=﹣1,∴b=1,∴a+b=0+1=1.故答案为1.17.(2019秋•睢宁县期中)某天中午,泰山山顶的气温由早晨的零下4℃上升了7℃,傍晚下降了5℃,这天傍晚泰山山顶的气温是﹣2℃.【分析】根据题意列出算式再根据有理数的混合运算即可求解.【解析】根据题意,得﹣4+7﹣5=﹣2所以傍晚泰山山顶的气温零下2°C.故答案为﹣2.18.(2019秋•宿豫区期中)若|x|=9,|y|=6,且|x﹣y|=y﹣x,则x+y=﹣3或﹣15.【分析】由题意利用绝对值的代数意义求出x与y的值,即可求出x+y的值.【解析】∵|x|=9,|y|=6,且|x﹣y|=y﹣x,∴x=±9,y=±6,x﹣y<0,∴x=﹣9,y=6或x=﹣9,y=﹣6,则x+y=﹣3或﹣15,故答案为:﹣3或﹣15.19.(2020春•栖霞区期中)如图是某市连续5天的天气情况,最大的日温差是10℃.【分析】利用有理数的加减运算法则,利用大数减去小数即可得出结果.【解析】25﹣15=10(℃),即最大的日温差是10℃.故答案为:10.20.(2019秋•海安市期中)若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e=﹣2.【分析】先根据题意确定a、b、c、d、e的值,再把它们的值代入代数式求值即可.【解析】∵a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,∴a=1,b=0,c=0,d=﹣2,e=﹣1,∴a+b+c+d+e=1+0+0﹣2﹣1=﹣2.故答案为:﹣2.三、解答题(本大题共6小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(2019秋•兴化市校级月考)计算:(1)7﹣(﹣4)+(﹣5)(2)(3)﹣7.2﹣0.8﹣5.6+11.6(4)【分析】(1)根据有理数的加减法可以解答本题;(2)先去掉绝对值,然后根据有理数的加减法即可解答本题;(3)根据有理数的加减法可以解答本题;(4)根据有理数的加减法可以解答本题.【解析】(1)7﹣(﹣4)+(﹣5)=7+4+(﹣5)=6;(2)=6+0.2+(﹣2)﹣1.5=2.7;(3)﹣7.2﹣0.8﹣5.6+11.6=(﹣7.2)+(﹣0.8)+(﹣5.6)+11.6=﹣2;(4).=4.22.(2019秋•泰兴市校级月考)计算题(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7(2)﹣20+(﹣14)﹣(﹣18)﹣13(3)(4)(﹣3)+12.5+(16)﹣(﹣2.5)(5)0.75+0.125+(﹣2)﹣(﹣12)+(﹣4)【分析】根据有理数的加法法则一一计算即可解决问题.【解析】(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7=﹣(2.4+3.7+4.6)+5.7=﹣5 (2)﹣20+(﹣14)﹣(﹣18)﹣13=﹣(20+14+13)+18=﹣29(3)(4)(﹣3)+12.5+(16)﹣(﹣2.5)=1315=28(5)0.75+0.125+(﹣2)﹣(﹣12)+(﹣4)=﹣2﹣4+12623.(2019秋•清江浦区期中)小明在电脑中设置了一个有理数的运算程序:输入数a,加*键,在输入数b,就可以得到运算:a*b=(a﹣b)﹣|b﹣a|.(1)求(﹣3)*2的值;(2)求(3*4)*(﹣5)的值.【分析】(1)根据题中给出的例子列出有理数相加减的式子,再进行计算即可;(2)先计算出3*4的值,再代入原式进行计算即可.【解析】(1)(﹣3)*2=(﹣3﹣2)﹣|2﹣(﹣3)|=﹣5﹣5=﹣10;(2)∵3*4=(3﹣4)﹣|4﹣3|=﹣2,(﹣2)*(﹣5)=[(﹣2)﹣(﹣5)]﹣|﹣5﹣(﹣2)|=0,∴(3*4)*(﹣5)=0.24.(2016秋•简阳市期中)先阅读第(1)小题,仿照其解法再计算第(2)小题:(1)计算:解:原式=15=13;(2)计算.【分析】首先分析(1)的运算方法:将带分数分解为一个整数和一个分数;然后重新组合分组:整数一组,分数一组;分别计算求值.【解析】原式=(﹣205)+400(﹣204)+()+(﹣1)+()=(400﹣205﹣204﹣1)+()=﹣10.25.(2019秋•常州月考)出租车司机小傅某天下午营运全是在东西走向的大道上行驶的,如果规定向东为正,行车里程(单位:km)如下:+11,﹣2,+3,+10,﹣11,+5,﹣15,﹣8(1)当把最后一名乘客送到目的地时,小傅距离出车地点的距离为多少?(2)若每千米的营运额为7元,成本为1.5元/km,则这天下午他盈利多少元?【分析】(1)可以把出车地看做0,然后根据题意列式,即可推出结果,(2)根据司机下午的总营运路程,由每千米的营运额为7元,成本为1.5元/km,推出每千米的盈利,用每千米的盈利乘以总营运路程即可推出这天下午他的总盈利.【解析】(1)设出发地为0,∴根据题意列式:+11﹣2+3+10﹣11+5﹣15﹣8=﹣7,∵|﹣7|=7,答:距离出发地点7km,(2)根据题意列式得:11+2+3+10+11+5+15+8=65,∵每千米的营运额为7元,成本为1.5元/km,∴盈利为:65×(7﹣1.5)=357.5(元),答:当天下午盈利357.5元.26.(2019秋•虎丘区校级期中)探索性问题:已知点A、B在数轴上分别表示m、n.(1)填写下表:m 5 ﹣5 ﹣6 ﹣6 ﹣10n 3 0 4 ﹣4 2A、B两点的距离 2(2)若A、B两点的距离为d,则d与m、n有何数量关系;(3)在数轴上标出所有符合条件的整数点P,使它到3和﹣3的距离之和为6,并求出所有这些整数的和;(4)若点C表示的数为x,当C在什么位置时,|x+2|+|x﹣3|取得值最小?【分析】(1)观察数轴,得出A、B两点的距离;(2)通过观察表格,写出一般规律;(3)充分运用数轴这个工具,表示整数点P;(4)在(2)(3)的启发下,结合数轴,回答题目的问题.【解析】(1)见表格;m 5 ﹣5 ﹣6 ﹣6 ﹣10n 3 0 4 ﹣4 2A、B两点的距离 2 5 10 2 12 (2)d=|m﹣n|;(3)符合条件的整数点P有7个,如图;所有这些整数和为:﹣3﹣2﹣1+0+1+2+3=0.(4)|x+2|表示点C到点﹣2的距离,|x﹣3|表示点C到点3的距离,当点C在点﹣2和点3之间时,|x+2|+|x﹣3|的值最小,此时﹣2≤x≤3.。
数学学科第二章第5节2.5《有理数的加法与减法1》学讲预案一、自主先学1.某校七年级举行了一次足球联赛,一班第一场赢了2个球,第二场输了3个球,该班两场比赛的净胜球为多少个?2.计算:()()(3)22+--+-()-++()()(1)43(2)25()-++(5)38(4)04+-()()二、合作助学3.在课本上填写表中的净胜球数和相应的算式.4.完成课本上的数学实验,再仿照书上的做法,请在数轴上呈现下面的算式所表示的笔尖运动的过程和结果.()()++-=()()++-=()50-+=4433+++=()()355.有理数加法法则:(1)同号两数相加,取的符号,并把绝对值.(2)异号两数相加,绝对值相等时,和为;绝对值不等时,取绝对值的加数的符号,并用较大的绝对值减去较小的绝对值.(3)一个数与相加,仍得这个数.6.填表:7.计算:(1)(-180)+(+20)(2)(-15)+(-3)(3)5+(-5)(4)0+(-2)三、拓展导学8. 一个水利勘察队,第一天沿江向上游走了20千米,第二天向下游走了45千米,问此时勘察队在出发点的上游还是下游,距出发点多远?(利用有理数的加法列式解答)9.如果a<0,b>0,且a+b<0,借助于数轴比较a、b、-a、-b的大小(用“<”连接).四、检测促学10.一个正数与一个负数的和是()A.正数B.负数C.零D.以上三种情况都有可能11.两个有理数的和()A.一定大于其中的一个加数B.一定小于其中的一个加数C.大小由两个加数符号决定D.大小由两个加数的符号及绝对值而决定12.判断(1)两个有理数相加,和一定比加数大.()(2)绝对值相等的两个数的和为0.()(3)若两个有理数的和为负数,则这两个数中至少有一个是负数.( ) 13.计算:(1)(+2)+(—3) (2)(—2)+(—3) (3)(—13)+25(4)(—23)+0 (5)4.5+(—4.5) (6)1132⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭五、反思悟学14.有理数a 、b 之间的关系如图所示,借助于数轴和加法法则判断下列各式计算结果与0的大小:(1)a +b 0,(2)a +(-b ) 0,(3)(-a ) +b 0,(4)(-a ) +(-b ) 0. (第14题)考点综合专题:一元二次方程与其他知识的综合◆类型一 一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x 2-4x +3=0的根,则该三角形的周长可以是( )A .5B .7C .5或7D .102.(广安中考)一个等腰三角形的两条边长分别是方程x 2-7x +10=0的根,则该等腰三角形的周长是( )A .12B .9C .13D .12或93.(罗田县期中)菱形ABCD 的一条对角线长为6,边AB 的长是方程x 2-7x +12=0的一个根,则菱形ABCD 的周长为( )A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x +15=0的根,则△ABC的周长是.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x +k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m +1)x+m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是.12.(甘孜州中考)若函数y=-kx+2k+2与y=kx(k≠0)的图象有两个不同的交点,则k的取值范围是..◆类型三一元二次方程与二次根式的综合13.(达州中考)方程(m-2)x2-3-mx+14=0有两个实数根,则m的取值范围为()A.m>52B.m≤52且m≠2C.m≥3 D.m≤3且m≠214.(包头中考)已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k 的取值范围是 .考点综合专题:一元二次方程与其他知识的综合1.B 2.A 3.A 4.B 5.86.16 解析:设矩形的长和宽分别为x 、y ,根据题意得x +y =8,所以矩形的周长为2(x +y)=16.7.解:∵一元二次方程x 2+(2k -1)x +k 2+3=0有两个不相等的实数根,∴Δ>0,∴(2k -1)2-4(k 2+3)>0,即-4k -11>0,∴k<-114,令其两根分别为x 1,x 2,则有x 1+x 2=1-2k ,x 1·x 2=k 2+3,∵此方程的两个根分别是一直角三角形的两条直角边,且此直角三角形的斜边长为5,∴x 21+x 22=52,∴(x 1+x 2)2-2x 1·x 2=25,∴(1-2k)2-2(k 2+3)=25,∴k 2-2k -15=0,∴k 1=5,k 2=-3,∵k<-114,∴k =-3, ∴把k =-3代入原方程得到x 2-7x +12=0,解得x 1=3,x 2=4,∴直角三角形的两直角边分别为3和4.8.B9.D 解析:∵一元二次方程x 2-2x -m =0无实数根,∴Δ<0,∴Δ=4-4×1×(-m)=4+4m <0,∴m <-1,∴m +1<1-1,即m +1<0,m -1<-1-1,即m -1<-2,∴一次函数y =(m +1)x +m -1的图象不经过第一象限.故选D.10.B 11.-2 12.k>-12且k ≠013.B 14.k ≥1。
苏科版数学七年级上册2.5.1《有理数的加法与减法》教学设计一. 教材分析《有理数的加法与减法》是苏科版数学七年级上册第2章第5节的内容。
本节课主要介绍有理数的加法和减法运算规则。
教材通过具体的例子引导学生理解并掌握有理数加法和减法的基本法则,为学生提供丰富的数学活动,使他们在实践中感悟数学思想,培养运算能力。
二. 学情分析七年级的学生已经掌握了有理数的基本概念,对数学运算有一定的认识。
但他们在进行有理数加法和减法运算时,容易受到实数加减法的影响,出现计算错误。
因此,在教学过程中,教师需要关注学生的认知特点,引导学生正确理解有理数加法和减法的运算规则,克服运算中的困难。
三. 教学目标1.理解有理数加法和减法的运算规则,能正确进行计算。
2.培养学生的运算能力,提高他们解决实际问题的能力。
3.引导学生感悟数学思想,激发学习兴趣,增强自信心。
四. 教学重难点1.重点:有理数的加法和减法运算规则。
2.难点:理解并掌握有理数加法和减法运算的实质,能灵活运用运算规则解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入有理数加法和减法,让学生在实际情境中感受数学运算的重要性。
2.讲授法:讲解有理数加法和减法的运算规则,引导学生理解运算实质。
3.实践操作法:让学生通过自主探究、合作交流,总结加法和减法运算规则。
4.巩固练习法:设计有针对性的练习题,让学生在实践中掌握运算规则。
六. 教学准备1.教学PPT:制作含有丰富实例和练习题的PPT,辅助教学。
2.教学素材:准备相关的生活实例和练习题,用于引导学生进行实践操作。
3.教学用品:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用生活实例引入有理数加法和减法,激发学生的学习兴趣。
例如,小红买了一支铅笔花了3元,又买了一支钢笔花了5元,问小红一共花了多少钱?2.呈现(10分钟)讲解有理数加法和减法的运算规则,引导学生理解运算实质。
利用PPT展示具体例子,让学生在实践中感悟数学思想。
2.5有理数的加法与减法(1)教学目标:(1)知识与技能:了解加法的意义,会用有理数的加法法则进行运算。
(2)过程和方法:渗透数形结合和转化的数学思想,培养运用这种思想解决实际问题的能力。
(3)情感、态度与价值观:感知数学知识来源于生活,并应用于生活;利用转化思想,渗透事物是普遍联系的观点;培养依据法则做题的良好习惯。
教学重点:有理数加法法则的理解和应用教学难点:准确应用有理数加法法则教学过程一、情境创设引入小明在一条东西方向的跑道上,(1)先向东走了20米,又向东走了30米,能否确定他现在位于原来位置的哪个方向,与原来位置相距多少米?(2)若先向西走了20米,又向东走了30米,能否确定他现在位于原来位置的哪个方向,与原来位置相距多少米?你能把“先走了20米,又走了30米”的所有情况设想完整吗?二、自主探索我们先看一个简单的问题:甲乙两队进行足球比赛,如果甲队在主场以4∶1蠃了3球,在客场以1∶3输了2个球,那么两场累计净胜1球。
若蠃3球记作“+3”,输2球记作“-2”,则累计得球用数学表达式表示为:(+3)+(-2)=+1对于情境问题,可讨论如下:设向东为正,则向西为负(1)若两次都是向东走,通过实验我们知道他一共向东走了50米。
可表示为:(+20)+(+30)=+50,即小明在原来的位置的东方50米处。
(2)若两次都是向西走,由实验可知,小明位于西方50米。
可表示为:(-20)+(-30)=-50,(3)若第一次向东,第二次向西,通过实验可知,小明位于原来位置的西方10米处。
可表示为:(+20)+(-30)=-10(4)若第一次向西,第二次向东,通过实验可知,小明位于原来位置的东方10米处。
可表示为:(-20)+(+30)=+10总结与归纳:(1)(2)是同号两数相加,(3)(4)是异号两数相加。
同学们,能探索出两数相加的法则吗?有理数加法(addition)法则同号两数相加,取相同的符号,并把它们的绝对值相加。