人行索桁桥振动分析及舒适度评价
- 格式:pdf
- 大小:860.79 KB
- 文档页数:6
某行政楼钢桁架竖向振动舒适度分析摘要:近年来,随着科学技术的进步及经济的高速发展,建筑结构形式日益复杂,人们对于建筑品质的要求也越来越高。
由于新的结构分析、施工技术的进步以及新材料的运用,导致了现代建筑楼板结构更轻、更柔,跨度更大,整体结构在水平方向自振频率和楼板体系的竖向自振频率越来越低。
对于悬挑结构、大跨度楼盖、连廊、钢结构的楼盖,结构的自振频率较低,很可能与人的走动、跑跳的频率重合,进而引发结构发生共振。
结构的振动问题越来越成为结构分析、设计的焦点问题。
本文主要阐述了有关竖向振动舒适度分析的概念、计算方法以及评价标准,本文以某行政楼钢桁架楼面为例,采用SAP2000 软件对其竖向振动舒适度进行分析和评估。
关键词:大跨度楼盖舒适度稳态分析人行激励0 引言随着社会经济和人民生活水平的提高,人们不仅仅考虑楼板振动带来的结构安全性,而且也开始逐步考虑到生活在该建筑里的人们的舒适性问题。
目前,由于新的结构分析和设计技术的进步、施工技术的发展、新的高强轻质材料的运用、结构质量和阻尼的减少以及大空间结构在办公室、商场、体育馆、车站、展览馆等公共场所的运用,导致了现代建筑楼板结构更轻、更柔,跨度更大,整体结构在水平方向自振频率和楼板体系的竖向自振频率越来越低。
整体结构在外界各种作用例如风、机械振动的作用下,很容易产生较为显著的动力响应,这些动力响应将给人的工作、休息乃至身体健康带来巨大的影响;大跨度楼板结构在人的正常活动下,楼板体系很容易振动,而这些楼板振动将导致一些居住者的不舒适感,极大影响了建筑的使用功能。
近几年来,越来越多的工程由于这种原因而导致建筑物难以正常使用、出租和销售,个别建筑物进行了重新加固或改造甚至完全拆除。
楼盖舒适度控制已成为我国建筑结构设计中的一项重要工作内容,而在我们的结构设计工作中重视程度仍然不足,因此有必要对其进行学习、研究和探讨。
1 楼板竖向振动的设计标准关于舒适度主要有楼盖自振频率值及峰值加速度两项指标。
人行桥人致振动舒适度高效评估
朱前坤;孟万晨;张琼;马齐飞
【期刊名称】《振动.测试与诊断》
【年(卷),期】2022(42)5
【摘要】为克服时程分析耗时和占用巨大计算机资源的缺点,提出一种基于AISC Design Guide 11快速评估人行桥人致振动舒适度的频率响应函数(frequency response function,简称FRF)方法。
自建某钢-玻璃简支梁桥,通过对比试验采集和FRF方法计算的不同工况跨中峰值加速度,初步验证了FRF方法计算人行桥跨中峰值加速度的准确度。
并以某人行悬索桥为例,分别采用时程分析和FRF方法计算21种行人行走工况的跨中峰值加速度并进行舒适度评价。
结果表明,FRF方法与时程分析相比在节省94.89%的运算时间和87.2%计算机内存的前提下,计算的峰值加速度比时程分析结果大20%,舒适度评价结果偏保守,故FRF方法能对人行桥人致振动进行高效且保守的舒适度评估。
【总页数】8页(P945-951)
【作者】朱前坤;孟万晨;张琼;马齐飞
【作者单位】兰州理工大学防灾减灾研究所;兰州理工大学西部土木工程防灾减灾教育部工程研究中心
【正文语种】中文
【中图分类】TU312.1
【相关文献】
1.大跨径人行桥人致振动舒适度分析
2.某钢结构人行桥人致侧向振动及舒适度分析
3.大跨径人行桥人致振动舒适度分析
4.三角形截面钢管桁架人行桥人致振动舒适度评价
5.人行景观桥人致振动舒适度分析
因版权原因,仅展示原文概要,查看原文内容请购买。
考虑行人舒适度的空间缆索悬索桥车致振动控制0 引言高速地铁通过桥梁时,对结构的作用是随时间变化的周期性荷载,在某特定轨道不平顺谱影响下,可能使荷载激励频率与结构自振频率一致,引起结构共振。
共振导致结构产生较大的动力响应,影响桥上行人舒适度,此时有必要对结构进行振动控制。
许海亮[1]研究了路面不平整度激励下车路耦合振动,得出路面不平整度越差路面产生的振动位移也越大;Den Hartog[2]首次提出了STMD系统在结构受到简谐力作用下的最优参数求解方法;Han[3]等利用阻尼比相同、调谐频率等间隔分布的MTMD系统有效控制了结构振动;李春祥[4-5]对MTMD进行了大量动力分析,得出MTMD系统具有更好的有效性和鲁棒性;樊健生[6]研究发现人-桥共振时采用MTMD将比单个TMD 具有更高的减振效率;王文熙[7]研究了TMD系统在自身参数偏离下的减振有效性和可靠性问题,并给出增强TMD系统有效性和可靠性的一些建议。
张铎等[8]基于移动简谐荷载列模型,研究了地铁过桥时,谐振频率、荷载列移速等对共振效应的影响;肖新标等[9]研究了TMD 对不同速度简谐荷载激励下桥梁动力响应的控制效果;郭文华[10]等提出TMD可有效抑制高速铁路简支箱梁的共振效应;王浩等[11]研究了TMD对南京长江大桥车致振动竖向加速度的控制效果;靖仕元[12]对长沙磁浮工程道岔梁,采用多重调谐质量调谐阻尼器(TMD)的方式控制一定激振频率带的振动,达到控制频率能全覆盖;徐家云[13]研究得出TMD能够较好地减小重载铁路桥梁的振动响应。
已有车致振动控制方面的研究大都是基于铁路简支梁或者连续梁桥,对带有人行道的大跨度空间缆索悬索桥车致振动方面的研究较少。
目前一些城市市政桥梁不仅承受地铁轨道交通,还布置有人行道,对于这类桥梁,地铁过桥时振动问题突出,有必要对其行人走行舒适度进行研究。
本研究以某座跨度为(45+330+60) m的市政轨道交通悬索桥为背景,依据表1中德国EN03[14]规范规定的采用峰值加速度作为评价准则,研究地铁荷载作用下桥上行人的走行舒适度。
Science and Technology & Innovation ┃科技与创新·1·文章编号:2095-6835(2015)13-0001-02钢结构人行天桥舒适度设计及其控制研究赵光伟(铁道第三勘察设计院集团有限公司,天津 300251)摘 要:钢结构天桥是宽度为6~12 m 、跨度在27~40 m 之间的钢桁架结构体系,通常采用封闭式外围护系统。
根据《城市人行天桥与人行地道技术规范》,人行天桥竖向自振频率需>3 Hz ,以满足舒适度的要求,已成为钢结构人行天桥的主要设计控制因素。
通过弹性时程分析得出的激励荷载、桥面系的质量比、结构动力时程响应的对应关系,分析了满足舒适度要求的最小桥面系质量,并以此作为结构舒适度设计的补充控制指标。
关键词:钢结构;人行天桥;人行激励;舒适度中图分类号:U441+.3 文献标识码:A DOI :10.15913/ki.kjycx.2015.13.001随着我国高铁四纵四横骨干网的建成,未来高铁发展将以大都市区市郊通勤铁路和城市群城际铁路为主。
因此,中小型客运站房的建设数量将越来越多,钢结构人行天桥作为主要的跨线设施类型将被大量采用。
人行天桥在人群行走的作用下可能产生较大的振动,影响行走的舒适度。
而现行规范中的挠度限值和自振频率限值无法很好地评价结构振动的舒适度。
1 结构模态分析为了分析人行天桥的固有动力特性,采用MIDAS GEN 建立了人行天桥的有限元模型,图1为天桥结构计算模型简图,对天桥结构进行了模态分析。
振动质量源为结构构件质量、建筑装修质量和50%人群荷载质量。
以《城市人行天桥与人行地道技术规范》中规定的人行天桥竖向自振频率>3 Hz 为舒适度设计控制指标时,要求天桥结构具有较大的竖向弯曲刚度,其前10阶基频和主要振动模态如表1所示。
第一阶竖向振动为人行天桥竖向弯曲振动,振动频率为3.56 Hz ,竖向自振频率远离人群步行频率。
桥梁振动与舒适性评价研究桥梁作为现代交通运输的重要组成部分,承载着车辆和行人的通行。
然而,桥梁的振动问题一直是人们关注的焦点。
桥梁振动不仅对桥梁的安全性和耐久性有着重要影响,还直接关系到行人和车辆的舒适性。
首先,我们来了解一下桥梁振动的原因和特点。
桥梁振动一般可以分为自振动和受迫振动两种情况。
自振动是指桥梁在自身固有频率下发生的振动,通常由于外界冲击或风荷载的激励引起。
受迫振动则是由通过桥面的车辆荷载产生的。
桥梁振动的特点是频率高、振幅小以及能量传播范围广。
桥梁振动对舒适性的评价成为了研究的重点。
传统的评价方法主要基于桥梁振动的瞬态响应和振动加速度值。
比如,人们可以使用加速度传感器在桥梁上进行振动监测,然后利用振动加速度指标评价桥梁的舒适性。
然而,这种方法存在一些局限性,例如无法考虑到不同振动频率对人体的影响,以及无法全面评价桥梁的舒适性。
为了解决这些问题,研究人员提出了一种新的舒适性评价方法,即基于人体主观感受的舒适性评价。
这种评价方法考虑到了人体对不同频率振动的感知差异,更加符合实际情况。
具体而言,研究人员可以通过实验让被试者在不同频率的振动下进行主观评价,并分析他们的感受差异。
通过对多个被试者的评价结果进行统计分析,可以得到一个更加客观的桥梁舒适性评价指标。
除了评价方法的改进,桥梁振动舒适性研究还涉及到振动控制技术的应用。
振动控制技术是指通过改变桥梁结构的固有特性或利用控制装置来减小桥梁振动的方法。
目前,常用的振动控制技术包括主动控制、被动控制和半主动控制。
主动控制是指利用主动控制装置实时感知振动信号,并通过反馈控制系统产生抗振力来减小振动的方法。
被动控制则是通过在桥梁结构中引入特定材料或装置来吸收、分散振动能量。
而半主动控制则是结合了主动和被动控制的特点,以实现更好的振动控制效果。
桥梁振动舒适性评价的研究还可以结合人体生物力学、神经科学等领域的知识。
例如,通过对人体肌肉神经反应和振动信号的研究,可以深入理解桥梁振动对人体的影响机制。
某大跨人行桥人致振动舒适性分析及减振设计摘要:当人行桥自振频率位于人群荷载激振频率范围内时,结构将产生共振反应,影响行人正常行走的舒适度。
本文结合一大跨径的人行桥结构,采用Midas civil对该桥进行了人致振动舒适性评估,并对采用的减振措施进行了数值模拟分析,分析结果表明桥梁采用TMD能够在人行桥发生共振时消耗大部分的结构振动能量,因此通过增加结构阻尼的方法控制人行桥振动是最经济和最有效的方法之一。
关键词:人行桥;人致振动;舒适度;减振控制由于城市景观或景区景观的需要,大跨度的人行桥越来越多地应用于城市或景区人行桥梁建设中。
一般人行桥的桥宽较小,人行桥跨径越大,结构越轻柔,振动基频必然越来越小,当桥梁的振动基频与桥上行人的行走频率相接近时,则桥梁容易发生过度振动的情况,如著名的英国伦敦千禧桥[1]。
出于景观及经济方面考虑,人行桥构件截面高度不宜过大,所以一般大跨径人行桥振动基频已很难满足现行规范要求。
人行桥的人致振动是影响桥梁的使用性能的主要因素,如采用规范规定的振动频率评判标准,将能避免由于人行荷载所引发的不利振动情况,而对于结构基频已经不能满足规范要求的情况,如果人行荷载所引发的桥梁振动可以满足人行舒适性要求的话,也可以认为桥梁动力特性满足要求。
根据国外的人行桥规范BS5400(BD/01)和EN 1990,当人行桥竖向基频小于3Hz,侧向基频小于1.5Hz时应进行人致振动分析和评估;当竖向基频介于3~5Hz,侧向基频介于1.5~2.5Hz时,应酌情进行人致振动舒适性评估。
本文采用Midas civil对某大跨径人行桥进行动力特性分析和人致振动舒适性分析,再根据舒适性评估结果来决定是否对桥梁结构采取减振措施,以保证人行桥在使用过程中的人行舒适性满足要求,为同类型的桥梁工程设计提供了参考,具有一定的参考价值。
1 人致振动舒适性评估1.1 工程概况某人行桥桥宽5米,桥梁采用结构形式为28+50+100+50+28=256米预应力混凝土梁拱组合体系桥。
《大跨简支钢桁梁人行桥人致振动与减振控制研究》篇一大跨简支钢桁梁人行桥致振动与减振控制研究一、引言随着城市交通的快速发展,大跨简支钢桁梁人行桥作为一种重要的交通设施,其安全性与舒适性日益受到人们的关注。
其中,人行桥在行人行走过程中产生的振动问题,不仅影响行人的舒适度,还可能对桥梁结构的安全造成潜在威胁。
因此,对大跨简支钢桁梁人行桥的人致振动与减振控制进行研究,具有重要的理论意义和实际应用价值。
二、人行桥的振动问题大跨简支钢桁梁人行桥的振动问题主要由行人的行走引起。
这种振动通常表现为桥面的局部振动和整体振动,其中整体振动对桥梁结构的安全影响更为显著。
人行桥的振动问题主要受行人特性、桥梁结构特性以及环境因素等多方面因素的影响。
(一)行人特性行人的步频、步速、步幅等行走特性都会对桥面的振动产生影响。
行人的行走行为具有随机性,不同行人的行走特性存在差异,这使得人行桥的振动问题变得更加复杂。
(二)桥梁结构特性桥梁结构的刚度、质量、阻尼等特性对人行桥的振动有着决定性影响。
简支钢桁梁人行桥的结构特性使得其更容易受到行人的影响而产生较大的振动。
(三)环境因素风力、温度等环境因素也会对人行桥的振动产生影响。
特别是在风力作用下,桥面的振动可能更加明显。
三、减振控制技术研究针对大跨简支钢桁梁人行桥的振动问题,减振控制技术的研究显得尤为重要。
目前,减振控制技术主要包括被动控制、主动控制以及混合控制等。
(一)被动控制技术被动控制技术主要通过在桥梁结构中设置减振装置,如阻尼器、调谐质量阻尼器等,来吸收和消耗桥面的振动能量,从而达到减振的目的。
这种技术具有结构简单、可靠性高等优点。
(二)主动控制技术主动控制技术则是通过传感器、控制系统等设备,实时监测桥面的振动情况,并通过作动器等设备对桥面施加反方向的控制力,从而抵消桥面的振动。
这种技术具有减振效果显著、适用范围广等优点,但需要较高的技术支持和成本投入。
(三)混合控制技术混合控制技术则是将被动控制和主动控制技术相结合,取长补短,以达到更好的减振效果。