spss 均值的比较与检验
- 格式:ppt
- 大小:1.15 MB
- 文档页数:29
在统计学中,我们往往从样本的特性推知随机变量总体的特性。
但由于总体中个体之间存在差异,样本的统计量和总体的参数之间往往会有误差。
因此,均值不相等的样本未必来自不同分布的总体,而均值相等的样本未必来自有相同分布的总体。
也就是说,如何从样本均值的差异推知总体的差异,这就是均值比较的内容。
SPSS提供了均值比较过程,在主菜单栏单击“Analyze”菜单下的“Compare Means”项,该项下有5个过程,如图4-1。
平均数比较Means过程用于统计分组变量的的基本统计量。
这些基本统计量包括:均值(Mean)、标准差(Standard Deviation)、观察量数目(Number of Cases)、方差(Variance)。
Means过程还可以列出方差表和线性检验结果。
[例子]调查了棉铃虫百株卵量在暴雨前后的数量变化,统计暴雨前和暴雨后的统计量,其数据如下:暴雨前 110 115 133 133 128 108 110 110 140 104 160 120 120暴雨后 90 116 101 131 110 88 92 104 126 86 114 88 112该数据保存在“DATA4-1.SAV”文件中。
1)准备分析数据在数据编辑窗口输入分析的数据,如图4-2所示。
或者打开需要分析的数据文件“DATA4-1.SAV”。
图4-2 数据窗口2)启动分析过程在SPSS主菜单中依次选择“Analyze→Compare Means→Means”。
出现对话框如图4-3。
图4-3 Means设置窗口3)设置分析变量从左边的变量列表中选中“百株卵量”变量后,点击变量选择右拉按钮,该变量就进入到因子变量列表“Dependent List:”框里,用户可以从左边变量列表里选择一个或多个变量进行统计。
从左边的变量列表中选中“调查时候”变量,点击“Independent List”框左边的右拉按钮,该变量就进入分组变量“IndependentList”框里,用户可以从左边变量列表里选择一个或多个分组变量。
spss比较四组数据的均衡性
1、打开数据,找到要对比的四组数据量。
2、然后点击分析-比较均值-配对样本T检验,然后将四组数据放进Variable1和Variable2之中,然后按确定,之后就会出现数据列表,但是对比反映得还不够直观明显。
3、然后双击成对样本统计量。
会出现设置栏工具模式。
然后按最右边的统计图的图标。
可以选择不同的形状来显示。
4、然后会出现条形图,双击条形图,会弹出一个单独的窗口,我们按编辑-选择X轴,可以看到不同的参考值。
这一题只需要对比到均值,所以我们把其他的删除掉就好,然后按确定。
5、然后按编辑-选择Y轴,填变量的范围,然后再按元素,显示数据,就可以看到它所对应的数值。
这样的对比图就很清晰地反映两组变量的关系。
一、相关分析1、参数相关分析Pearson相关系数,又称积矩相关系数,适用于连续分布或正态分布变量,是最常用的参数相关分析。
2、非参数相关分析当资料不服从双变量正态分布或总体分布未知,或原始数据用等级表示时,宜用spearman 或kendall相关。
Spearman,等级相关,适合定序变量或不满足正态分布假设的等间隔数据,适用于连续等级资料;Kendall,等级相关,适合定序变量或不满足正态分布假设的等间隔数据,适用于合并等级资料;(1)Spearman相关分析Spearman相关系数又称秩相关系数,是根据等级资料研究两个变量间相关关系的方法。
它是依据两列成对等级的各对等级数之差来进行计算的,所以又称为“等级差数法”。
它对数据条件的要求没有积差相关系数严格,只要两个变量的观测值是成对的等级评定资料,或者是由连续变量观测资料转化得到的等级资料,不论两个变量的总体分布形态、样本容量的大小如何,都可以用斯皮尔曼等级相关来进行研究。
它是利用两变量的秩次大小作线性相关分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些。
对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些。
Pearson相关系数的计算公式可以完全套用Spearman相关系数计算公式,但公式中的x和y用相应的秩次代替即可。
(2)Kendall相关分析肯德尔(Kendall)系数又称和谐系数,是表示多列等级变量相关程度的一种方法。
适用这种方法的数据资料一般是采用等级评定的方法收集的,即让K个评委(被试)评定N件事物,或1个评委(被试)先后K次评定N件事物。
等级评定法每个评价者对N件事物排出一个等级顺序,最小的等级序数为1 ,最大的为N,若并列等级时,则平分共同应该占据的等级,如,平时所说的两个并列第一名,他们应该占据1,2名,所以它们的等级应是1.5,又如一个第一名,两个并列第二名,三个并列第三名,则它们对应的等级应该是1,2.5,2.5,5,5,5,这里2.5是2,3的平均,5是4,5,6的平均。