高考中简易逻辑考点汇总
- 格式:doc
- 大小:157.00 KB
- 文档页数:3
第一章集合与简易逻辑第一节集合题型1、元素与集合的关系元素与集合的关系:属于和不属于。
常用数集的表示:C —复数集;R —实数集;Q —有理数集;Z —整数集;N —自然数集;N+或N*—正整数集。
1、【多选】下列关系中正确的是()A.{}102,∉-B.(){}2|42x y x =∈,C.R ∈πD.Φ∈02、【2022·全国乙卷】设集合{}54321,,,,=U ,集合M 满足{}31,=M C U ,则()A.M ∈2B.M ∈3C.M ∉4D.M∉53、【2018·北京】已知集合(){}241|≤-+≥-=ay x y ax y x y x A ,>,,,则()A .()A R a ∈∈∀12,,B .()AR a ∉∈∀12,,C .当且仅当0<a 时,()A ∉12,D .当且仅当23≤a 时,()A ∉12,4、若集合{}2024||≤∈=x N x x P ,45=a ,则()A.P a ∈B.{}P a ∈C.{}Pa ⊆D.Pa ∉题型2、集合相等集合元素的特征:确定性、互异性、无序性。
集合相等,集合中元素完全相同,集合中元素之和相等,集合中元素之积相等。
1、若},,0{},,1{2b a a ab a +=,求20242024b a+的值.【答案:1】2、已知集合,,且B A },,0{B },,,{A ==-=y x y x xy x 求实数x 与y 的值.【答案:x=y=-1】3、设R b a ∈,,集合b}ab {0a}b a {1,,,,=+,则=-a b ()【答案:C 】A.1B.-1C.2D.-24、【2014·福建】若}2,1,0{},,{=c b a ,且下列三个关系:①2≠a ;②2=b ;③0≠c 有且只有一个正确,求c b a ++10100的值.5、集合},2,0{a A =,},1{2a B =.若}16,4,210{,,=B A 则a 的值为()【答案:D 】A .0B .1C .2D .4题型3、集合之间的基本关系集合与集合之间的关系:①包含关系,②相等关系,③真子集关系。
高考简单逻辑知识点高考作为我国重要的教育考试,占据着很大的分量。
在备考过程中,逻辑知识是非常重要的一部分。
掌握逻辑知识不仅能够帮助我们在高考数理化中拿到更高的分数,更能够培养我们的思辨能力和逻辑思维能力。
本文将介绍高考中的一些简单逻辑知识点,希望能够帮助广大考生更好地备考。
1. 命题逻辑命题逻辑是逻辑学的一个重要分支,主要研究命题之间的逻辑关系。
在高考中,命题逻辑常常通过真值表的方式进行表示和计算。
其中,常见的逻辑运算包括非、与、或、异或等。
- 非运算:非运算即否定运算,用符号"¬"表示,表示命题的否定关系。
例如,命题p的非运算为¬p。
- 与运算:与运算即合取运算,用符号"∧"表示,表示两个命题同时成立的关系。
例如,命题p与命题q的与运算为p∧q。
- 或运算:或运算即析取运算,用符号"∨"表示,表示两个命题中至少一个成立的关系。
例如,命题p与命题q的或运算为p∨q。
- 异或运算:异或运算即互斥析取运算,用符号"⊕"表示,表示两个命题中只有一个成立的关系。
例如,命题p与命题q的异或运算为p⊕q。
2. 谬误与演绎推理谬误是指由于陈述语句的错误或逻辑推理的错误而导致结论不正确的论证过程。
在高考中,常常会涉及到辨析谬误和进行演绎推理的题目。
- 谬误的分类:常见的谬误类型包括伪命题、偷换概念、对人负责、错误的因果关系等。
了解这些谬误类型能够帮助我们更好地辨别和纠正谬误。
- 演绎推理:演绎推理是通过已有的前提,根据逻辑规则得出结论的过程。
在高考中,涉及到演绎推理的题目多数是通过应用条件、充分条件、必要条件等逻辑关系进行推理。
3. 归纳与假设演绎归纳是从具体事实中推断出一般性结论的思维方式,假设演绎则是从一般性结论推演出具体情况。
在高考中,常常会遇到这些题目,需要我们灵活运用归纳和假设演绎的思维方式。
- 归纳:归纳是从特殊到一般的推理过程。
必备逻辑知识点总结高中一、论证方法1. 归纳论证:从个别到一般的推理方式,通过一系列具体事实或观察结果来推断一般规律的方法。
例如:这只鸟飞不起来,那只鸟飞不起来,那只鸟也飞不起来。
可以得出结论:所有这种鸟飞不起来。
2. 演绎论证:从一般到个别的推理方式,通过已知的普遍规律来推断具体情况的方法。
例如:所有人类都是动物,张三是人类,所以张三是动物。
3. 类比论证:通过比较两个事物的相似性来推断它们在某些方面也是相似的方法。
例如:水果和蔬菜都是植物,水果含有丰富的维生素,蔬菜也含有丰富的维生素。
二、命题逻辑1. 命题与连词:命题是陈述句,可以肯定、否定或具争议。
连词包括合取、析取、蕴涵和等价等关系。
2. 命题的等值变形:通过等值变形,可以将一个命题逻辑表达式转化为另一个等效的表达式。
例如:P∨Q等价于¬P→Q。
3. 命题的合取范式和析取范式:合取范式是一个命题逻辑表达式由若干个合取式的合取构成,析取范式是一个命题逻辑表达式由若干个析取式的析取构成。
三、谬误与辨析1. 高中生常见的逻辑谬误:包括悖论谬误、偷换概念谬误、诉诸情感谬误等。
2. 辨析:进行推理时要澄清命题的含义,分清各种命题和连词之间的逻辑关系,识别并纠正谬误。
四、推理规则1. 假言推理:若p→q为真,且p为真,则q为真。
2. 拒取式推理:若p→q为真,且q为假,则p为假。
3. 假言三段论:若p→q为真,且q→r为真,则p→r为真。
五、集合与命题1. 集合:集合是由一些确定的、有共同特征的对象组成的一个整体,包括并集、交集和补集等概念。
2. 命题:具有真假性的陈述句,包括简单命题和复合命题等概念。
六、范畴逻辑1. 范畴:指人们在日常生活和工作中习惯使用的思维模式和理论构造,包括时间、空间、数量、关系、动作、状态等范畴。
2. 范畴逻辑:通过范畴之间的关系来进行推理和论证。
以上是高中阶段必备的逻辑知识点总结,逻辑规范思维是高中学习的重要内容之一,学生们应该在平时积极实践逻辑思维,加强逻辑推理的训练,提高逻辑思维能力,从而更好地学习和生活。
第一章 集合、简易逻辑考试内容:集合.子集.补集.交集.并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求:(1)理解集合、子集、补集、交集、并集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义,理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义.知识结构:基本方法和数学思想1.必须弄清集合的元素是什么,是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?… ;2.数形结合是解集合问题的常用方法,解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决;3.(1)含n 个元素的集合的子集个数为2n ,真子集(非空子集)个数为2n -1;(2);B B A A B A B A =⇔=⇔⊆(3);)(,)(B C A C B A C B C A C B A C I I I I I I ==4、一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<;121212,()()0()x x x x x x x x x x <>⇔--><或.5.一个语句是否为命题,关键要看能否判断真假,陈述句、反诘问句都是命题,而祁使句、疑问句、感叹句都不是命题;6.判断命题的真假要以真值表为依据。
原命题与其逆否命题是等价命题 ,逆命题与其否命题是等价命题 ,一真俱真,一假俱假,当一个命题的真假不易判断时,可考虑判断其等价命题的真假;7.判断命题充要条件的三种方法:(1)定义法;(2)利用集合间的包含关系判断,若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;(3)等价法:即利用等价关系"A B B A "⇒⇔⇒判断,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法;高考热点分析集合与简易逻辑是高中数学的重要基础知识,是高考的必考内容.本章知识的高考命题热点有以下两个方面:一是集合的运算、集合的有关述语和符号、集合的简单应用、判断命题的真假、四种命题的关系、充要条件的判定等作基础性的考查,题型多以选择、填空题的形式出现;二是以函数、方程、三角、不等式等知识为载体,以集合的语言和符号为表现形式,结合简易逻辑知识考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现.。
高考逻辑用语知识点总结高考逻辑用语是高考考试中的一项重要内容,要求考生熟练掌握各种逻辑用语的用法和应用。
下面将对高考逻辑用语的几个知识点进行总结和归纳,以帮助考生更好地备考。
一、因果关系因果关系是逻辑推理过程中的一种关系,表示某事件或事物的发生是由于某种原因而引起的。
在考试中,常常需要辨析因果关系。
例如,我们在阅读理解题中会经常遇到因果关系的判断。
要准确判断因果关系,有几个关键点需要注意:1. 寻找事件之间的时间先后关系:一般来说,发生在前的事件是原因,发生在后的事件是结果。
2. 判断是否存在必然的逻辑联系:原因和结果之间必然存在关联,即原因发生才能导致结果发生。
3. 排除其他可能性:需要排除其他原因可能导致结果发生的可能性。
二、对比关系对比关系是逻辑推理过程中常常遇到的一种关系,表示两个或多个事物之间的相似与不同之处。
在考试中,对比关系常常被用于解释题目或对文章进行整体结构分析。
要准确理解对比关系,需要注意以下几点:1. 分析对比对象的相似和不同之处:可以通过列举事物特性、对比其优缺点等方法来进行分析。
2. 掌握对比关系的表达方式:比如使用连词“而、然而、相反、与此相反”等表达对比关系。
三、条件关系条件关系是逻辑推理中常常涉及的一种关系,表示某种条件下才能得到某种结果。
在考试中,条件关系常常用于解决命题和推理题。
要准确判断条件关系,需要注意以下几点:1. 确定条件和结果之间的关系:通过分析条件和结果之间的逻辑联系来准确判断条件关系。
2. 排除无关条件:需要排除与结果无关的条件,以确保逻辑推理的准确性。
四、递进与总结关系递进和总结关系是逻辑推理中常用的一种关系,用于表示事物之间递进或总结的关系。
在考试中,递进和总结关系常用于解释文章的发展脉络和归纳文章的主旨。
要理解递进和总结关系,需要注意以下几点:1. 掌握递进关系的表达方式:例如使用连词“而且、此外、进一步”等来表示事物之间的递进关系。
2. 掌握总结关系的表达方式:例如使用连词“所以、因此、综上所述”等来表示事物之间的总结关系。
高考简易逻辑考点分析近几年高考中简易逻辑试题是以考查基本概念、性质与其它知识相结合为主的客观题形式出现,难度低,重基础.学习中只要夯实基础,把握逻辑联结词的含义、充要条件的意义、四种命题及相互关系,针对不同试题的考查形式,应用不同的求解策略,就能适应高考的考查要求.考点一:逻辑联结词与复合命题真假的判断对逻辑联结词的考查一般是通过对复合命题的真假判断来实现的,解这类问题要弄清复合命题中所用的逻辑连结词和简单命题及复合命题的构成形式,准确地运用真值表进行判断.例1命题p :若a ,b ∈R ,则|a|+|b|>1是|a +b|>1的充分而不必要条件.命题q :函数y =|x -1|-2的定义域是(-∞,-1]∪[3,+∞).则( D )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真 解析:∵|a +b|≤|a|+|b|,|a|+|b|>1,∴|a +b|不一定大于1,∴命题p 为假; 而y =|x -1|-2的定义域由|x -1|-2≥0得(-∞,-1]∪[3,+∞),∴命题q 为真,综上可知p 假q 真,故选D .评注:判断复合命题的真,首先要判断所涉及的命题的真假,然后再利用真值表进行判断.考点二﹑四种命题的关系与其真假判断此类问题求解时一要明确简单命题的四种命题的组成形式,二要能运用所学知识去判断命题或其等价命题的真假性.判断一个命题真假,可根据定义直接判断,也可利用原命题及其逆否命题的等价关系求解;证明一个结论成立时,也常转化为证明其逆否命题成立.例2命题“若a >b ,则2a >2b -1”的否命题为______a ≤b ,则2a ≤2b -1______. 解析:对原命题的条件与结论同时进行否定即可得到否命题:“若a ≤b ,则2a ≤2b -1”. 评注:本题考查了命题间的关系,由原命题写出其否命题.根据原命题写出其它三种形式的命题时,要注意条件与结论的“换位”与“换质”关系:两个命题是条件与结论换位的,称为互逆命题;两个命题是条件和结论换质的,称为互否命题;两个命题是条件和结论既换位又换质的,称为互逆否命题.例3在空间中:①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则两条直线是异面直线.以上两个命题中,逆命题为真命题的是______________.解析:①的逆命题是“若四点中任何三点都不共线,则这四点不共面”.显然空间四点中任三点不共线时也有四点共面的可能,故①的逆命题是假命题;②的逆命题是“若两条直线是异面直线,则这两条直线没有公共点”.由异面直线的定义知异面直线没有公共点,故②的逆命题是真命题.评注:四种命题是高考中的一个重要内容,学习四种命题关键是理解命题结构,对四种命题的研究主要是采用“若p 则q ”的形式,对从表面上看不具有这种形式的命题,在解决问题时一般要将其结构改写成“若p 则q ”的形式,再对问题作进一步的探讨.例4已知三个不等式:①ab >0,②bc ﹣ad >0,③c a ﹣d b>0,(其中a ,b ,c ,d 均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个数为 ( D )A.0B.1C.2D.3解析:将条件③⇔bc ﹣ad ab>0,则由不等式的性质易知,这三个不等式任意两个组合在一起均可推导出另一个成立,故选D.评注:解答本题的首先要利用条件构成“若p ,则q ”的形式中的条件“p ”,进而再利用相关的知识进行判断.考点三﹑充要条件的判断在高考中对充要条件的考查主要体现为两个方面:一是判断指定的条件与结论之间的条件关系,主要分为四种关系,即充分不必要、必要不充分、充要条件、既不充分也不必要条件;二是根据探求某结论成立时的充要条件、充分不必要条件或必要不充分条件.例4 “m =12”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件解析:当m =12时,两直线斜率分别为-53与35,其乘积为1-从而可得两直线垂直,当m =-2时两直线一条斜率为0一条斜率不存在,但两直线仍然垂直.因此m =12是题目中给出的两条直线垂直的充分但不必要条件,故选B .评注:判断充要条件从两方面考虑:一是解这类问题必须明确哪个是条件,哪个是结论;二是再看是由条件推出结论,还是由结论推出条件,应用充分不必要、必要不充分、充要条件的定义加以证明.例2一元二次方程ax 2+2x +1=0(a ≠0)有一个正根和一个负根的充分不必要条件是( )A.a <0B.a >0C.a <﹣1D.a >1解析:如果一元二次方程ax 2+2x +1=0(a ≠0)有一个正根和一个负根,则两个根的积为负数,即1a <0,所以a <0,由此可知“一元二次方程ax 2+2x +1=0(a ≠0)有一个正根和一个负根”⇒/“a <﹣1”,但“a <﹣1”⇒/一元二次方程ax 2+2x +1=0(a ≠0)有一个正根和一个负根”.故选C.评注:本题还可以利用集合的观点进行求解:对于集合A 、B ,若A ⊂__B ,则A 是B 的充分条件,B 是A 的必要条件;②若A ≠⊂B ,则A 是B 的充分非必要条件,B 是A 的必要非充分条件;③若A=B ,则A 是B 的充要条件;④若A ⊄B ,A/⊃B ,则A 是B 的既不充分也不必要条件.因此本题还可以利用集合归结为:方程有一个正根和一个负根时参数a 构成的集合{a|a <0}是否是所给的选项形成的集合的真子集.。
简易逻辑知识点1. 逻辑的基础概念- 命题:一个可以判断为真或假的陈述。
- 论证:由一个或多个前提和一个结论组成的逻辑结构。
- 推理:从已知信息推导出新信息的过程。
2. 逻辑运算- 否定(NOT):对一个命题进行否定,如果原命题为真,则否定后为假;如果原命题为假,则否定后为真。
- 合取(AND):两个命题都为真时,合取的结果才为真。
- 析取(OR):两个命题中至少有一个为真时,析取的结果为真。
- 蕴含(IMPLIES):如果前提为假或结论为真,则蕴含的命题为真;仅当前提是真而结论为假时,蕴含的命题为假。
3. 逻辑形式- 条件语句:一种表达式,包含条件(如果...)和结果(那么...)。
- 逻辑等价:两个逻辑表达式在所有可能情况下都有相同的真值。
- 逻辑谬误:在推理过程中出现的逻辑错误,导致无效的论证。
4. 逻辑证明- 直接证明:通过一系列已知的命题直接推导出要证明的命题。
- 间接证明:通过证明相反假设导致的矛盾来证明原命题。
5. 逻辑的分类- 形式逻辑:研究逻辑形式和推理规则的学科。
- 非形式逻辑:研究日常语言中的推理和论证,不严格遵循形式逻辑的规则。
6. 逻辑的应用- 计算机科学:逻辑用于设计算法、编程语言和人工智能。
- 哲学:逻辑用于构建哲学理论和分析论证。
- 数学:逻辑是数学推理的基础,用于证明定理和公式。
7. 逻辑的局限性- 逻辑不能处理所有类型的推理,如基于直觉、情感或价值判断的推理。
- 逻辑无法解决所有问题,特别是那些需要创造性和想象力的问题。
8. 逻辑的学习方法- 练习:通过解决逻辑谜题和练习题来提高逻辑推理能力。
- 阅读:阅读逻辑和哲学相关的书籍和文章,了解逻辑的历史和应用。
- 讨论:与他人讨论逻辑问题,通过交流不同的观点来提高理解力。
以上是简易逻辑知识点的概述,每个知识点都可以进一步深入学习和探索。
逻辑是理解世界和解决问题的重要工具,掌握基本的逻辑知识对于提高思维能力和决策质量至关重要。
高中数学简易逻辑知识点
摘要:
一、简易逻辑的概念
二、命题与命题联结词
三、逻辑运算规则
四、逻辑表达式的化简
五、逻辑运算的应用
正文:
简易逻辑是高中数学中的一个重要知识点,它主要研究逻辑推理的基本方法和原则。
通过学习简易逻辑,我们可以更好地理解和把握逻辑思维的本质,提高我们的推理能力。
首先,我们需要了解简易逻辑的概念。
简易逻辑,又称直觉逻辑或日常逻辑,是研究人们思维形式和推理规律的逻辑学科。
它以自然语言为载体,通过对命题和命题联结词的分析,探讨推理的基本规律。
命题是简易逻辑的基本概念,它是对事物性质或关系的判断。
命题可以分为肯定命题和否定命题,两者之间的联结词有“且”、“或”、“非”等。
通过命题联结词的组合,我们可以形成复杂的逻辑表达式。
逻辑运算规则是简易逻辑的核心内容。
逻辑运算主要包括合取、析取、蕴含、等价等。
这些运算规则可以帮助我们更好地理解和把握逻辑表达式的意义,从而进行有效的推理。
逻辑表达式的化简是简易逻辑的重要任务之一。
通过对逻辑表达式进行化
简,我们可以简化推理过程,提高推理效率。
化简方法主要包括:去除蕴含符号、否定前提等。
最后,逻辑运算在实际应用中有着广泛的应用。
例如,在计算机科学中,逻辑运算被用于编程和算法设计;在哲学和人文社会科学中,逻辑运算被用于分析和论证观点。
掌握简易逻辑的知识,可以提高我们的逻辑思维能力,更好地应对生活和工作的挑战。
总之,简易逻辑是高中数学中的一个重要知识点,它主要研究逻辑推理的基本方法和原则。
期末复习考点汇总(四)第一章逻辑考点一、四种命题及其相互关系(1)原命题与逆否命题同真假(2)逆命题与否命题同真假(特别提示:当否命题不好判断真假时,可考虑逆命题)(3)命题的否定与否命题的区别例1、下列有关命题的说法正确的是A.命题“若,则”的否命题为:“若,则”;B.命题“”的否定是“,,”;C.命题“若,则”的逆否命题是假命题;D.已知,命题“若是奇数,则这两个数中一个为奇数,另一个为偶数”的逆命题为假命题.【答案】B例2、命题“所有能被2整除的数都是偶数”的否定是A.所有不能被2整除的数都是偶数B.所有能被2整除的数都不是偶数C.存在一个不能被2整除的数是偶数D.存在一个能被2整除的数不是偶数【答案】D考点二、充分条件、必要条件做这类题主要由两种方法:(1)把命题P,q分别化为最简,再看谁的范围大,谁的范围小;(2)当方法一困难时,利用前推后,后推前的原则;(3)利用原命题与逆否命题等价的原则做题,如是成立的()等价的问法为q是p成立的();(4)注意语序的变化,例3、“m=4”是“直线(m+2)x+2my-1=0与直线(m+)x+(m+2)y+3=0相互平行”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要【答案】A 例4、命题p:|x|<1,命题q:,则是成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B考点三、或、且、非的正确理解对真值表的理解(1)p或q 有真必真(2)p且q 有假必假(3)p真,非p为假例5、已知命题“或”为真,“非”为假,则必有()A.真假 B.真假C.真真 D.真,可真可假【答案】D例6、已知命题R,R,给出下列结论:①命题“”是真命题②命题“”是假命题③命题“”是真命题④命题“”是假命题, 其中正确的是( )A.②④ B.②③ C.③④ D.①②③【答案】B考点四全称量词、存在量词主要靠如下三种题型(1)、命题“对任意的32,10x R x x∈-+≤”的否定是().A存在32,10x R x x∈-+>.B存在32,10x R x x∈-+≤.C不存在32,10x R x x∈-+≤.D对任意的32,10x R x x∈-+>错解B:对含有量词的命题的否定,片面的认为只否定结论,不否定量词(2)、若命题“,x R∃∈使2(1)10x a x+-+<”是假命题,则实数a 的取值范围为 .错解),3()1,(+∞⋃--∞ 不能认真审题,对题意一知半解解做,对含有量词的命题的本身意义不理解 3、(1)命题“存在一个三角形没有外接圆”的否定是_____________________________________(2)命题“零向量与任意的向量平行”的否定是______________________________________ (3)命题“双曲线的离心率小于1”的否定是_____________________________________复习中的易错题10、若实数b a ,满足0,0,a b ≥≥且0ab =,则称a 与b 互补,记b a b a b a --+=22),(ϕ,那么(),0a b ϕ=是a 与b 互补的 条件 ( ).A 必要不充分 .B 充分不必要 .C 充要.D 即不充分也不必要错解A :逻辑性不强,忽视0≥+b a 这一隐藏条件若命题“,x R ∃∈使2(1)10x a x +-+<”是假命题,则实数a 的取值范围为 .错解),3()1,(+∞⋃--∞ 不能认真审题,对题意一知半解解做,对含有量词的命题的本身意义不理解16.(2011年南昌一模)下列命题错误的是________(1).已知p :1x +1>0,则¬p :1x +1≤0(2).在△ABC 中,角A 、B 、C 的对边分别是a ,b ,c ,则a >b 是cos A <cos B 的充要条件(3).命题p :对任意的x ∈R ,x 2+x +1>0,则¬p :对任意的x ∈R ,x 2+x +1≤0(4).存在实数x ∈R ,使sin x +cos x =π2成立错解:(1)(4) 对(1)常见的错误是直接否定不等号,对(4)不会利用伸缩变换公式求范围解析:对于A ,¬p 应是x +1≤0,因此A 不正确;对于B ,在△ABC 中,a >b ⇔A >B ⇔cos A <cos B ,因此B 正确;对于C ,命题¬p 应是“∃x 0∈R ,使得x 20+x 0+1≤0”,因此C 不正确;对于D ,注意到sin x +cos x =2sin(x +π4)∈[-2,2],且π2∉[-2,2],因此不存在实数x ∈R ,使sin x +cos x =π2成立,D 不正确.综上所述,选B.答案:B17.已知p :x -5x -3≥2,q :x 2-ax ≤x -a ,若¬p 是¬q的充分条件,求实数a 的取值范围.错解:(1)对“¬p 是¬q 的充分条件”这一条件不会转化(2)不会分类讨论解:由x -5x -3≥2,得x -1x -3≤0,∴1≤x <3.由x 2-ax ≤x -a ,得(x -a )(x -1)≤0. (1)当a <1时,a ≤x ≤1; (2)当a =1时,x =1; (3)当a >1时,1≤x ≤a . ∵¬p 是¬q 的充分条件, ∴q 是p 的充分条件.设p 对应集合A ,q 对应集合B ,则A ={x |1≤x <3}且B ⊆A .当a <1时,B ={x |a ≤x ≤1},B ⃘A ,不符合题意; 当a =1时,B ={x |x =1},B ⊆A ,符合题意; 当a >1时,B ={x |1≤x ≤a },若B ⊆A ,需1<a <3. 综上,得1≤a <3.∴实数a 的取值范围是[1,3).19、设命题:曲线上任一点处的切线的倾斜角都是锐角;命题:直线与曲线有两个不同的公共点;若命题和命题中有且只有一个是真命题,求实数的取值范围.【答案】.错解:对命题P,斜率与导数的关系搞不清;对命题q 直线与圆锥曲线流程图不记得。
高中数学简易逻辑知识点
高中数学简易逻辑知识点涵盖了许多基本概念和技巧,帮助学生理解和运用逻
辑推理方法解决数学问题。
下面,我将介绍一些高中数学简易逻辑知识点。
1. 命题逻辑:命题逻辑是研究命题之间关系的一种方法。
命题是陈述句,可以
判断为真或假。
学生需要了解命题的性质,例如否定、合取(与)、析取(或)以及蕴含等。
2. 关系逻辑:关系逻辑是研究集合、函数、关系及其性质的一种方法。
学生需
要掌握集合之间的包含关系、并、交和差集的运算规则,以及函数之间的映射关系。
3. 推理与证明:推理与证明是数学逻辑的核心内容。
学生需要学会使用演绎推
理和归纳推理两种推理方法,以及证明方法如直接证明、间接证明和数学归纳法等。
4. 概率与统计推理:在概率与统计中,学生需要通过观察数据、分析趋势和计
算概率来进行推理。
例如,根据样本数据推断总体特征,或者根据概率计算得出某一事件的可能性。
5. 数学语言与符号:数学有其独特的语言和符号系统,学生需要学会正确使用
数学术语和符号,避免歧义和错误解读。
掌握这些高中数学简易逻辑知识点可以帮助学生更好地理解数学概念,提升解
题能力。
同时,逻辑思维也是培养学生分析问题、推理和解决问题能力的重要途径。
通过运用逻辑方法,学生可以更加准确地表达和证明数学理论,进一步探索数学的美丽与广阔。
简 易 逻 辑逻辑联结词和四种命题一、命题的概念1. 可以 的语句叫做命题.2. 命题由 两部分构成;3. 命题有 之分;数学中的定义、公理、定理等都是 命题.二、命题的分类 (一)四种命题1. 四种命题:原命题:若p 则q ;逆命题: ; 否命题: ; 逆否命题: .2. 四种命题的关系:结论:互为逆否命题的两个命题真假性相同。
(二)简单命题与复合命题 1. 逻辑联结词有 . 2. 不含 的命题是简单命题. 3. 的命题是复合命题.复合命题的构成形式有三种: .(其中p ,q 都是简单命题).4. 判断复合命题的真假的方法—真值表:(三)全称命题与存在命题1.全称量词:,用表示;2.存在量词:,用表示。
3.全称命题:,;4. 存在命题:,。
三、区分“命题的否定”和“否命题”1.命题的否定只否定结论:;2.否命题条件、结论都否定:。
例1. 分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:(1) 若q<1,则方程x2+2x+q=0有实根;(2) 若ab=0,则a=0或b=0;(3) 若x2+y2=0,则x、y全为零.变式训练:写出下列命题的否命题,并判断原命题及否命题的真假:(1)如果一个三角形的三条边都相等,那么这个三角形的三个角都相等;(2)矩形的对角线互相平分且相等;(3)相似三角形一定是全等三角形.例2:如果命题“p或q”是真命题,“p且q”是假命题.那么()A.命题p和命题q都是假命题B.命题p和命题q都是真命题C.命题p和命题“非q”真值不同D.命题q和命题p的真值不同变式训练:下列结论中正确的是()(A)命题p是真命题时,命题“P且q”一定是真命题。
(B)命题“P且q”是真命题时,命题P一定是真命题(C)命题“P且q”是假命题时,命题P一定是假命题(D)命题P是假命题时,命题“P且q”不一定是假命题例3.已知p:x2 +mx + 1 = 0 有两个不等的负根,q:4x2 + 4(m - 2)x + 1 = 0 无实根.若p或q为真,p且q 为假,求m的取值范围.分析:由p或q为真,知p、q必有其一为真,由p且q为假,知p、q必有一个为假,所以,“p假且q真”或“p真且q假”.可先求出命题p及命题q为真的条件,再分类讨论.变式训练:已知下列三个方程:①x2+4ax-4a+3=0,②x2+(a-1)x+a2=0,③x2+2 ax-2a=0中至少有一个方程有实根,求实数a的取值范围.充要条件p ⇒q 则p 叫做q 的 条件,q 叫做p 的条件. 2. 必要条件:如果q ⇒ p 则p 叫做q 的 条件,q 叫做p 的条件.p ⇒q 且q ⇒ p 则p 叫做q 的条件.例1:下列“若p ,则q ”形式的命题中,哪些命题中的 p 是q 的充分条件?(1)若x = 1,则x 2 - 4x + 3 = 0;(2) 若f (x ) = x ,则 f ( x )为增函数; (3) 若x 为无理数,则x 2为无理数.例2:下列“若p ,则q ”形式的命题中,哪些命题中的q 是p 的必要条件?(1) 若x = y ,则x 2 = y 2 ;(2) 若两个三角形全等,则这两个三角形的面积相等;(3) 若a > b ,则ac > bc .例3.在下列各题中,判断A 是B 的什么条件,并说明理由. 1. A : p ≥ 2, p ∈ R ,B :方程 x 2 + px + p + 3 = 0 有实根; 2.A : 2x - 3 > 1 ;B :1x 2+ x - 6> 0 ;变式训练:指出下列命题中,p 是q 的什么条件(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分也不必要条件”中选出一种作答). (1) 对于实数x 、y ,p :x+y≠8,q:x≠2或y≠6; (2) 非空集合A 、B 中,p :x∈A∪B,q :x∈B; 例4.已知p :-2<m <0,0<n <1;q :关于x 的方程x 2+mx +n =0有两个小于1的正根,试分析p 是q 的什么条件.变式训练:证明一元二次方程ax 2+bx+c=0有一正根和一负根的充要条件是ac<0.简易逻辑章节测试题一、选择题1. 下列语句中是命题的是( ) (A )语文和数学 (B )sin45°=1 (C)x 2+2x-1 (D )集合与元素2. 已知下列三个命题 1 方程x 2-x+2=0的判别式小于或等于零;②矩形的对角线互相垂直且平分;③2是质数,其中真命题是()(A)①和②(B)①和③(C)②和③(D)只有①3.下列结论中正确的是()(A)命题p是真命题时,命题“P且q”一定是真命题。
简单逻辑知识讲解一、命题的概念和四种命题1.命题的概念概念:我们把语言、符号或式子表达的,可以判断真假的陈述句称为命题.其中判断为真的语句称为真命题,判断为假的语句称为假命题.注意:并不是任何语句都是命题,疑问句、祈使句、感叹句都不是命题.也就是说,判断一个语句是不是命题的两要素:①命题是陈述句②可以判断真假.2.命题的四种形式1)对于“若p ,则q ”形式的命题,p 称为命题的条件,q 称为命题的结论.命题“如果p ,则q ”是由条件p 和结论q 组成的,对p q ,进行“换位”和“换质(否定)”后,可以构成四种不同形式的命题.2)四种命题的关系如图所示.3.命题“如果p ,则q ”的四种形式之间有如下关系:1)互为逆否命题的两个命题等价(同真或同假).因此证明原命题,也可以证它的逆否命题.2)互逆或互否的两个命题与原命题不等价.注意:注意命题的否定与否命题之间的区别,前者是命题的反面,且与命题的真假恰好相反;后者是对条件与结论同时进行否定,它的真假与原命题的真假没有绝对的联系.二、简单的逻辑联结词1.且:用逻辑联结词“且”把命题p 和q 联结起来,就得到一个新命题,记作p q ∧,读作“p 且q ”.逻辑联结词“且”与日常语言中的“并且”、“及”、“和”相当.可以用“且”“定义集合的交集:{|()()}A B x x A x B =∈∧∈.2.或:用逻辑联结词“或”把命题p 或q 联结起来,就得到一个新命题,记作p q ∨,读作“p或q ”.逻辑联结词“或”的意义和日常语言中的“或者”相当.可以用“或”定义集合的并集:{|()()}A B x x A x B =∈∨∈.3.非:对命题p 加以否定,得到一个新的命题,记作p ⌝,读作“非p ”或“p 的否定”.逻辑联结词“非”(也称为“否定”)的意义是由日常语言中的“不是”“全盘否定”“问题的反面”等抽象而来.注:可以用“非”来定义集合A 在全集U 中的补集:{|()}{|}U A x U x A x U x A =∈⌝∈=∈∉ð.4.复合问题的真值表:注意:逻辑联词中的“或”相当于集合中的“并集”,它们与日常用语中的“或”的含义不同,日常用语中的“或”是两个中任选一个,不能都选.而逻辑联词中的“或”可以是两个都选,也可以是两个中选一个.逻辑联词中的且相当于集合中的交集,即两个必须都选.三、充要条件1.四种条件充分条件:若p q ⇒,则p 是q 成立的充分条件. 必要条件:若q p ⇒,则p 是q 成立的必要条件. 充分且必要条件:如果p q ⇔,则p 是q 的充要条件.既不充分也不必要条件:若果p q ¿且p q ¿,则p 是q 成立的既不充分也不必要条件.2.利用集合思想判别四种条件设A ={x x =满足条件P },B ={x x =满足条件q } 1)设若A B ⊆且B A à,则称p 是q 的充分不必要条件. 2)设若A B à且B A ⊆,则称p 是q 的必要不充分条件. 3)设若A B à且B A Ü,则称p 是q 的既不充分也不必要条件. 4)设若A B ⊆且B A ⊆,则称p 是q 的充分且必要条件.四、全称量词与存在量词1.概念全称命题:含有全称量词的命题称为全称命题,“对M 中任意一个x ,有()p x 成立”符号简记为:,()x M p x ∀∈.读作:对任意x 属于M 有()p x 成立.特称命题:含有存在量词的命题称为特称命题:“存在M 中一个x ,有()p x 成立”符号简记为:,()x M p x ∃∈,读作:存在一个x 属于M ,使()p x 成立.2.全称与特称命题的否定存在性命题p :x A ∃∈,()p x ;它的否定是p ⌝:x A ∀∈,()p x ⌝. 命题的否定:将存在量词变为全称量词,再否定它的性质. 全称命题q :x A ∀∈,()q x ;它的否定是q ⌝:x A ∃∈,()q x ⌝. 命题的否定:将全称量词变为存在量词,再否定它的性质.3.对命题中关键词的否定:经典例题一.选择题(共10小题)1.(2018•上海)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【解答】解:a∈R,则“a>1”⇒“<”,“<”⇒“a>1或a<0”,∴“a>1”是“<”的充分非必要条件.故选:A.2.(2018•天津)设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由x3>8,得x>2,则|x|>2,反之,由|x|>2,得x<﹣2或x>2,则x3<﹣8或x3>8.即“x3>8”是“|x|>2”的充分不必要条件.故选:A.3.(2018•马鞍山三模)命题p:若a>b,则a﹣1>b﹣1,则命题p的否命题为()A.若a>b,则a﹣1≤b﹣1 B.若a≥b,则a﹣1<b﹣1C.若a≤b,则a﹣1≤b﹣1 D.若a<b,则a﹣1<b﹣1【解答】解:根据否命题的定义:若原命题为:若p,则q.否命题为:若┐p,则┐q.∵原命题为“若a>b,则a﹣1>b﹣1”∴否命题为:若a≤b,则a﹣1≤b﹣1故选:C.4.(2018•天心区校级一模)“|x﹣2|<5”是“﹣3≤x≤7”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由|x﹣2|<5得﹣5<x﹣2<5,得﹣3<x<7,则“|x﹣2|<5”是“﹣3≤x≤7”的充分不必要条件,故选:A.5.(2018•余姚市校级模拟)“a=2”是“直线ax+2y﹣1=0与x+(a﹣1)y+2=0互相平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:若“直线ax+2y﹣1=0与x+(a﹣1)y+2=0互相平行”则a(a﹣1)﹣2=0,解得:a=﹣1,或a=2,故“a=2”是“直线ax+2y﹣1=0与x+(a﹣1)y+2=0互相平行”的充分不必要条件,故选:A.6.(2018•济南一模)若命题“p或q”与命题“非p”都是真命题,则()A.命题p与命题q都是真命题B.命题p与命题q都是假命题C.命题p是真命题,命题q是假命题D.命题p是假命题,命题q是真命题【解答】解:命题“p或q”与命题“非p”都是真命题,则p是假命题,q是真命题,故选:D.7.(2018•河西区二模)设x∈R,则“|x﹣2|<1”是“x2﹣x﹣6<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:由|x﹣2|<1得﹣1<x﹣2<1,得1<x<3由x2﹣x﹣6<0得﹣2<x<3,即“|x﹣2|<1”是“x2﹣x﹣6<0”的充分不必要条件,故选:A.8.(2018•石嘴山一模)下列命题中正确命题的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”;②“a≠0”是“a2+a≠0”的必要不充分条件;③若p∧q为假命题,则p,q均为假命题;④命题p:∃x0∈R,使得x02+x0+1<0,则¬p:∀x∈R,都有x2+x+1≥0.A.1 B.2C.3 D.4【解答】解:①命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”;故①正确,②由a2+a≠0得a≠﹣1且a≠0,“a≠0”是“a2+a≠0”的必要不充分条件;故②正确,③若p∧q为假命题,则p,q质数有一个为假命题;故③错误,④命题p:∃x0∈R,使得x02+x0+1<0,则¬p:∀x∈R,都有x2+x+1≥0.故④正确,故正确的是①②④,故选:C.9.(2018•渝中区校级模拟)命题P:“若x>1,则x2>1”,则命题P:以及它的否命题、逆命题、逆否命题这四个命题中真命题的个数为()A.1 B.2C.3 D.4【解答】解:命题P:“若x>1,则x2>1”,它是真命题;它的否命题是:“若x≤1,则x2≤1”,它是假命题;逆命题是:“若x2>1,则x>1”,它是假命题;逆否命题是:“若x2≤1,则x≤1”,它是真命题;综上,这四个命题中真命题的个数为2.故选:B.10.(2018•全国二模)设x∈R,则使lg(x+1)<1成立的必要不充分条件是()A.﹣1<x<9 B.x>﹣1C.x>1 D.1<x<9【解答】解:由lg(x+1)<1得0<x+1<10,得﹣1<x<9,即不等式的等价条件是﹣1<x<9,则使lg(x+1)<1成立的必要不充分条件对应范围要真包含(﹣1,9),则对应的范围为x>﹣1,故选:B.二.填空题(共6小题)11.(2017秋•来宾期末)命题“∀x∈R,都有x2+1≥2x”的否定是∃x∈R,有x2+1<2x.【解答】解:∵原命题“∀x∈R,都有x2+1≥2x”∴命题“∀x∈R,都有x2+1≥2x”的否定是:∃x∈R,有x2+1<2x故答案为:∃x∈R,有x2+1<2x12.(2017秋•苏州期末)“m=9”是“m>8”的充分不必要条件(填:“充分不必要”,“必要不充分”,“充分必要”,“既不充分又不必要”)【解答】解:当m=9时,满足m>8,即充分性成立,当m=10时,满足m>8,但m=9不成立,即必要性不成立,即“m=9”是“m>8”的充分不必要条件,故答案为:充分不必要.13.(2018春•铜山区期中)命题“若a2+b2=0,则a=0且b=0”的逆否命题是真命题.(从真、假中选一个).【解答】解:若a2+b2=0,则a=0且b=0为真命题,则逆否命题也是真命题,故答案为:真14.(2018春•如皋市期中)“”是的充分不必要条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)【解答】解:当α=,则cosα=,当cosα=时,α=+2kπ或α=π+2kπ,k∈Z,∴“”是的充分不必要条件.故答案为:充分不必要.15.(2016秋•泰州期末)命题“∃x∈R,x2≤0”的否定为∀x∈R,x2>0.【解答】解:因为特称命题的否定是全称命题,所以,命题“∃x∈R,x2≤0”的否定为:∀x∈R,x2>0.故答案为:∀x∈R,x2>0.16.(2017春•泰州期末)命题“∀x∈R,x2≥1”的否定是∃x∈R,x2<1.【解答】解:因为全称命题的否定是特称命题,所以,命题“∀x∈R,x2≥1”的否定是:∃x∈R,x2<1给答案为:∃x∈R,x2<1.。
一、 集合与简易逻辑(必修一第一章、选修2-1第一章)1. 含有n 个元素的有限集合,共有n2个子集,其中非空子集有n2 – 1 个; 非空真子集有n2 – 2 个。
2. 在解决A ⊂B 或A ⊆B 的有关问题时,易忽略A =φ的情况;同时应注意空集不能写成{φ}和{0}, 写集合的常见错误有:{– 1 < x < 2 }、x = {x| x ∈– 1 < x < 2 }3. 看一个集合,首先看集合以什么为元素,其次是元素满足的条件。
4. 集合的相等指的是两集合的元素完全相同,并非要求集合的结构或表述完全相同。
如:A = {x| x = 2k + 1 ,k ∈Z }与 B= {x| x = 2k - 1 ,k ∈Z }M = {y| y = x + 1} 与N = {x | y = x 2 }5.韦恩图能很好地帮助我们理解集合间的关系和运算。
6.复习一下“或”、“非”、“且”三种复合命题的真值表。
7.四种命题的相互关系、充分必要条件的概念要清楚。
如:“α≠3π是cos α≠21的什么条件?”等价于“cos α=21是α=3π的什么条件?”二、函数、导数(必修一第二、三章、选修2-2第一章) 1.映射是高考的重点内容,常与其它知识联系在一起考查。
2.研究函数问题的基本思想是数形结合,在可能的条件下尽量把图象画出来(那怕是草图) 3.忽略定义域,是解函数问题的“多发病”。
4.形如:y =d cx b ax ++的值域为y ∈R 且y ca≠5. 形如:y = ax +c bx +的值域:a 、b 同号时用单调性;a 、b 异号时用换元法(即设u = c bx +, 则x =bcu 2-. 注意u ≥0)6. 有关指数、对数函数的问题,应注意底数的范围,若底数不确定要讨论。
同时还要小心真数大于0的隐含条件。
对数函数的图象和对数运算法则默一遍,注意:y = log 2 x 与y = log 3 x ,y = log x 21与y = x log 31的位置关系.7. 若y = log m (ax 2 + bx + c )的定义域是R ,则a > 0 且 Δ< 0; 若y = log m (ax 2 + bx + c )的值域是R ,则a > 0 且 Δ≥0;9.方程实根的个数、图象的交点个数问题,可先考虑用数形结合解决,再考虑用判别式法。
高中数学简易逻辑知识点摘要:一、逻辑概念与基本运算1.逻辑概念2.逻辑运算二、逻辑推理与证明1.逻辑推理2.逻辑证明三、逻辑在高中数学中的应用1.代数中的逻辑应用2.几何中的逻辑应用正文:一、逻辑概念与基本运算在高中数学中,逻辑概念和基本运算是一个重要的知识点。
逻辑概念包括命题、命题的否定、逻辑联结词、逻辑运算符等。
1.逻辑概念- 命题:可以判断真假的陈述句。
例如,x=2,y=3 等。
- 命题的否定:对一个命题进行否定,得到一个新的命题。
例如,命题“x=2”的否定是“x≠2”。
- 逻辑联结词:用于连接两个或多个命题的词语。
例如,“且”、“或”、“如果……那么”、“只有……才”等。
- 逻辑运算符:用于表示逻辑运算的符号。
例如,“+”、“·”、“→”、“”等。
2.逻辑运算- 逻辑与(∧):表示逻辑“且”。
例如,p∧q 表示p 和q 同时成立。
- 逻辑或(∨):表示逻辑“或”。
例如,p∨q 表示p 和q 中至少有一个成立。
- 逻辑非():表示逻辑“非”。
例如,p 表示p 不成立。
- 逻辑蕴含(→):表示逻辑“如果……那么”。
例如,p→q 表示如果p 成立,那么q 也成立。
- 逻辑等价():表示逻辑“当且仅当”。
例如,pq 表示p 成立当且仅当q 成立。
二、逻辑推理与证明逻辑推理和证明是数学中不可或缺的部分,它们帮助我们判断命题的真假,并证明数学结论的正确性。
1.逻辑推理逻辑推理是一种通过已有的命题和逻辑运算规则,得出新的命题的方法。
它包括归纳推理、演绎推理等。
2.逻辑证明逻辑证明是一种通过已有的命题和逻辑运算规则,证明一个命题成立的方法。
它包括直接证明、间接证明等。
三、逻辑在高中数学中的应用逻辑在高中数学中有广泛的应用,如代数、几何等。
1.代数中的逻辑应用在代数中,逻辑运算可以帮助我们判断方程的解的情况,例如,通过逻辑运算可以判断一个方程是否有实数解。
期末复习考点汇总(四)第一章逻辑
考点一、四种命题及其相互关系
(1)原命题与逆否命题同真假
(2)逆命题与否命题同真假(特别提示:当否命题不好判断真假时,可考虑逆命题)
(3)命题的否定与否命题的区别
例1、下列有关命题的说法正确的是
A.命题“若,则”的否命题为:“若,则”;
B.命题“”的否定是“,
,”;
C.命题“若,则”的逆否命题是假命题;D.已知,命题“若是奇数,则这两个数中一个为奇数,另一个为偶数”的逆命题为假命题.
【答案】B
例2、命题“所有能被2整除的数都是偶数”的否定是A.所有不能被2整除的数都是偶数
B.所有能被2整除的数都不是偶数
C.存在一个不能被2整除的数是偶数
D.存在一个能被2整除的数不是偶数
【答案】D
考点二、充分条件、必要条件
做这类题主要由两种方法:
(1)把命题P,q分别化为最简,再看谁的范围大,谁的范围小;
(2)当方法一困难时,利用前推后,后推前的原则;(3)利用原命题与逆否命题等价的原则做题,如是成立的()等价的问法为q是p成立的();(4)注意语序的变化,
例3、“m=4”是“直线(m+2)x+2my-1=0与直线
(m+)x+(m+2)y+3=0相互平行”的
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要
【答案】A
例4、命题p:|x|<1,命题q:,则是成立的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【答案】B
考点三、或、且、非的正确理解
对真值表的理解(1)p或q 有真必真(2)p且q 有假必假(3)p真,非p为假
例5、已知命题“或”为真,“非”为假,则必有()
A.真假B.真假
C.真真D.真,可真可假
【答案】D
例6、已知命题 R,R,
给出下列结论:①命题“”是真命题②命题“”是假命题③命题“”
是真命题④命题“”是假命题, 其中正确的是( )
A.②④B.②③C.③④D.①②③
【答案】B
考点四全称量词、存在量词
主要靠如下三种题型
(1)、命题“对任意的32
,10
x R x x
∈-+≤”的否定是()
.A存在32
,10
x R x x
∈-+>
.
.
.B 存在32,10x R x x ∈-+≤
.C 不存在32,10x R x x ∈-+≤ .D 对任意的32,10x R x x ∈-+>
错解B :对含有量词的命题的否定,片面的认为只否定结论,不否定量词
(2)、若命题“,x R ∃∈使2
(1)10x a x +-+<”是假命
题,则实数a 的取值范围为 .
错解),3()1,(+∞⋃--∞ 不能认真审题,对题意一知半解解做,对含有量词的命题的本身意义不理解 3、(1)命题“存在一个三角形没有外接圆”的否定是
_____________________________________
(2)命题“零向量与任意的向量平行”的否定是_
_____________________________________ (3)命题“双曲线的离心率小于1”的否定是
_____________________________________
复习中的易错题
10、若实数b a ,满足0,0,a b ≥≥且0ab =,则称a 与b 互补,记b a b a b a --+=
22),(ϕ,
那么(),0a b ϕ=是a 与b 互补的 条件 ( )
.A 必要不充分 .B 充分不必要 .C 充要
.D 即不充分也不必要
错解A :逻辑性不强,忽视0≥+b a 这一隐藏条件
若命题“,x R ∃∈使2
(1)10x a x +-+<”是假命题,则实数a 的取值范围为 .
错解),3()1,(+∞⋃--∞ 不能认真审题,对题意一知半解解做,对含有量词的命题的本身意义不理解
16.(2011年南昌一模)下列命题错误的是________
(1).已知p :
1x +1>0,则¬p :1
x +1
≤0 (2).在△ABC 中,角A 、B 、C 的对边分别是a ,b ,
c ,则a >b 是cos A <cos B 的充要条件
(3).命题p :对任意的x ∈R,x 2+x +1>0,则¬p :对任意的x ∈R,x 2+x +1≤0
(4).存在实数x ∈R,使sin x +cos x =π
2成立
错解:(1)(4) 对(1)常见的错误是直接否定不等号,对(4)不会利用伸缩变换公式求范围
解析:对于A ,¬p 应是x +1≤0,因此A 不正确;对于B ,在△ABC 中,a >b ⇔A >B ⇔cos A <cos B ,因此B
正确;对于C ,命题¬p 应是“∃x 0∈R,使得x 2
0+x 0+
1≤0”,因此C 不正确;对于D ,注意到sin x +cos x =2sin(x +π4)∈[-2,2],且π
2∉[-2,2],因此不存在
实数x ∈R,使sin x +cos x =π
2成立,D 不正确.综上所述,
选B. 答案:B
17.已知p :
x -5
x -3
≥2,q :x 2-ax ≤x -a ,若¬p 是¬q 的充分条件,求实数a 的取值范围.
错解:(1)对“¬p 是¬q 的充分条件”这一条件不会转化
(2)不会分类讨论
解:由x -5x -3≥2,得x -1x -3
≤0,∴1≤x <3.
由x 2-ax ≤x -a ,得(x -a )(x -1)≤0. (1)当a <1时,a ≤x ≤1; (2)当a =1时,x =1; (3)当a >1时,1≤x ≤a . ∵¬p 是¬q 的充分条件, ∴q 是p 的充分条件.
设p 对应集合A ,q 对应集合B ,则A ={x |1≤x <3}且B ⊆A .
当a<1时,B={x|a≤x≤1},B⃘A,不符合题意;
当a=1时,B={x|x=1},B⊆A,符合题意;
当a>1时,B={x|1≤x≤a},若B⊆A,需1<a<3.
综上,得1≤a<3.∴实数a的取值范围是[1,3).
19、设命题:曲线上任一点处的切
线的倾斜角都是锐角;命题:直线与曲线
有两个不同的公共点;若命题和命题中
有且只有一个是真命题,求实数的取值范围.
【答案】.
错解:对命题P,斜率与导数的关系搞不清;对命题q 直线
与圆锥曲线流程图不记得
.。