2020-2021学年高考数学(理)考点:解三角形
- 格式:docx
- 大小:2.15 MB
- 文档页数:38
高考数学(理)总复习:解三角形题型一 利用正、余弦定理解三角形 【题型要点解析】关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.【例1】△ABC 的内角A 、B 、C 所对的边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2,(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b .【解析】 (1)由题设及A +B +C =π,sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0, 解得cos B =1(舍去),cos B =1517.(2)由cos B =1517得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6得:b 2=a 2+c 2-2ac cos B=(a +c )2-2ac (1+cos B )=36-2×172×⎪⎭⎫ ⎝⎛+17151 =4.所以b =2.题组训练一 利用正、余弦定理解三角形1.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =2,S △ABC=2,则b 的值为( )A.3B.322 C .2 2D .2 3【解析】 ∵在锐角△ABC 中,sin A =223,S △ABC =2,∴cos A =1-sin 2A =13,12bc sin A =12bc ·223=2,∴bc =3①,由余弦定理得a 2=b 2+c 2-2bc cos A ,∴(b +c )2=a 2+2bc (1+cos A )=4+6×⎪⎭⎫⎝⎛+311=12, ∴b +c =23②.由①②得b =c =3,故选A. 【答案】 A2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A sin B +sin B sin C +cos 2B =1.若C =2π3,则ab=________.【解析】 ∵sin A sin B +sin B sin C +cos 2B =1,∴sin A sin B +sin B sin C =2sin 2B . 由正弦定理可得ab +bc =2b 2,即a +c =2b ,∴c =2b -a ,∵C =2π3,由余弦定理可得(2b -a )2=a 2+b 2-2ab cos 2π3,可得5a =3b ,∴a b =35. 【答案】 353.已知△ABC 是斜三角形,内角A ,B ,C 所对的边的长分别为a ,b ,c .若c sin A =3a cos C .(1)求角C ;(2)若c =21,且sin C +sin(B -A )=5sin 2A ,求△ABC 的面积.【解析】 (1)根据a sin A =c sin C,可得c sin A =a sin C , 又∵c sin A =3a cos C ,∴a sin C =3a cos C , ∴sin C =3cos C ,∴tan C =sin Ccos C =3,∵C ∈(0,π),∴C =π3.(2)∵sin C +sin(B -A )=5sin 2A ,sin C =sin (A +B ), ∴sin (A +B )+sin (B -A )=5sin 2A , ∴2sin B cos A =2×5sin A cos A . ∵△ABC 为斜三角形, ∴cos A ≠0,∴sin B =5sin A . 由正弦定理可知b =5a ,① ∵c 2=a 2+b 2-2ab cos C ,∴21=a 2+b 2-2ab ×12=a 2+b 2-ab ,②由①②解得a =1,b =5,∴S △ABC =12ab sin C =12×1×5×32=534.题型二 正、余弦定理的实际应用 【题型要点解析】应用解三角形知识解决实际问题一般分为下列四步:(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词术语,如坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.【例2】某学校的平面示意图如图中的五边形区域ABCDE ,其中三角形区域ABE 为生活区,四边形区域BCDE 为教学区,AB ,BC ,CD ,DE ,EA ,BE .为学校的主要道路(不考虑宽度).∠BCD =∠CDE =2π3,∠BAE =π3,DE =3BC =3CD =910km.(1)求道路BE 的长度;(2)求生活区△ABE 面积的最大值.【解析】 (1)如图,连接BD ,在△BCD 中,BD 2=BC 2+CD 2-2BC ·CD cos ∠BCD =27100,∴BD =3310km.∵BC =CD ,∴∠CDB =∠CBD =π-2π32=π6,又∠CDE =2π3,∴∠BDE =π2.∴在Rt △BDE 中, BE =BD 2+DE 2=335(km). 故道路BE 的长度为335km.(2)设∠ABE =α,∵∠BAE =π3,∴∠AEB =2π3-α.在△ABE 中,易得AB sin ∠AEB =BE sin ∠BAE =335sinπ3=65,∴AB =65sin ⎪⎭⎫⎝⎛-απ32,AE =65sin α.∴S △ABE =12AB ·AE sin π3=9325sin ⎪⎭⎫⎝⎛-απ32·sin α =9325⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-4162sin 21πα≤9325⎪⎭⎫ ⎝⎛+4121 =273100(km 2). ∵0<α<2π3,∴-π6<2α-π6<7π6.∴当2α-π6=π2,即α=π3时,S △ABE 取得最大值,最大值为273100km 2,故生活区△ABE面积的最大值为273100km 2题组训练二 正、余弦定理的实际应用1.如图,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =________m.【解析】设CD =h ,则AD =h3,BD =3h ,在△ADB 中,∠ADB =180°-20°-40°=120°,∴由余弦定理AB 2=BD 2+AD 2-2BD ·AD ·cos 120°,可得1302=3h 2+h 23-2×3h ×h 3×⎪⎭⎫⎝⎛-21,解得h =1039,故塔的高度为1039 m.【答案】 10392.如图,在第一条海防警戒线上的点A ,B ,C 处各有一个水声监测点,B ,C 两点到A 的距离分别为20千米和50千米,某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A ,C 同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B ,C 到P 的距离,并求x 的值;(2)求P 到海防警戒线AC 的距离. 【解析】 (1)依题意,有P A =PC =x , PB =x -1.5×8=x -12. 在△P AB 中,AB =20, cos ∠P AB =P A 2+AB 2-PB 22P A ·AB=x 2+202-(x -12)22x ·20=3x +325x ,同理,在△P AC 中,AC =50,cos ∠P AC =P A 2+AC 2-PC 22P A ·AC =x 2+502-x 22x ·50=25x .∵cos ∠P AB =cos ∠P AC , ∴3x +325x =25x,解得x =31. (2)作PD ⊥AC 于点D ,在△ADP 中,由cos ∠P AD =2531,得sin ∠P AD =1-cos 2∠P AD =42131, ∴PD =P A sin ∠P AD =31×42131=421.故静止目标P 到海防警戒线AC 的距离为421千米. 题型三 三角函数与解三角形问题 【题型要点】解三角形与三角函数的综合题,其中,解决与三角恒等变换有关的问题,优先考虑角与角之间的关系;解决与三角形有关的问题,优先考虑正弦、余弦定理.【例3】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足sin A -sin C b =sin A -sin Ba +c .(Ⅰ)求C ;(Ⅱ)若cos A =17,求cos(2A -C )的值.【解析】 (Ⅰ)由sin A -sin C b =sin A -sin B a +c 及正弦定理得a -c b =a -ba +c ,∴a 2-c 2=ab -b 2,整理得a 2+b 2-c 2=ab ,由余弦定理得cos C =a 2+b 2-c 22ab =12,又0<C <π,所以C =π3.(Ⅱ)由cos A =17知A 为锐角,又sin 2A +cos 2A =1,所以sin A =1-cos 2A =437,故cos2A=2cos 2A -1=-4749,sin2A =2sin A cos A =2×437×17=8349,所以cos(2A -C )=cos ⎪⎭⎫ ⎝⎛-32πA =cos2A cos π3+sin2A sin π3=-4749×12+8349×32=-2398.题组训练三 三角函数与解三角形问题已知函数f (x )=sin ⎪⎭⎫⎝⎛+62πx +cos 2x . (1)求函数f (x )的单调递增区间;(2)在△ABC 中,内角A ,B ,C 的对边为a ,b ,c ,已知f (A )=32,a =2,B =π3,求△ABC 的面积.【解析】 (1)f (x )=sin ⎪⎭⎫⎝⎛+62πx +cos 2x =sin 2x cos π6+cos 2x sin π6+cos 2x=32sin 2x +32cos 2x =3⎪⎪⎭⎫ ⎝⎛+x x 2cos 232sin 21 =3sin ⎪⎭⎫⎝⎛+32πx . 令-π2+2k π≤2x +π3≤π2+2k π⇒-5π12+k π≤x +π3≤π12+k π,k ∈Z .f (x )的单调递增区间为:⎥⎦⎤⎢⎣⎡++-ππππk k 12,125,k ∈Z .(2)由f (A )=32,sin ⎪⎭⎫ ⎝⎛+32πA =12, 又0<A <2π3,π3<2A +π3<5π3,因为2A +π3=5π6,解得:A =π4.由正弦定理a sin A =bsin B ,得b =6,又由A =π4,B =π3可得:sin C =6+24.故S △ABC =12ab sin C =3+32.题型四 转化与化归思想在解三角形中的应用 【题型要点】利用正弦、余弦定理解三角形的模型示意图如下:【例4】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a cos 2C 2+c cos 2A 2=32b .(1)求证:a ,b ,c 成等差数列;(2)若∠B =60°,b =4,求△ABC 的面积. 【解析】 (1)证明:a cos 2C 2+c cos 2A2=a ·1+cos C 2+c ·1+cos A 2=32b ,即a (1+cos C )+c (1+cos A )=3b . ①由正弦定理得:sin A +sin A cos C +sin C +cos A sin C =3sin B , ② 即sin A +sin C +sin(A +C )=3sin B , ∴sin A +sin C =2sinB.由正弦定理得,a +c =2b , ③ 故a ,b ,c 成等差数列.(2)由∠B =60°,b =4及余弦定理得: 42=a 2+c 2-2ac cos 60°,∴(a +c )2-3ac =16, 又由(1)知a +c =2b ,代入上式得4b 2-3ac =16. 又b =4,所以ac =16, ④∴△ABC 的面积S =12ac sin B =12ac sin 60°=4 3.题组训练四 转化与化归思想在解三角形中的应用 如图,在平面四边形ABCD 中,AD =1,CD =2,AC =7.(1)求cos ∠CAD 的值;(2)若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长.【解析】 (1)在△ADC 中,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =7+1-427=277. (2)设∠BAC =α,则α=∠BAD -∠CAD . 因为cos ∠CAD =277,cos ∠BAD =-714,所以sin ∠CAD =1-cos 2∠CAD =217,sin ∠BAD =1-cos 2∠BAD =32114. 于是sin ∠BAC =sin (∠BAD -∠CAD )=sin ∠BAD cos ∠CAD -cos ∠BAD ·sin ∠CAD =32114×277-⎪⎪⎭⎫ ⎝⎛-1417×217=32. 在△ABC 中,由正弦定理得,BC =AC ·sin ∠BACsin ∠CBA=7×32216=3. 【专题训练】 一、选择题1.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且b 2=a 2+bc ,A =π6,则内角C 等于( )A.π6 B.π4 C.3π4D.π4或3π4【解析】 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A ,即a 2-b 2=c 2-2bc cos A ,由已知,得a 2-b 2=-bc ,则c 2-2bc cos π6=-bc ,即c =(3-1)b ,由正弦定理,得sin C=(3-1)sin B =(3-1)sin ⎪⎭⎫⎝⎛-C 65π, 化简,得sin C -cos C =0,解得C =π4,故选B.【答案】 B2.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =2,c =22,且C =π4,则△ABC 的面积为( )A.3+1B.3-1 C .4 D .2【解析】 法一 由余弦定理可得(22)2=22+a 2-2×2×a cos π4,即a 2-22a -4=0,解得a =2+6或a =2-6(舍去),△ABC 的面积S =12ab sin C =12×2×(2+6)sin π4=12×2×22×(6+2)=3+1,选A.法二 由正弦定理b sin B =c sin C ,得sin B =b sin C c =12,又c >b ,且B ∈(0,π),所以B =π6,所以A =7π12,所以△ABC 的面积S =12bc sin A =12×2×22sin 7π12=12×2×22×6+24=3+1.【答案】 A3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( )A.34B.43C .-43D .-34【解析】 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,则结合面积公式与余弦定理,得ab sin C =2ab cos C +2ab ,即sin C -2cos C =2,所以(sin C -2cos C )2=4,sin 2C -4sin C cos C +4cos 2C sin 2C +cos 2C =4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去),故选C.【答案】 C4.如图,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A 等于( )A.223B.24 C.64D.63【解析】 依题意得:BD =AD =DE sin A =22sin A ,∠BDC =∠ABD +∠A =2∠A .在△BCD 中, BC sin ∠BDC =BD sin C ,则4sin 2A =22sin A ×23=423sin A ,即42sin A cos A =423sin A,由此解得cos A =64,选C.【答案】 C5.如图所示,为测一建筑物的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得建筑物顶端的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则该建筑物的高度为( )A .(30+303) mB .(30+153) mC .(15+303) mD .(15+153) m【解析】 设建筑物高度为h ,则h tan 30°-h tan 45°=60,即(3-1)h =60,所以建筑物的高度为h =(30+303)m.【答案】 A6.在三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则三角形ABC 中最小角的正弦值等于( )A.45B.34C.35D.74【解析】 ∵20aBC →+15bCA →+12cAB →=0,∴20a (AC →-AB →)+15bCA →+12cAB →=0, ∴(20a -15b )AC →+(12c -20a )AB →=0.∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0⇒⎩⎨⎧b =43a ,c =53a ,∴三角形ABC 中最小角为角A , ∴cos A =b 2+c 2-a22bc =169a 2+259a 2-a 22×43×53a 2=45,∴sin A =35,故选C. 【答案】 C 二、填空题7.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若(a +b -c )(a +b +c )=ab ,c =3,当ab 取得最大值时,S △ABC =________.【解析】 因为(a +b -c )(a +b +c )=ab ,a 2+b 2-c 2=-ab ,所以cos C =-12,所以sinC =32,由余弦定理得(3)2=a 2+b 2+ab ≥3ab ,即ab ≤1,当且仅当a =b =1时等号成立.所以S △ABC =34. 【答案】348.已知△ABC 中,AB =1,sin A +sin B =2sin C ,S △ABC =316sin C ,则cos C =________. 【解析】 ∵sin A +sin B =2sin C ,由正弦定理可得a +b =2c .∵S △ABC =316sin C ,∴12ab sin C =316sin C ,sin C ≠0,化为ab =38.由余弦定理可得c 2=a 2+b 2-2ab cos C =(a +b )2-2ab-2ab cos C ,∴1=(2)2-2×38(1+cos C ),解得cos C =13.【答案】139.已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )·sin C ,则△ABC 面积的最大值为________.【解析】 由正弦定理得(2+b )(a -b )=(c -b )c , 即(a +b )·(a -b )=(c -b )c ,即b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =12,又A ∈(0,π),所以A =π3,又b 2+c 2-a 2=bc ≥2bc -4,即bc ≤4,故S △ABC =12bc sin A ≤12×4×32=3,当且仅当b =c =2时,等号成立,则△ABC 面积的最大值为 3. 【答案】310.如图,△ABC 中,AB =4,BC =2,∠ABC =∠D =60°,若△ADC 是锐角三角形,则DA +DC 的取值范围是________.【解析】 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC =12,即AC =2 3.设∠ACD =θ(30°<θ<90°),则在△ADC 中,由正弦定理得23sin 60°=DA sin θ=DCsin (120°-θ),则DA +DC =4[sin θ+sin(120°-θ)]=4⎪⎪⎭⎫ ⎝⎛+θθcos 23sin 23=43sin(θ+30°),而60°<θ+30°<120°,43sin 60°<DA +DC ≤43sin 90°,即6<DA +DC ≤4 3.【答案】 (6,43] 三、解答题11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35. (1)求b 和sin A 的值;(2)求sin ⎪⎭⎫⎝⎛+42πA 的值. 【解析】 (1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知及余弦定理,有b 2=a 2+c 2-2ac cos B =13,所以b =13.由正弦定理a sin A =b sin B ,得sin A =a sin B b =31313.所以b 的值为13,sin A 的值为31313.(2)由(1)及a <c ,得cos A =21313,所以sin 2A =2sin A cos A =1213,cos 2A =1-2sin 2A =-513.故sin ⎪⎭⎫⎝⎛+42πA =sin 2A cos π4+cos 2A sin π4=7226. 12.如图,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC .(1)求sin ∠ABD 的值;(2)若∠BCD =2π3,求CD 的长.【解析】(1)∵AD ∶AB =2∶3,∴可设AD =2k ,AB =3k .又BD =7,∠DAB =π3,∴由余弦定理,得(7)2=(3k )2+(2k )2-2×3k ×2k cos π3,解得k =1,∴AD =2,AB =3,sin ∠ABD =AD sin ∠DABBD=2×327=217.(2)∵AB ⊥BC ,∴cos ∠DBC =sin ∠ABD =217,∴sin ∠DBC =277,∴BD sin ∠BCD =CDsin ∠DBC,∴CD=7×27732=433.。
2020年高考数学:已知三边解三角形(1)如果等腰三角形的周长是底边长的5倍,那么顶角的余弦值是 A .518 B .34C .2D .78(2)在ABC △中,分别是角的对边,,那么等于A .B .C .D .(3)在ABC △中,已知3AB =,2AC =,BC =AB AC ⋅= A .32 B .23- C .23D .32-【参考答案】(1)D ;(2)C ;(3)A .【试题解析】(1)设底边长为x ,则腰长为2x ,设顶角为A ,则由余弦定理的推论,可得cos A =222(2)(2)72228x x x x x +-=⨯⨯.故选D .(2)∵,∴2229471cos 22322a cb B ac +-+-===⨯⨯. 又,∴.故选C.(3)||||cos ,AB AC AB AC AB AC ⋅=⋅⋅<⋅>由向量模的定义和余弦定理可得||3AB =,||2AC =,2221cos ,24AB AC BC AB AC AB AC +-<>==⋅,故133242AB AC ⋅=⨯⨯=.故选A .【解题必备】(1)已知三边解三角形,必有一解.(2)已知三边解三角形时,可以连续用余弦定理的推论求出两角,常常是分别求较小两边所对的角,再由180A B C ++=︒求第三个角;或者由余弦定理的推论求出一个角后,也可以根据正弦定理求出第二个角,但应先求较小边所对的角(因为较小的角必定为锐角).1.在ABC △中,角,,A B C 所对的边分别为,,a b c ,且5,6,7,a b c ===则cos A = A .47 B .57 C .37D .352.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,2a =,3b =,4c =,设AB 边上的高为h ,则h =A .2 B .2C D 3.设ABC △的内角,,A B C 的对边分别为,,a b c ,若5,3,7a b c ===,则ABC △的最大内角的值为__________.1.【答案】B【解析】由余弦定理可得2223649255cos 22677b c a A bc +-+-===⨯⨯.故选B. 2.【答案】D【解析】∵2a =,3b =,4c =,∴2229164217cos 2234248b c a A bc +-+-====⨯⨯,则sin A ==== 如图,则sin sin 3h AC A b A ====. 故选D . 3.【答案】2π3【解析】因为c a b >>,所以C 为最大角,由余弦定理得2222225371cos 22532a b c C ab +-+-===-⨯⨯,因为()0,πC ∈,所以2π3C =.。
§4.6 正弦定理和余弦定理最新考纲考情考向分析掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.以利用正弦、余弦定理解三角形为主,常与三角函数的图象和性质、三角恒等变换、三角形中的几何计算交汇考查,加强数形结合思想的应用意识.题型多样,中档难度.1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理内容(1)a sin A =b sin B =c sin C=2R(2)a2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 变形(3)a =2R sin A ,b =2R sin B ,c =2R sin C ; (4)sin A =a 2R ,sin B =b 2R ,sin C =c2R;(5)a ∶b ∶c =sin A ∶sin B ∶sin C ;(6)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin A(7)cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.在△ABC 中,已知a ,b 和A 时,解的情况A 为锐角 A 为钝角或直角图形关系式 a =b sin A b sin A <a <b a ≥b a >b 解的个数 一解两解一解一解3.三角形常用面积公式(1)S =12a ·h a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形内切圆半径).概念方法微思考1.在△ABC 中,∠A >∠B 是否可推出sin A >sin B ? 提示 在△ABC 中,由∠A >∠B 可推出sin A >sin B .2.如图,在△ABC 中,有如下结论:b cos C +c cos B =a .试类比写出另外两个式子. 提示 a cos B +b cos A =c ; a cos C +c cos A =b .题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( × ) (2)当b 2+c 2-a 2>0时,三角形ABC 为锐角三角形.( × ) (3)在△ABC 中,asin A =a +b -c sin A +sin B -sin C.( √ )(4)在三角形中,已知两边和一角就能求三角形的面积.( √ ) 题组二 教材改编2.在△ABC 中,a cos A =b cos B ,则这个三角形的形状为 . 答案 等腰三角形或直角三角形解析 由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B , 即A =B 或A +B =π2,所以这个三角形为等腰三角形或直角三角形.3.在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积为 . 答案 2 3解析 ∵23sin 60°=4sin B ,∴sin B =1,∴B =90°,∴AB =2,∴S △ABC =12×2×23=2 3.题组三 易错自纠4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若c <b cos A ,则△ABC 为( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .等边三角形答案 A解析 由已知及正弦定理得sin C <sin B cos A , ∴sin(A +B )<sin B cos A ,∴sin A cos B +cos A sin B <sin B cos A , 又sin A >0,∴cos B <0,∴B 为钝角, 故△ABC 为钝角三角形.5.(2018·大连质检)在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定 答案 C解析 由正弦定理得b sin B =c sin C ,∴sin B =b sin Cc=40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.6.(2018·包头模拟)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则C = . 答案2π3解析 由3sin A =5sin B 及正弦定理,得3a =5b .又因为b +c =2a , 所以a =53b ,c =73b ,所以cos C =a 2+b 2-c22ab=⎝⎛⎭⎫53b 2+b 2-⎝⎛⎭⎫73b 22×53b ×b =-12.因为C ∈(0,π),所以C =2π3.题型一 利用正弦、余弦定理解三角形例1 (2018·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos ⎝⎛⎭⎫B -π6.(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. 解 (1)在△ABC 中,由正弦定理a sin A =b sin B,可得 b sin A =a sin B .又由b sin A =a cos ⎝⎛⎭⎫B -π6,得a sin B =a cos ⎝⎛⎭⎫B -π6, 即sin B =cos ⎝⎛⎭⎫B -π6,所以tan B = 3. 又因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =a cos ⎝⎛⎭⎫B -π6,可得sin A =217. 因为a <c ,所以cos A =277.因此sin 2A =2sin A cos A =437,cos 2A =2cos 2A -1=17.所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314.思维升华 (1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下求解其余元素,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素;(2)正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.跟踪训练1 (1)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A 等于( ) A.3π4 B.π3 C.π4 D.π6 答案 C解析 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A , ∵b =c ,∴a 2=2b 2(1-cos A ),又∵a 2=2b 2(1-sin A ), ∴cos A =sin A ,∴tan A =1,∵A ∈(0,π),∴A =π4,故选C.(2)如图所示,在△ABC 中,D 是边AC 上的点,且AB =AD ,2AB =3BD ,BC =2BD ,则sin C 的值为 .答案66解析 设AB =a ,∵AB =AD ,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a3.在△ABD 中,cos ∠ADB =a 2+4a 23-a 22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63.在△BDC 中,BD sin C =BCsin ∠BDC ,∴sin C =BD ·sin ∠BDC BC =66.题型二 和三角形面积有关的问题例2 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B . (1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.(1)证明 由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B , 于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π, 所以B =π-(A -B )或B =A -B , 因此A =π(舍去)或A =2B ,所以A =2B . (2)解 由S =a 24,得12ab sin C =a 24,故有sin B sin C =12sin A =12sin 2B =sin B cos B ,由sin B ≠0,得sin C =cos B . 又B ,C ∈(0,π),所以C =π2±B .当B +C =π2时,A =π2;当C -B =π2时,A =π4.综上,A =π2或A =π4.思维升华 (1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.跟踪训练2 (1)(2018·沈阳质检)若AB =2,AC =2BC ,则S △ABC 的最大值为( ) A .2 2 B.32 C.23D .3 2 答案 A解析 设BC =x ,则AC =2x .根据三角形的面积公式, 得S △ABC =12·AB ·BC sin B =x 1-cos 2B .①根据余弦定理,得cos B =AB 2+BC 2-AC 22AB ·BC =4+x 2-2x 24x =4-x 24x .②将②代入①,得 S △ABC =x1-⎝⎛⎭⎫4-x 24x 2=128-(x 2-12)216.由三角形的三边关系,得⎩⎨⎧2x +x >2,x +2>2x ,解得22-2<x <22+2,故当x =23时,S △ABC 取得最大值22,故选A.(2)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是 . 答案332解析 ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.① ∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.题型三 正弦定理、余弦定理的应用命题点1 判断三角形的形状例3 (1)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形D .等腰三角形或直角三角形答案 C解析 方法一 由余弦定理可得a =2b ·a 2+b 2-c 22ab ,因此a 2=a 2+b 2-c 2,得b 2=c 2,于是b =c ,从而△ABC 为等腰三角形.方法二 由正弦定理可得sin A =2sin B cos C , 因此sin(B +C )=2sin B cos C ,即sin B cos C +cos B sin C =2sin B cos C , 于是sin(B -C )=0,因此B -C =0,即B =C , 故△ABC 为等腰三角形.(2)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定答案 B解析 由正弦定理得sin B cos C +sin C cos B =sin 2A , ∴sin(B +C )=sin 2A ,即sin(π-A )=sin 2A ,sin A =sin 2A . ∵A ∈(0,π),∴sin A >0,∴sin A =1, 即A =π2,∴△ABC 为直角三角形.引申探究1.本例(2)中,若将条件变为2sin A cos B =sin C ,判断△ABC 的形状. 解 ∵2sin A cos B =sin C =sin(A +B ), ∴2sin A cos B =sin A cos B +cos A sin B , ∴sin(A -B )=0.又A ,B 为△ABC 的内角. ∴A =B ,∴△ABC 为等腰三角形.2.本例(2)中,若将条件变为a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,判断△ABC 的形状. 解 ∵a 2+b 2-c 2=ab ,∴cos C =a 2+b 2-c 22ab =12,又0<C <π,∴C =π3,又由2cos A sin B =sin C 得sin(B -A )=0,∴A =B , 故△ABC 为等边三角形. 命题点2 求解几何计算问题例4 如图,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC .(1)求sin ∠ABD 的值;(2)若∠BCD =2π3,求CD 的长.解 (1)因为AD ∶AB =2∶3,所以可设AD =2k , AB =3k .又BD =7,∠DAB =π3,所以由余弦定理,得(7)2=(3k )2+(2k )2-2×3k ×2k cos π3,解得k =1,所以AD =2,AB =3,sin ∠ABD =AD sin ∠DABBD=2×327=217.(2)因为AB ⊥BC ,所以cos ∠DBC =sin ∠ABD =217, 所以sin ∠DBC =277,所以BD sin ∠BCD =CDsin ∠DBC,所以CD =7×27732=433.思维升华 (1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系.②化角:通过三角恒等变换,得出内角的关系,此时要注意应用A +B +C =π这个结论. (2)求解几何计算问题要注意:①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.跟踪训练3 (1)在△ABC 中,cos 2B 2=a +c2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .等边三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形答案 B解析 ∵cos 2B 2=1+cos B 2,cos 2B 2=a +c2c ,∴(1+cos B )·c =a +c ,∴a =cos B ·c =a 2+c 2-b 22a ,∴2a 2=a 2+c 2-b 2,∴a 2+b 2=c 2, ∴△ABC 为直角三角形.(2)(2018·铁岭统考)在△ABC 中,B =30°,AC =25,D 是AB 边上的一点,CD =2,若∠ACD 为锐角,△ACD 的面积为4,则BC = . 答案 4解析 依题意得S △ACD =12CD ·AC ·sin ∠ACD =25·sin ∠ACD =4,sin ∠ACD =25.又∠ACD 是锐角,因此cos ∠ACD =1-sin 2 ∠ACD =15.在△ACD 中,AD =CD 2+AC 2-2CD ·AC ·cos ∠ACD =4,AD sin ∠ACD =CDsin A ,sin A =CD ·sin ∠ACD AD =15 .在△ABC 中,AC sin B =BC sin A ,BC =AC ·sin Asin B=4.1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c 等于( ) A .1 B .2 C .4 D .6 答案 C解析 ∵a 2=c 2+b 2-2cb cos A , ∴13=c 2+9-2c ×3×cos 60°, 即c 2-3c -4=0,解得c =4或c =-1(舍去).2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =23,C =30°,则B 等于( ) A .30° B .60° C .30°或60° D .60°或120°答案 D解析 ∵c =2,b =23,C =30°,∴由正弦定理可得 sin B =b sin C c =23×122=32,由b >c ,可得30°<B <180°,∴B =60°或B =120°.3.(2018·丹东模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则△ABC 的面积为( ) A.12 B.14 C .1 D .2 答案 A解析 由cos 2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc =2,可得△ABC 的面积S =12bc sin A =12×2×12=12.4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知三个向量m =⎝⎛⎭⎫a ,cos A 2,n =⎝⎛⎭⎫b ,cos B 2,p =⎝⎛⎭⎫c ,cos C2共线,则△ABC 的形状为( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形答案 A解析 ∵向量m =⎝⎛⎭⎫a ,cos A 2,n =⎝⎛⎭⎫b ,cos B2共线, ∴a cos B 2=b cos A2.由正弦定理得sin A cos B 2=sin B cos A2.∴2sin A 2cos A 2 cos B 2=2sin B 2cos B 2cos A2.则sin A 2=sin B 2.∵0<A 2<π2,0<B 2<π2,∴A 2=B2,即A =B .同理可得B =C .∴△ABC 的形状为等边三角形.故选A.5.(2018·本溪质检)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos C =223,b cos A +a cos B =2,则△ABC 的外接圆面积为( ) A .4π B .8π C .9π D .36π 答案 C解析 c =b cos A +a cos B =2,由cos C =223,得sin C =13,再由正弦定理可得2R =csin C =6,R =3,所以△ABC 的外接圆面积为πR 2=9π,故选C.6.(2018·乌海模拟)在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若S △ABC =23,a +b =6,a cos B +b cos Ac =2cos C ,则c 等于( )A .27B .4C .2 3D .3 3 答案 C解析 ∵a cos B +b cos Ac =2cos C ,由正弦定理,得sin A cos B +cos A sin B =2sin C cos C , ∴sin(A +B )=sin C =2sin C cos C ,由于0<C <π,sin C ≠0,∴cos C =12,∴C =π3,∵S △ABC =23=12ab sin C =34ab ,∴ab =8,又a +b =6,解得⎩⎪⎨⎪⎧ a =2,b =4或⎩⎪⎨⎪⎧a =4,b =2,c 2=a 2+b 2-2ab cos C =4+16-8=12, ∴c =23,故选C.7.(2018·通辽模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为 . 答案 π3或2π3解析 由余弦定理,得a 2+c 2-b 22ac =cos B ,结合已知等式得cos B ·tan B =32, ∴sin B =32,又0<B <π,∴B =π3或2π3. 8.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b = .答案 1解析 因为sin B =12且B ∈(0,π),所以B =π6或B =5π6.又C =π6,B +C <π,所以B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即332=b 12, 解得b =1.9.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为 .答案3+1解析 ∵b =2,B =π6,C =π4.由正弦定理b sin B =csin C,得c =b sin Csin B =2×2212=22,A =π-⎝⎛⎭⎫π6+π4=7π12, ∴sin A =sin ⎝⎛⎭⎫π4+π3=sin π4cos π3+cos π4sin π3 =6+24. 则S △ABC =12bc sin A =12×2×22×6+24=3+1.10.(2018·锦州质检)若E ,F 是等腰直角三角形ABC 斜边AB 上的三等分点,则tan ∠ECF = . 答案 34解析 如图,设AB =6,则AE =EF =FB =2.因为△ABC 为等腰直角三角形, 所以AC =BC =3 2.在△ACE 中,A =π4,AE =2,AC =32,由余弦定理可得CE =10. 同理,在△BCF 中可得CF =10. 在△CEF 中,由余弦定理得 cos ∠ECF =10+10-42×10×10=45,sin ∠ECF =1-cos 2∠ECF =35,所以tan ∠ECF =34.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a -c =66b ,sin B =6sin C . (1)求cos A 的值; (2)求cos ⎝⎛⎭⎫2A -π6的值. 解 (1)在△ABC 中,由b sin B =csin C 及sin B =6sin C ,可得b =6c , 又由a -c =66b ,得a =2c ,所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c 2=64. (2)在△ABC 中,由cos A =64, 可得sin A =104. 于是cos 2A =2cos 2A -1=-14,sin 2A =2sin A ·cos A =154. 所以cos ⎝⎛⎭⎫2A -π6 =cos 2A cos π6+sin 2A sin π6=⎝⎛⎭⎫-14×32+154×12 =15-38. 12.(2018·北京)在△ABC 中,a =7,b =8,cos B =-17.(1)求∠A ;(2)求AC 边上的高.解 (1)在△ABC 中,因为cos B =-17,所以sin B =1-cos 2B =437.由正弦定理得sin A =a sin B b =32.由题设知π2<∠B <π,所以0<∠A <π2,所以∠A =π3.(2)在△ABC 中,因为sin C =sin(A +B )=sin A cos B +cos A sin B =3314,所以AC 边上的高为a sin C =7×3314=332.13.在△ABC 中,a 2+b 2+c 2=23ab sin C ,则△ABC 的形状是( ) A .不等腰的直角三角形 B .等腰直角三角形C .钝角三角形D .正三角形 答案 D解析 易知a 2+b 2+c 2=a 2+b 2+a 2+b 2-2ab cos C =23ab sin C ,即a 2+b 2=2ab sin ⎝⎛⎭⎫C +π6,由于a 2+b 2≥2ab ,当且仅当a =b 时取等号,所以2ab sin ⎝⎛⎭⎫C +π6≥2ab ,sin ⎝⎛⎭⎫C +π6≥1,故只能a =b 且C +π6=π2,所以△ABC 为正三角形.14.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,a =3,则△ABC 的周长的最大值为( ) A .2 3 B .6 C. 3 D .9 答案 D解析 ∵a 2=b 2+c 2-bc ,∴bc =b 2+c 2-a 2,∴cos A =b 2+c 2-a 22bc =12,∵A ∈(0,π),∴A =π3.∵a=3,∴由正弦定理得a sin A =b sin B =c sin C =332=23,∴b =2 3 sin B ,c =2 3 sin C ,则a +b +c=3+23sin B +2 3 sin C =3+23sin B +23sin ⎝⎛⎭⎫2π3-B =3+33sin B +3cos B =3+6sin ⎝⎛⎭⎫B +π6,∵B ∈⎝⎛⎭⎫0,2π3,∴当B =π3时周长取得最大值9.15.在△ABC 中,C =60°,且a sin A =2,则△ABC 面积S 的最大值为 .答案334解析 由C =60°及c sin C =a sin A=2,可得c = 3. 由余弦定理得3=b 2+a 2-ab ≥ab (当且仅当a =b 时取等号), ∴S =12ab sin C ≤12×3×32=334,∴△ABC 的面积S 的最大值为334.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a 2-(b -c )2=(2-3)bc ,且sin B =1+cos C ,BC 边上的中线AM 的长为7. (1)求角A 和角B 的大小; (2)求△ABC 的面积.解 (1)由a 2-(b -c )2=(2-3)bc ,得a 2-b 2-c 2=-3bc ,即b 2+c 2-a 2=3bc , ∴cos A =b 2+c 2-a 22bc =32,又0<A <π,∴A =π6.又sin B =1+cos C,0<sin B <1, ∴cos C <0,即C 为钝角, ∴B 为锐角,且B +C =5π6,则sin ⎝⎛⎭⎫5π6-C =1+cos C ,化简得cos ⎝⎛⎭⎫C +π3=-1, 解得C =2π3,∴B =π6.(2)由(1)知,a =b ,sin C =32,cos C =-12, 在△ACM 中,由余弦定理得 AM 2=b 2+⎝⎛⎭⎫a 22-2b ·a2·cos C =b 2+b 24+b 22=(7)2,解得b =2,故S △ABC =12ab sin C =12×2×2×32= 3.。
专题09 解三角形(一) 三角形中的求值问题1.例题【例1】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32,且b <c ,则b =( )A . 3B .2C .2 2D .3【例2】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若1a =,cos )cos 0A C C b A ++=,则角A =( )A .23π B .3π C .6π D .56π 【例3】在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,4a =,b =cos (2)cos c B a b C =-,则ABC ∆的面积为______.【例4】(2017·全国高考真题(理))△ABC 的内角、、A B C 的对边分别为a b c 、、, 已知△ABC 的面积为23sin a A.(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.【例5】如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.2.巩固提升综合练习【练习1】(2019·全国高考真题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .3【练习2】(2018·全国高考真题)△ABC 的内角A , B , C 的对边分别为a , b , c ,已知bsinC +csinB =4asinBsinC ,b 2+c 2−a 2=8,则△ABC 的面积为________. 【练习3】 在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【练习4】在△ABC 中,已知AB =2,AC =5,tan ∠BAC =-3,则BC 边上的高等于( ) A .1 B .2 C . 3 D .2【练习5】已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积S .【练习6】 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c 已知c cos B =(3a -b )cos C . (1)求sin C 的值;(2)若c =26,b -a =2,求△ABC 的面积.(二)三角形中的最值或范围问题1.例题【例1】在△ABC中,已知c=2,若sin2A+sin2B-sin A sin B=sin2C,则a+b的取值范围为________.【例2】已知在锐角ABC∆中,角A,B,C的对边分别为a,b,c,若2cos cosb Cc B=,则111tan tan tanA B C++的最小值为()A B C D.【例3】已知△ABC的外接圆半径为R,角A,B,C所对的边分别为a,b,c,若a sin B cos C +32c sin C=2R,则△ABC面积的最大值为( )A.25B.45C.255D.125【例4】在ABC∆中,角A,B,C的对边分别为a,b,c,且cos Ccos cos cos2ab Ac A B+=,ABC∆,则ABC∆周长的最小值为______.2.巩固提升综合练习【练习1】 设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【练习2】 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( ) A .2+3 B .2+2 C .3D .3+2【练习3】已知ABC ∆1,且满足431tan tan A B+=,则边AC 的最小值为_______.【练习4】在ABC ∆中,23BAC π∠=,已知BC 边上的中线3AD =,则ABC ∆面积的最大值为__________.(三)解三角形的实际应用必备知识:实际测量中的有关名称、术语南偏西60°指以正南方向为始边,转向目标方向线形成的角1.例题【例1】在海岸A处,发现北偏东45°方向,距离A处(3-1)n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A 2 n mile的C处的缉私船奉命以10 3 n mile的速度追截走私船.此时,走私船正以10 n mile/h的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?【例2】如图,A,B两点在河的同侧,且A,B两点均不可到达,测出A,B的距离,测量者可以在河岸边选定两点C,D,测得CD=a,同时在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在△ADC和△BDC中,由正弦定理分别计算出AC和BC,再在△ABC中,应用余弦定理计算出AB.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A,B两点间的距离.【例3】某人在点C测得塔顶A在南偏西80°,仰角为45°,此人沿南偏东40°方向前进100米到D,测得塔顶A的仰角为30°,则塔高为____________米.2.巩固提升综合练习【练习1】甲船在A处,乙船在甲船正南方向距甲船20海里的B处,乙船以每小时10海里的速度向正北方向行驶,而甲船同时以每小时8海里的速度由A处向北偏西60°方向行驶,问经过多少小时后,甲、乙两船相距最近?【练习2】如图,一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这艘船航行的速度为( )A.1762海里/时B .346海里/时 C.1722海里/时D .342海里/时【练习3】某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A 、B 、C 三地位于同一水平面上,在C 处进行该仪器的垂直弹射,观测点A 、B 两地相距100米,∠BAC =60°,在A 地听到弹射声音的时间比在B 地晚217秒.在A 地测得该仪器弹至最高点H 时的仰角为30°,求该仪器的垂直弹射高度CH .(声音的传播速度为340米/秒)1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a ,b ,c 成等比数列,且a 2=c 2+ac -bc ,则cb sin B =( )A .32B .233C .33D .32.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a =3,c =23,b sin A =a cos ⎪⎭⎫⎝⎛+6πB 则b =( ) A .1 B.2 C.3D.53.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =2,c =32,tan B =2tan A ,则△ABC 的面积为( ) A .2 B .3 C .32D .423.如图,在△ABC 中,∠C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A 等于( ) A .223B .24C .64D .634.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba的取值范围是( ) A .(2,2) B .(2,6) C .(2,3)D .(6,4)5.在ΔABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,a =2,B =45°,若三角形有两解,则b 的取值范围是_______.6.已知a ,b ,c 是△ABC 中角A ,B ,C 的对边,a =4,b ∈(4,6),sin 2A =sin C ,则c 的取值范围为________.7.设△ABC 的内角A ,B ,C 的对边a ,b ,c 成等比数列,cos(A -C )-cos B =12,延长BC至点D ,若BD =2,则△ACD 面积的最大值为________.8.(2019·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________. 9.若满足3ABC π∠=, AC =3, ,BC m ABC =恰有一解,则实数m 的取值范围是______.10.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,外接圆的半径为1,且tan A tan B =2c -bb ,则△ABC 面积的最大值为________.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2+c 2-b 2=ab cos A +a 2cos B . (1)求角B ;(2)若b =27,tan C =32,求△ABC 的面积.12.已知ABC ∆中,角A B C 、、的对边分别为a b c ,,,若cos sin a b C c B =+(Ⅰ)求B ;(Ⅰ)若2b = ,求ABC ∆面积的最大值。
第19题 解三角形一、原题呈现【原题】记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.解法一:(1)由sin sin BD ABC a C ∠=及正弦定理得2sin sin a C ac b BD b ABC b b ====∠(2)由余弦定理得22222223cos 2223b c b b c a A b c b c ⎛⎫+- ⎪+-⎝⎭==⨯⨯⨯⨯整理得22211203a c b +-=,即2211203a c ac +-=, 所以233c a c a ==或, 当3c a =时,由2b ac =得b =,此时)1a b a c +=<,不满足题意,当23c a =时,由2b ac =得3b a =, 所以2227cos 212ac b ABC ac +-∠==解法二:(1)由题设,sin sin a C BD ABC =∠,由正弦定理知:sin sin c bC ABC=∠,即sin sin C cABC b=∠,∴acBD b=,又2b ac =, ∴BD b =,得证.(2)由题意知:2,,33b b BD b AD DC ===, ∴22222241399cos 24233b b b c c ADB b b b +--∠==⋅,同理2222221099cos 2233b b b a a CDB b b b +--∠==⋅, ∵ADB CDB π∠=-∠, ∴2222221310994233b bc a b b --=,整理得2221123b a c +=,又2b ac =, ∴42221123b b a a +=,整理得422461130a a b b -+=,解得2213a b =或2232a b =,由余弦定理知:222224cos 232a c b a ABC ac b+-∠==-,当2213a b =时,7cos 16ABC ∠=>不合题意;当2232a b =时,7cos 12ABC ∠=;综上,7cos 12ABC ∠=. 【就题论题】本题第(1)问比较简单,利用正弦定理进行边角代换,即可得出结论.第(2)问求解的关键是利用正弦定理、余弦定理整理出,a b 的关系式,再利用余弦定理求cos ABC ∠.二、考题揭秘【命题意图】本题考查正弦定理及余弦定理的应用,考查数学运算与逻辑推理的核心素养.难度:中等偏易【考情分析】新教材高考,解三角形是必考题,一般以解答题形式考查,考查主要方式是利用正弦定理与余弦定理解三角形,有时还会涉及到三角形中的三角变换.【得分秘籍】(1)正弦定理是一个连比等式,只要知道其比值或等量关系就可以运用正弦定理通过约分达到解决问题的目的.(2)运用余弦定理时,要注意整体思想的运用.在已知三角形两边及其中一边的对角,求该三角形的其他边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用.(3)应用正弦、余弦定理的解题技巧①求边:利用公式a=sinsinb AB,b=sinsina BA,c=sinsina CA或其他相应变形公式求解.②求角:先求出正弦值,再求角,即利用公式sin A=sina Bb,sin B=sinb Aa,sin C=sinc Aa或其他相应变形公式求解.③已知两边和夹角或已知三边可利用余弦定理求解.④灵活利用式子的特点转化:如出现a2+b2-c2=λab形式用余弦定理,等式两边是关于边或角的正弦的齐次式用正弦定理.(4)判定三角形形状的途径:①化边为角,通过三角变换找出角之间的关系.②化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.(5)三角形面积公式的应用原则①对于面积公式S=ɑb sin C=ɑc sin B=bc sin A,一般是已知哪一个角就使用哪一个公式.②与面积有关的问题,一般要用到正弦定理和余弦定理进行边和角的转化.(6)应用解三角形知识解决实际问题需要下列三步:①根据题意,画出示意图,并标出条件;②将所求问题归结到一个或几个三角形中(如本例借助方位角构建三角形),通过合理运用正、余弦定理等有关知识正确求解;③检验解出的结果是否符合实际意义,得出正确答案.【易错警示】(1)已知两边及其中一边的对角解三角形时,注意要对解的情况进行讨论,讨论的根据一是所求的正弦值是否合理,当正弦值小于等于1时,还应判断各角之和与180°的关系;二是两边的大小关系.(2)等式两边都不要随意约掉公因式;要移项提取公因式,否则会有漏掉一种形状的可能.三、以例及类(以下所选试题均来自新高考Ⅰ卷地区2020年1-6月模拟试卷) 解答题(2021福建省厦门市高三三模)1. 锐角ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,满足4sin s sin sin in C B a B C +=. (1)求A ;(2)若4b =,ABC 的面积为D 是BC 上的点,AD 平分BAC ∠,求AD .【答案】(1)3A π=;(2)AD =. 【解析】【分析】(1)先利用正弦定理进行边化角并化简得到sin A =,再结合锐角三角形得到角A 即可;(2)先利用面积公式求得c 边,再结合角平分线,利用BAD CAD BAC S S S +=△△△和面积公式,列式计算求得AD 即可.【详解】解:(1)在ABC 中,由正弦定理得sin sin sin a b cA B C==,4sin s sin sin in C B a B C +=,sin sin 4sin sin sin B C C B A B C +=,即sin 4sin sin sin B C A B C =又因为sin sin 0B C ≠,所以4sin A =,即sin A =, 又因为ABC 为锐角三角形,所以3A π=;(2)由1sin 2ABCSbc A ==14sin 23c π⨯⨯=3c =,因为BAC ∠的角平分线为AD ,所以126BAD CAD BAC π∠∠∠===, 又因为BAD CAD BAC S S S +=△△△,所以11sin sin 2626c AD b AD ππ⋅+⋅=113sin 4sin 2626AD AD ππ⨯⋅+⨯⋅=,所以74AD =7AD =. 【点睛】思路点睛:一般地,解有关三角形的题目时,常运用正弦定理(或余弦定理)进行边角互化,要有意识地根据已知条件判断用哪个定理更合适. 如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理.(2021福建省福州市高三5月二模) 2.ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,sin cos()6b A a B π=-.(1)求B ;(2)若D 是ABC 的外接圆的劣弧AC 上一点,且3a =,4c =,1AD =,求CD .【答案】(1)3π;(2)3. 【解析】【分析】(1)利用正弦定理边化角,再用差角的余弦公式展开化成正切即可得解; (2)利用余弦定理求出边b ,借助圆内接四边形性质求得ADC ∠,最后又由余弦定理建立方程得解.【详解】(1)ABC 中,由正弦定理有sin cos()sin sin sin cos()66b A a B B A A B ππ=-⇒=-,从而1sin sin sin sin )2B A A B B =+,化简得,1sin sin cos 22A B A B =,因为0A π<<,即sin 0A ≠,所以tan B =0B π<<,故3B π=.(2)在ABC 中,由余弦定理知,2222cos b a c ac B =+-2234234cos133π=+-⨯⨯⋅=,即 b =又由于A ,B ,C ,D 四点共圆,从而23ADC B ππ∠=-=, 在ADC 中,设DC x =,由余弦定理得,2222cos AC AD DC AD DC ADC =+-⋅⋅∠,即得22213121cos3x x π=+-⋅⋅⋅,化简得,2120x x +-=,解得3x =或 4x =-(舍去), 故3DC =.【点睛】思路点睛:已知两边及一边的对角求第三边的三角形问题,可用余弦定理建立关于第三边的一元二次方程求解. (广东省汕头市高三二模)3. 随着人们生活水平的不断提高,人们对餐饮服务行业的要求也越来越高,由于工作繁忙无法抽出时间来享受美食,这样网上外卖订餐应运而生.现有美团外卖送餐员小李在A 地接到两份外卖单,他须分别到B 地、D 地取餐,再将两份外卖一起送到C 地,运餐过程不返回A 地.A ,B ,C ,D 各地的示意图如图所示,2km BD =,AD =,120ABD ∠=︒,45DCB ∠=︒,30CDB ∠=︒,假设小李到达B 、D 两地时都可以马上取餐(取餐时间忽略不计),送餐过程一路畅通.若小李送餐骑行的平均速度为每小时20千米,请你帮小李设计出所有送餐路径(如:AB BD DB BC →→→),并计算各种送餐路径的路程,然后选择一条最快送达的送餐路径,并计算出最短送餐时间为多少分钟.(各数值保留3位小数)(参考数据:1.414≈ 1.732≈)【答案】答案见解析 【解析】【分析】根据正弦定理先求解出,BC CD 的值,再根据余弦定理求解出AB 的值,然后分析每条送餐路径的路程并确定出最短送餐路径对应的送餐时间.【详解】解:在BCD △中,由正弦定理可知:sin sin BC BDBDC BCD =∠∠,即:2sin 30sin 45BC =︒︒,解得:BC =由sin sin CD BDCBD BCD =∠∠,即:2sin105sin 45CD =︒︒,解得:1CD =(由余弦定理可得22cos BC BD CD BD CD CDB =+-⋅⋅∠,解得=1CD +或者1CD ,,CBD DCB CD BD ∠>∠∴>=1CD ∴)在ABD △中,由余弦定理可知:222cos 2AB BD AD ABDAB BD即2412cos1204AB AB+-︒=,解得2AB =或4AB =-(舍);①若送餐路径为:AB BD DB BC →→→,则总路程=67.414km +≈①若送餐路径为:AD DB BC →→,则总路程=2 6.878km ≈①若送餐路径为:AB BD DC →→,则总路程=221 6.732km ++≈①若送餐路径为:AD DB BD DC →→→,则总路程=22110.196km ++≈所以最短送餐路径为AB BD DC →→, 此路径的送餐时间为:6.7326020.19620⨯=(分钟). 【点睛】关键点点睛:本题是实际问题中解三角形的应用,解答问题的关键在于通过正余弦定理求解出每一段未知的线段长度,然后再去分析每一条路径对应的总路程并确定出最短路径以及送餐时间. (2021广东省广州市天河区高三三模)4. 在ABC 中,角,,A B C 所对的边分别是,,a b c ,已知22cos c b a B -=. (1)求角A 的值; (2)若ABC的面积S c ==sin sin B C 的值 【答案】(1)3π;(2)12.【解析】【分析】(1)由正弦定理化边为角,然后由诱导公式,两角和的正弦变形可求得A 角;(2)由三角形面积求得b ,由余弦定理求得a ,然后用正弦定理可得sin sin B C . 【详解】(1)因为22cos c b a B -=,由正弦定理得2sin sin 2sin cos C B A B -=,sin 2sin()2sin cos 2sin()2sin cos 2(sin cos cos sin )B A B A B A B A B A B A B π=---=+-=+2sin cos 2cos sin A B A B -=,又B 是三角形内角,sin 0B ≠,所以()1cos ,02A A π=∈,,3A π=; (2)11sin sin 223ABC S bc A b π===△,b =2222212cos 292a b c bc A =+-=+-⨯=,3a =,又3sin sin sin sin 3a b c A B C π==== sin 1B =,1sin 2C = 所以1sin sin 2B C =.【点睛】方法点睛:正弦定理、余弦定理、三角形面积是解三角形的常用公式,解题方法是利用正弦定理进行边角转换,化边为角,然后由诱导公式,两角和的正弦公式变形求角,然后再根据问题先用相应公式计算. (2021河北省张家口市高三三模)5. 在四边形ABCD 中,,1,2AB CD AB AC BD ===,且sin sin DBC DCB ∠∠=.(1)求AD 的长; (2)求ABC 的面积.【答案】(1)AD =(2 【解析】【分析】(1)在DBC △中,由sin sin DBC DCB ∠∠=及正弦定理可得 2.BD CD ==设.AD x =在ABD △和ACD △中,分别由余弦定理,列方程22144724x x x x+-+-=-,解得AD ;(2)在ACD △中,由222AD CD AC +=,得到AD CD ⊥,直接利用面积公式求出ABC 的面积.【详解】(1)因为在四边形ABCD 中,AB CD ,所以cos cos .CDA DAB ∠∠=- 在DBC △中,由sin sin DBC DCB ∠∠=及正弦定理可得 2.BD CD == 设.AD x =在ABD △和ACD △中,由1,AB AC ==22144724x x x x+-+-=-, 所以()()2221447.x x +-=-+-解得x =AD =.(2)在ACD △中,2AD AC CD ===,得222AD CD AC +=,所以AD CD ⊥,所以12ABCSAB AD =⋅=.所以ABC 【点睛】(1)在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考:①从题目给出的条件,边角关系来选择;②从式子结构来选择. (2)平面四边形问题通常转化为解三角形来处理. (2021河北省唐山市高三三模)6. 如图所示,在梯形ABCD 中,//AB CD ,2BAD π∠=,点E 是AD 上一点,2=4DE AE =,2cos cos cos BC BEC BE EBC CE ECB ∠=∠+∠.(1)求BEC ∠的大小;(2)若BCE 的面积S 为BC .【答案】(1)∠BEC =3π;(2)BC = 【解析】【分析】(1)利用余弦定理将角化为边,从而可得1cos 2BEC ∠=,故可求其大小. (2)设AEB α∠=,由解直角三角形可得,BE CE ,根据面积可求α的值,利用余弦定理可求BC 的长.【详解】(1)∵2cos cos cos BC BEC BE EBC CE ECB ∠=∠+∠2222222•2•BE C BE BC CE CE BC BE BE BC CE E BC BC+-+-⋅⋅=+=∴1cos 2BEC ∠=,而BEC ∠为三角形内角,故3BEC π∠=. (2)设AEB α∠=,则23DEC πα∠=-,其中203πα<<, ∵DE =2AE =4, ∴2cos cos AE BE αα==,422cos()cos()33CE DE ππαα=--=, ∵△BCE的面积1sin 23cos cos()3S BE CE παα=⋅⋅=-==2sin(2)16πα==--,2sin(21)6α=--, ∴sin 216πα⎛⎫-= ⎪⎝⎭,因为72666πππα-<-<,故262ππα-=,即3πα=, 此时24cos BE α==,482cos()3CE πα==-, ∴在△BCE 中,由余弦定理得:2222cos 48BC BE CE BE CE BEC +⨯∠=-=,∴BC =(2021湖北省襄阳市高三下学期5月第二次模拟)7. 如图,设ABC 中角,,A B C 所对的边分别为,,a b c ,AD 为BC 边上的中线,已知1c =,12sin cos sin sin sin 4c A B a A b B b C =-+,cos 7BAD ∠=.(1)求b 边的长度;(2)求ABC 的面积.【答案】(1)4b =;(2)【解析】【分析】(1)角化边即可求解;(2)设,AB AC θ=,根据cos 7BAD ∠=列方程即可求解 【详解】(1)由条件12sin cos sin sin sin 4c A B a A b B b C =-+, 可得:2212cos 4ca B a b bc =-+,即222221224a c b ca a b bc ac +-⋅=-+, 化简可得:4c b =,因为1c =,所以4b =(2)因为D 为中点,所以()12AD AB AC =+, 设,AB AC θ=,由()()()22222211122cos 444AD AB AC AB AC AB AC c b c b θ=+=++⋅=++⋅ 得17||2AD =, 又()114cos 22AB AD AB AB AC θ+⋅=⋅+=,所以1cos 7||||17AB AD BAD AB AD ⋅=∠==⋅ 化简可得:228cos 8cos 110θθ+-=解得1cos 2θ=或11cos 14θ=-, 又14cos 0θ+>,所以1cos 2θ=,则sin θ==,所以ABC 的面积为11sin 14222bc A =⨯⨯⨯=【点睛】关键点点睛:计算线段长度,关键是找到基底,然后用基底表示,平方之后再开方即可.(2021湖北省武汉市高三下学期4月质量检测)8. 平面凸四边形ABCD 中,9034BAD BCD AD AB ∠=∠=︒==,,.(1)若45ABC ∠=︒,求CD ;(2)若BC =AC .【答案】(1)2;(2) 【解析】【分析】(1)先利用勾股定理求出BD ,利用差角公式求出sin DBC ∠,再利用直角三角形性质可求CD ;(2)先利用直角三角形及BC 求出sin cos 55CBD CBD ∠=∠=,再利用和角公式求出cos ABC ∠,结合余弦定理可得AC .【详解】(1)连接BD ,在Rt BAD 中,由4390AB AD BAD ==∠=︒,,. 得5BD =,①34sin cos 55ABD ABD ∠=∠=,. ∵45ABC ∠=︒,∴45DBC ABC ∠=︒-∠,①43sin sin 45cos cos 45sin 252510DBC ABD ABD ∠=︒⋅∠-︒⋅∠=⨯=-,在Rt BCD 中,由90BCD ∠=︒知:sin 5102CD BD DBC =⋅∠=⨯=.(2)连接AC ,由(1)知5BD =,在Rt ABD △中易知34sin cos 55ABD ABD ∠=∠=,.在Rt BCD 中,由5BC BD ==得CD =,易知sin cos CBD CBD ∠=∠= ①()cos cos cos cos sin sin ABC ABD CBD ABD CBD ABD CBD ∠=∠+∠=∠⋅∠-∠⋅∠4355=-=. 在ABC 中由余弦定理得:(222222cos 424205AC AB BC AB BC ABC =+-⋅∠=+-⨯⨯= ①AC =(2021湖南省衡阳市高三下学期毕业班联考)9. 如图,ABC 中,1302BD CD BAD =∠=︒,.(1)若AB AC =,求sin DAC ∠;(2)若AD BD =,求AC BC的值. 【答案】(1)sin 1DAC ∠=;(2)【解析】【分析】(1)利用三角形的面积比列方程,化简求得sin DAC ∠.(2)设AD x =,求得3BC x =,利用余弦定理列方程,求得AC =,从而求得AC BC. 【详解】(1)设BC 边上的高为h ,11sin 2211sin 22BAD CAD BD h AB AD BAD SS CD h AC AD CAD ⋅⋅⋅⋅∠==⋅⋅⋅⋅∠, 而1sin 302BD CD AB AC BAD ==∠=︒,,,∴sin 1DAC ∠=. (2)设AD x =,则3060AD BD x BAD ABD ADC ==∠=∠=︒∠=︒,,,2,3CD x BC x ==,在ADC 中,由余弦定理得:()()2222222cos603AC x x xx x =+-⋅︒=,∴AC =,∴33AC BC x ==. (2021湖南省株洲市高三下学期质量检测)10. 如图所示,在四边形ABCD中,tan tan BAD BAC ∠=-∠=(1)求DAC ∠的大小;(2)若2DC =,求ADC 周长的最大值.【答案】(1)3π;(2)6. 【解析】【分析】(1)根据DAC BAD BAC ∠=∠-∠,由()tan tan DAC BAD BAC ∠=∠-∠,利用两角差的正切公式求解;(2)利用正弦定理得到,in AD AC ACD ADC =∠=∠,则ADC 的周长为)22si n sin AD AC ACD ADC ++=+∠+∠,再根据23ACD ADC π∠+∠=,利用两角和与差的三角函数转化为22sin 64AD AC ACD π⎛⎫++=+∠+ ⎪⎝⎭,利用三角函数的性质求解. 【详解】(1)因为DAC BAD BAC ∠=∠-∠,且tan tan 2BAD BAC ∠=-∠= 所以()tan tan DAC BAD BAC ∠=∠-∠,tan tan 1tan BAD BAC BAD BAC∠-∠=+∠⋅∠,-== 因为()0,DAC π∠∈, 所以3DAC π∠=;(2)由正弦定理得sin si n s in DAC A DC A CD ADC D AC ∠=∠==∠所以,in 33AD AC ACD ADC =∠=∠,所以ADC 的周长为)22si n sin AD AC ACD ADC ++=+∠+∠,22sin s n 33i ACD ACD π⎛⎫⎛⎫=+∠+-∠ ⎪ ⎪⎝⎭⎝⎭,32sin cos 223ACD ACD ⎛⎫=+∠+∠ ⎪ ⎪⎝⎭, 2n 64si ACD π⎛⎫=+∠+ ⎪⎝⎭, 因为203ACD π<∠<, 所以5666ACD πππ<∠+<, 所以1sin 126ACD π⎛⎫<∠+≤ ⎪⎝⎭, 所以ADC 的周长的最大值为2416+⨯=.【点睛】方法点睛:三角形周长问题,一般地是利用公式a =2R sin A ,b =2R sin B ,c =2R sin C (R 为ABC 外接圆半径),将边转化为角的三角函数关系,然后利用三角函数知识进行化简,其中往往用到三角形内角和定理A +B +C =π,然后利用三角函数的性质求解.(2021江苏省扬州中学高三3月调研)11. 如图,某生态农庄内有一直角梯形区域ABCD ,//AB CD ,AB BC ⊥,3AB =百米,2CD =百米.该区域内原有道路AC ,现新修一条直道DP (宽度忽略不计),点P 在道路AC 上(异于A ,C 两点),6BAC π∠=,DPA θ∠=.(1)用θ表示直道DP 的长度;(2)计划在ADP △区域内种植观赏植物,在CDP 区域内种植经济作物.已知种植观赏植物的成本为每平方百米2万元,种植经济作物的成本为每平方百米1万元,新建道路DP 的成本为每百米1万元,求以上三项费用总和的最小值.【答案】(1)1sin DP θ=,566ππθ<<;(2) 【解析】【分析】(1)根据解三角形和正弦定理可得1sin DP θ=,566ππθ<<, (2)分别求出APD S △,ADC S △,可得DPC S △,设三项费用之和为f,可得()1cos 12sin 2f θθθ+=+,566ππθ<<,利用导数求出最值. 【详解】解:(1)过点D 作DD AB '⊥,垂足为D ,在Rt ABC 中,∵AB BC ⊥,6BAC π∠=,3AB =,∴BC =在Rt ADD '中,∵1AD '=,DD '=2AD =,∴sin DAD '∠=∴3DAD π'∠=, ∵6BAC π∠=, ∴6DAP π∠=, 在ADP △中,由正弦定理可得sin sin 6AD DP πθ=, ∴1sin DP θ=,566ππθ<<, (2)在ADP △中,由正弦定理可得sin sin AD AP ADPθ=∠,∴52sin6sinAPπθθ⎛⎫-⎪⎝⎭=,∴5sin16sin2sinAPDS AP PDπθθθ⎛⎫-⎪⎝⎭=⋅⋅=△,又11sin22222 ADCS AD DC ADC=⋅⋅∠=⨯⨯⨯=△∴5sin6sinDPC ADC APDS S Sπθθ⎛⎫-⎪⎝⎭=-=△△△,设三项费用之和为f,则()55sin sin1 66211 sin sin sinfπθπθθθθθ⎛⎫⎛⎫⎛⎫--⎪ ⎪⎪⎝⎭⎝⎭⎪=⨯+⨯+⨯⎪⎪⎝⎭5sin16sin sinπθθθ⎛⎫-⎪⎝⎭=+1cos12sinθθ+=+,566ππθ<<,∴()21cos2sinfθθθ-='-,令()0fθ'=,解得23πθ=,当2,63ππθ⎛⎫∈ ⎪⎝⎭时,()0fθ'<,函数f单调递减,当25,36ππθ⎛⎫∈ ⎪⎝⎭时,()0fθ'>,函数f单调递增,∴()min23f fπθ⎛⎫==⎪⎝⎭(2021江苏省南京师范大学《数学之友》高三下学期一模)12. 已知ABC中,D是AC边的中点,且①3BA=;①BC=①BD=①60A ∠=︒.(1)求AC 的长;(2)BAC ∠的平分线交BC 于点E ,求AE 的长.上面问题的条件有多余,现请你在①,①,①,①中删去一个,并将剩下的三个作为条件解答这个问题,要求答案存在且唯一.你删去的条件是___________,请写出用剩余条件解答本题的过程.【答案】删去条件见解析;(1)2;(2)5. 【解析】【分析】若删去①①,由余弦定理易得出两解,不满足题意.删①,在ABD △中和ABC 中分别利用余弦定理建立关系可求解,再利用ABE ACE ABC S S S +=可求AE的长;删①,在ABD △中,由余弦定理有2cosADB ∠=,在BCD △中,cosCDB ∠=,由cos cos ADB CDB ∠=-∠求得x ,利用ABE ACE ABC S S S +=可求AE 的长. 【详解】删①.(1)设,AD CD x BA y ===,在ABD △中,由余弦定理可得227x y xy +-=,在ABC 中,由余弦定理可得22427x y xy +-=,联立方程解得1,3x y ==,所以3,2BA AC ==;(2)设AE m =,则由ABE ACE ABC S S S +=得1113sin 302sin 3032sin 60222m m ⨯+⨯=⨯⨯,解得5m =; 删①,则在ABD △中,由余弦定理有2222cos BD AB AD AB AD A =+-⋅⋅,即2796cos60AD AD =+-⋅,解得1AD =或2AD =,则2AC =或4,有2解,不满足题意;删①,在ABC 中,由余弦定理可得2222cos BC AB AC AB AC A =+-⋅⋅,即2796cos60AC AC =+-⋅,解得1AC =或2,有2解,不满足题意; 删①.(1)设AD CD x ==,在ABD △中,由余弦定理有22222cos2BD AD AB ADB BD AD ∠+-===⋅, 同理,在BCD △中,cosCDB ∠=,cos cos ADB CDB ∠∠=-,2=1x =,2AC ∴=; (2)设AE m =,则由ABE ACE ABC S S S +=得1113sin 302sin 3032sin 60222m m ⨯+⨯=⨯⨯,解得m =. 【点睛】关键点睛:解决本题得关键是熟练应用余弦定理建立等量关系求解. (2021江苏省苏州市高三下学期三模)13. ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知11(0)k k a b c+=>.(1)若2k C π==,求A 的值;(2)若k =2,求当C 最大时ABC 的形状.【答案】(1)4A π=;(2)正三角形. 【解析】【分析】(1)由11a b c +=,结合2C π=,利用正弦定理化简得到c 1o 1sin s A A +=24A A π⎛⎫+= ⎪⎝⎭求解;(2)由112a b c +=,得到2ab c a b =+,由余弦定理得到222cos 2a b c C ab+-=()2142a b ab b a a b ⎡⎤=+-⎢⎥+⎢⎥⎣⎦,再利用基本不等式求解. 【详解】(1)11a b +=sin 11sin si 2n 2A A π⎛⎫- ⎪⎝==⎭+即c 1o 1sin s AA +=sin cos cos A A A A +=⋅,24A A π⎛⎫+= ⎪⎝⎭, 所以24A A π+=或24A A ππ+=-, 解得4A π=; (2)112a b c+=,即2a b ab c +=, 所以2ab c a b =+, 由余弦定理得2222222cos 22ab a b a b c a b C ab ab ⎛⎫+- ⎪+-+⎝⎭==, ()()22141412222a b ab ab b a a b ⎡⎤⎡⎤⎢⎥=+-≥-=⎢⎥⎢⎥+⎢⎥⎣⎦⎢⎥⎣⎦, 当且仅当a b =时,等号成立,此时3C π=,ABC 是正三角形.【点睛】方法点睛:在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2021山东省泰安肥城市高三三模)14. 已知锐角ABC ∆的外接圆半径为1,内角,,A B C 的对边分别为,,a b c ,ABC ∆的面积为S2224)S c b =+-.(1)求C ;(2)求bc a的取值范围. 【答案】(1)3C π=;(2bc a<< 【解析】 【分析】(1)2224S c b =+-)2224a b c S +-=,根据余弦定理以及三角形的面积公式可得1cos 4sin 2C ab C =⨯,化简整理即可求出结果;(2)根据正弦定理把bc a变形为2sin 2sin B A,进而得到23sin A Aπ⎛⎫- ⎪⎝⎭然后以函数的思想根据角A 的范围求值域即可.【详解】解:(1)2224S c b =-)2224a b c S +-=∴1cos 4sin 2C ab C =⨯sin C C = ∵cos 0C ≠,∴tan C =又(0,)C π∈ ∴3C π=.(2)ABC ∆的外接圆半径为1 ∴2sin c C=,即2sin c C =又sin sin sin a b c A B C ==, ∴2sin a A =,2sin b B =∴bc a==23sin sin A B A Aπ⎛⎫- ⎪⎝⎭==1cos sin22sinA AA⎫+⎪⎝⎭=32tan A=+又因为ABC∆是锐角三角形∴22ABππ⎧<<⎪⎪⎨⎪<<⎪⎩,即2232AAπππ⎧<<⎪⎪⎨⎪<-<⎪⎩,∴62Aππ<<∴tan3>A,1tan A<<32tan2A<<,∴bca<<【点睛】解三角形中的求值域的问题,有两种解题思路:(1)找到边与边之间的关系,利用均值不等式求出最值,再结合三角形两边之和大于第三边,两边之差小于第三边来确定范围;(2)利用正弦定理,转化为关于某个角的函数,以函数的思想求值域,注意转化的角的范围是关键.(2021山东省潍坊市高三三模)15. 在ABC中,内角A,B,C的对边分别为a,b,c,M是AC上的点,BM平分ABC∠,ABM的面积是BCM面积的2倍.(1)求sinsinCA;(2)若1cos4B=,2b=,求ABC的面积.【答案】(1)2;(2)4.【解析】【分析】(1)由2ABM BCMS S=△△,ABM MBC∠=∠,得到2AB BC=,由正弦定理得sin2sinC ABA BC==;(2)由(1)知2c a =,代入满足1cos 4B =的余弦定理,求得a ,c ,并求得sin B ,则由面积公式1sin 2ABC S ac B =△即可求得三角形面积. 【详解】解:(1)1sin 2ABM AB S BM ABM =⋅∠△, 1sin 2BCM BC S BM MBC =⋅∠△. 因为2ABM BCM S S =△△,ABM MBC ∠=∠,所以2AB BC =. 由正弦定理得sin 2sin C AB A BC == (2)由sin 2sin C A=得2c a =, 由余弦定理得2222cos b a c ac B =+-, 又因为1cos 4B =,2b =, 所以2221444a a a +-⨯4=, 所以1a =,从而2c =. 又因为1cos 4B =且0πB <<,所以sin 4B =.因此 11sin 122244ABC a S c B ==⨯⨯⨯=△. 【点睛】关键点点睛:根据角平分线及面积关系求得2c a =,并利用正弦定理,余弦定理进行边角转化,解得三角形中的参数.。
试题研究2023年6月上半月㊀㊀㊀由考题定考向,探方法成策略以2021年新高考全国I卷解三角形问题为例◉江苏省连云港市城头高级中学㊀程玲强㊀㊀1真题呈现,问题解析考题㊀(2021年新高考全国Ⅰ卷第19题)记әA B C的内角A,B,C的对边分别为a,b,c.已知b2=a c,点D在A C边长,B D s i nøA B C=a s i n C.(1)证明:B D=b;(2)若A D=2D C,求c o søA B C .图1解析:本题为解三角形问题,可先绘制辅助图形,如图1所示.(1)根据题设可知,B D=a s i n Cs i nøA B C.由正弦定理得cs i n C=bs i nøA B C,即s i n Cs i nøA B C=cb.所以B D=a cb,又知b2=a c,则推出B D=b,得证.(2)由A C=b,A D=2D C,可得A D=2b3,D C=b3.所以,在әA B D中,c o søA D B=13b29-c24b23.同理可得c o søC D B=10b29-a22b23.因为øA D B=π-øC D B,所以13b29-c24b23=a2-10b292b23,整理得2a2+c2=11b23.又b2=a c,所以2a2+b4a2=11b23,整理得6a4-11a2b2+3b4=0,解得a2b2=13或a2b2=32.在әA B C中,由余弦定理,可得c o søA B C=a2+c2-b22a c=43-a22b2.当a2b2=13时,c o søA B C=76>1,不符合题意;当a2b2=32时,c o søA B C=712.综上可知,c o søA B C=712.另解:对于第(2)问,还可以从向量视角来解析.已知A D=2D C,则D是三角形边A C的三等分点,则有B Dң=13B Aң+23B Cң,两边平方,可得|B Dң|2=19|B Aң|2+49|B Aң||B Cң|c o søA B C+49|B C|2.①在әA B C中,由余弦定理,可得c o søA B C=a2+c2-b22a c.结合题目条件有b2=9D C2=a c,B D=b=3D C.将上述式子代入①式,消去B D,c o søA B C和b,可初步得到6a2-11a c+3c2=0,则c=23a或c=3a.当c=3a时,b2=a c=3a2,由余弦定理,得c o søA B C=76>1,不符合题意;当c=23a时,b2=a c=23a2,可得c o søA B C=712.2命题揭秘,技巧探究上述考题为高考常见的解三角形问题,主要考查三角函数的核心知识,如正弦定理㊁余弦定理,以及利用定理度量三角形,对学生计算分析㊁利用知识解决实际问题的能力有较高的要求.下面深入解读考题的06Copyright©博看网. All Rights Reserved.2023年6月上半月㊀试题研究㊀㊀㊀㊀命题规律,以及常用的解题技巧.2.1命题规律探究正弦定理㊁余弦定理是高考的热点知识,也是解三角形的核心知识,它们常用来求解三角形的相关问题,如已知边求其他角,判断三角形的形状,求三角形的面积,等等.同时,考题中也常将两个定理与和差公式㊁倍角公式以及三角形的面积公式相结合,转化的技巧性极强.问题解答需要灵活运用正弦定理㊁余弦定理,并有效结合函数与方程思想㊁化归转化思想等.2.2解题技巧探究正弦定理㊁余弦定理是解三角形的核心知识,对应变形式的应用也极为广泛,也是需要重点掌握的知识;另外需要掌握以下几个解析技巧.(1)正弦定理的推广:a s i n A=b s i n B=c s i n C=2R,其中R为әA B C外接圆的半径.求解әA B C外接圆的面积或周长时,可利用正弦定理的推广式来求外接圆的半径.(2)三角形面积公式:S=12a b s i n C=12b c s i n A=12c a s i n B.对于上式,可从三角形内角与边来解读,即三角形的面积可表示为任意两边及其夹角正弦值乘积的一半.(3)正弦知识与三角形个数:利用正弦定理的变形式可判断满足条件的三角形个数.由正弦定理可变形出s i n B=b s i n A a.当s i n B=b s i n A a>1,则满足条件的三角形为0个,即无解;当s i n B=b s i n A a=1,则满足条件的三角形为1个;当s i n B=b s i n A a<1,则满足条件的三角形为1个或2个.(4)正弦定理的适用问题:已知两角和任意一边,求其他边和角;已知两边和其中一边的对角,求其他边和角.(5)利用正㊁余弦定理解题常用策略:利用两个定理解题常结合转化思想,即将边转化为角,或将角转化为边,最终目标是实现角或边的统一.对于三角形中的不等式问题,可利用两个定理来适当 放缩 .对于三角形的取值范围问题,若以余弦定理为切入点,则可将问题转化为不等式;若以正弦定理为切入点,则可将问题转化为三角函数.3关联探究,解题分析解三角形问题的类型十分多样,所涉知识考点也较为众多,结合图形理解条件把握三角形特征,活用定理是解题的关键.下面结合具体问题进行关联探究.3.1倍角公式转化,破解三角函数值问题涉及倍角的三角函数问题较为特殊,需用倍角公式构建倍角与三角形内角的关系,然后利用正弦定理㊁余弦定理加以运算突破.图2例1㊀如图2所示,用三个全等的әA B F,әB C D,әC A E拼成了一个等边三角形A B C,әD E F为等边三角形,且E F=2A E,设øA C E=θ,则s i n2θ的值为.解析:设A E=k(k>0),则E F=2k.由øA C E=θ,әA B F,әB C D,әC A E全等,可得øF A B=θ, C D=k,D E=2k.又әA B C为等边三角形,所以øC A E=π3-θ.在әC A E中,由正弦定理,可得A Es i nøA C E=C Es i nøC A E,即3s i nθ=32c o sθ-12s i nθ.整理得t a nθ=37,则s i n2θ=2t a nθt a n2θ+1=2ˑ37349+1=7326.评析:例1是关于倍角的三角函数问题,问题涉及了全等三角形和等边三角形,利用正弦定理来求解所涉内角的正弦值是解题的基础,而利用倍角公式构建三角形内角和倍角之间的关系则是解题的关键.3.2正弦定理转化,破解面积取值问题三角形面积取值问题十分常见,从三角函数视角分析,可灵活运用正弦定理来求解,对于其中取值范围的分析,则可结合角度和边长的大小关系.例2㊀在锐角三角形A B C中,内角A,B,C的对边分别为a,b,c.已知b s i n B+C2=a s i n B,且c=2,则锐角三角形A B C面积的取值范围为.解析:由b s i n B+C2=a s i n B,可得b c o s A2=a s i n B.由正弦定理,可得s i n B c o s A2=s i n A s i n B.由0<B<π2,可得s i n B>0,故c o s A2=s i n A,即c o s A2=2s i n A2c o s A2.又0<A<π2,所以0<A2<π4,则c o sA2>0.故s i nA2=12,进而可得A=π3.16Copyright©博看网. All Rights Reserved.试题研究2023年6月上半月㊀㊀㊀图3如图3所示,在әA B C中B C1ʅA C,B C2ʅA B,可知A C1=A Bc o sπ3=1,A C2=A Bc o sπ3=4.因为әA B C为锐角三角形,所以点C在线段C1C2上运动,但不包括端点,于是有A C1<b<A C2,即1<b<4.而әA B C的面积可表示为SәA B C=12b c s i n A=32b,结合b的取值可得32bɪ(32,23).故әA B C面积的取值范围为(32,23).评析:例2是求三角形面积的取值范围问题,解题的关键是构建三角形模型㊁确定b的取值范围.上述解题分两阶段突破.第一阶段,结合余弦定理确定内角A的大小;第二阶段,结合图形求解b的取值范围,进而由三角形面积公式求面积的取值范围.3.3两角和差转化,破解三角函数最值问题对于与两角相关的三角函数值问题,突破的核心是两角和与差的公式,即完成两角的统一化,构建单一变量,将问题转化为简单的函数问题,然后利用函数性质求最值.例3㊀在әA B C中,内角A,B,C的对边分别为a,b,c,其面积S可表示为S=b2+c2-a24,试回答下列问题.(1)如果a=6,b=2,求c o s B的值;(2)试求s i n(A+B)+s i n B c o s B+c o s(B-A)的最大值.解析:(1)简答.利用面积公式可得A=π4,结合正弦定理可得s i n B=b s i n A a=66,分析可知B为锐角,故c o s B=306.(2)由(1)可知A=π4,所以s i n(A+B)+s i n B c o s B+c o s(B-A)=22s i n B+22c o s B+s i n B c o s B+22s i n B+22c o s B=2(s i n B+c o s B)+s i n B c o s B.令t=s i n B+c o s B=2s i n(B+π4),由Bɪ(0,3π4),得B+π4ɪ(π4,π),则s i n(B+π4)ɪ(0,1],所以tɪ(0,2].故s i n(A+B)+s i n B c o s B+c o s(B-A)=2t+t2-12=12(t+2)2-32,tɪ(0,2].分析可知,当t=2,B=π4时,原式取得最大值,且最大值为52.评析:上述第(2)问可视为是两角和差的三角函数最值问题,突破的核心策略是角的转化,即通过内角的变换将问题转化为单一内角的三角函数问题.上述解析过程充分利用了两角和与差的公式㊁内角的三角函数基本关系等,问题的转化思想和运算技巧体现得极为充分.4解后反思,教学建议解三角形问题是高考数学的重要题型,探究命题规律,总结解题技巧是教学探究的重点,下面进一步进行反思教学.4.1理解定理内涵,正确认识定理正弦定理㊁余弦定理是破解 解三角形 问题的核心定理,充分理解定理内涵㊁正确认识定理是探究学习的关键.实际上两大定理揭示了三角形边角关系.如余弦定理体现了三角形三边长与一个角余弦值的关系,是对勾股定理的推广;而正弦定理则体现了三角形各边和所对角正弦值之比的关系.教学中要帮助学生理解该知识内涵,同时引导学生体验定理的探究过程,掌握定理的证明方法,强化学生的思辨思维,以从根本上掌握解三角形问题的知识核心.4.2开展思维训练,总结通性通法边化角 和 角化边 是解三角形问题常用的两种思路,总体而言就是为了实现问题条件的 边 或角 的统一.在教学中要重视学生的思维训练,促使学生充分掌握该类问题的通性通法,正确判断解决问题应选用的方法.4.3关注类型问题,总结破题技巧解三角形问题的类型十分多样,问题的综合性㊁拓展性极强,因此关注问题的多种类型,总结破题技巧十分关键[1].实际教学中,教师要帮助学生构建解三角形问题的体系,引导学生合理变式,灵活运用定理㊁公式来转化突破.同时注意拓展解法,提升学生的思维水平.参考文献:[1]景君.不畏浮云遮望眼 一道江苏联赛解三角形题的剖析[J].中学数学,2021(7):19G20.Z26Copyright©博看网. All Rights Reserved.。
热点06 三角函数与解三角形【命题形式】新高考环境下,三角函数与解三角形依然会作为一个热点参与到高考试题中,其中对应的题目的分布特点与命题规律分析可以看出,三角试题每年都考。
1、题目分布:"一大一小",或"三小",或"二小"("小"指选择题或填空题,"大"指解答题),解答题以简单题或中档题为主,选择题或填空题比较灵活,有简单题,有中档题,也有对学生能力和素养要求较高的题。
2、考察的知识内容:(1)三角函数的概念;(2)同角三角函数基本关系式与诱导公式及其综合应用;(3)三角函数的图像和性质及综合应用;(4)三角恒等变换及其综合应用;(5)利用正、余弦定理求解三角形;(6)与三角形面积有关的问题;(7)判断三角形的形状;(8)正余弦定理的应用。
3、新题型的考察:(1)以数学文化和实际为背景的题型;(2)多选题的题型;(3)多条件的解答题题型。
4、与其它知识交汇的考察:(1)与函数、导数的结合;(2)与平面向量的结合;(3)与不等式的结合;(4)与几何的结合。
【满分技巧】1、夯实基础,全面系统复习,深刻理解知识本质从三角函数的定义出发,利用同角三角函数关系式、诱导公式进行简单的三角函数化简、求值,结合三角函数的图像,准确掌握三角函数的单调性、奇偶性、周期性、最值、对称性等性质,并能正确地描述三角函数图像的变换规律。
要重视对三角函数图像和性质的深入研究,三角函数,是高考考查知识的重要载体,是三角函数的基础。
“五点法”画正弦函数图像是求解三角函数中的参数及正确理解图像变换的关键,因此复习时应精选典型例题(选择题、填空题、解答题)加以训练和巩固,把解决问题的方法技巧进行归纳、整理,达到举一反三、触类旁通。
2、切实掌握两角差的余弦公式的推导及其相应公式的变换规律以两角差的余弦公式为基础,掌握两角和与两角差的正余弦公式、正切公式、二倍角公式,特别是用一种三角函数表示二倍角的余弦,掌握公式的正用、逆用、变形应用,迅速正确应用这些公式进行化简、求值与证明,即以两角差的余弦公式为基础.推出三角恒等变换的相应公式,掌握公式的来龙去脉。
第2讲 同角三角函数的基本关系及诱导公式1.同角三角函数的基本关系 (1)平方关系:□01sin 2α+cos 2α=1. (2)商数关系:□02sin αcos α=tan α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z . 2.三角函数的诱导公式1.概念辨析(1)对任意α,β∈R ,有sin 2α+cos 2β=1.( ) (2)若α∈R ,则tan α=sin αcos α恒成立.( )(3)(sin α±cos α)2=1±2sin αcos α.( )(4)sin(π+α)=-sin α成立的条件是α为锐角.( ) 答案 (1)× (2)× (3)√ (4)× 2.小题热身 (1)若sin α=55,π2<α<π,则tan α=________. 答案 -12解析 因为sin α=55,π2<α<π, 所以cos α=-1-sin 2α=-1-⎝⎛⎭⎪⎫552=-255, 所以tan α=sin αcos α=-12.(2)化简:cos 2α-1sin αtan α=________.答案 -cos α解析 原式=-sin 2αsin α·sin αcos α=-cos α.(3)sin2490°=________;cos ⎝ ⎛⎭⎪⎫-52π3=________.答案 -12 -12解析 sin2490°=sin(7×360°-30°)=-sin30°=-12.cos ⎝ ⎛⎭⎪⎫-52π3=cos ⎝ ⎛⎭⎪⎫16π+π+π3=cos ⎝ ⎛⎭⎪⎫π+π3 =-cos π3=-12.(4)已知sin ⎝ ⎛⎭⎪⎫π2+α=35,α∈⎝⎛⎭⎪⎫0,π2,则sin(π+α)=________.答案 -45解析 因为sin ⎝⎛⎭⎪⎫π2+α=cos α=35,α∈⎝ ⎛⎭⎪⎫0,π2,所以sin α=1-cos 2α=45,所以sin(π+α)=-sin α=-45.题型 一 同角三角函数关系式的应用1.已知cos α=15,-π2<α<0,则1tan α=( )A.2 6 B .-2 6 C .-612 D.612答案 C解析 因为cos α=15,-π2<α<0,所以sin α=-1-cos 2α=-265,所以1tan α=cos αsin α=15-265=-612.2.已知tan x =3,则sin x +3cos x2sin x -3cos x =________.答案 2解析 因为tan x =3,所以sin x +3cos x 2sin x -3cos x =tan x +32tan x -3=3+32×3-3=2.3.sin 21°+sin 22°+sin 23°+…+sin 289°=________. 答案 44.5解析 因为sin(90°-α)=cos α,所以当α+β=90°时,sin 2α+sin 2β=sin 2α+cos 2α=1,设S =sin 21°+sin 22°+sin 23°+…+sin 289°, 则S =sin 289°+sin 288°+sin 287°+…+sin 21°, 两个式子相加得2S =1+1+1+…+1=89,S =44.5.同角三角函数关系式的应用方法(1)利用sin 2α+cos 2α=1可实现α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)由一个角的任一三角函数值可求出这个角的另外两个三角函数值,因为利用“平方关系”公式,需求平方根,会出现两解,需根据角所在的象限判断符号,当角所在的象限不明确时,要进行分类讨论.1.已知△ABC 中,cos A sin A =-125,则cos A 等于( )A.1213 B.513 C .-513 D .-1213答案 D解析 因为A 是三角形内角,且cos A sin A =-125<0,所以cos A <0且5cos A =-12sin A , 则25cos 2A =144sin 2A =144(1-cos 2A ) 解得cos 2A =144169,所以cos A =-1213.2.若α是第二象限角,则tan α1sin 2α-1化简的结果是( ) A.-1 B .1 C.-tan 2α D .tan 2α答案 A解析 因为α是第二象限角,所以sin α>0,cos α<0, 所以tan α1sin 2α-1=sin αcos α·⎪⎪⎪⎪⎪⎪cos αsin α=-sin αcos α·cos αsin α=-1. 3.(2018·绵阳诊断)已知2sin α=1+cos α,则tan α的值为( ) A.-43B.43 C.-43或0D.43或0 答案 D解析 因为2sin α=1+cos α,所以4sin 2α=1+2cos α+cos 2α,又因为sin 2α=1-cos 2α,所以4(1-cos 2α)=1+2cos α+cos 2α,即5cos 2α+2cos α-3=0,解得cos α=-1或cos α=35.当cos α=-1时,sin α=0,tan α=0,当cos α=35时,sin α=45,tan α=43.题型 二 诱导公式的应用1.化简sin(-1071°)sin99°+sin(-171°)sin(-261°)的结果为( ) A.1 B .-1 C .0 D .2 答案 C解析 原式=(-sin1071°)sin99°+sin171°sin261°=-sin(3×360°-9°)sin(90°+9°)+sin(180°-9°)·sin(270°-9°)=sin9°cos9°-sin9°cos9°=0.2.已知f (α)=π-απ-α-π-απ-α,则f ⎝⎛⎭⎪⎫-25π3的值为( ) A.12 B.13 C.32 D.22 答案 A解析 ∵f (α)=sin αcos α-cos α-tan α=cos α,∴f ⎝ ⎛⎭⎪⎫-25π3=cos ⎝ ⎛⎭⎪⎫-25π3=cos ⎝ ⎛⎭⎪⎫8π+π3=cos π3=12. 3.已知cos ⎝ ⎛⎭⎪⎫π6-θ=a ,则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ的值是________.答案 0 解析 因为cos ⎝⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ=-cos ⎝ ⎛⎭⎪⎫π6-θ=-a .sin ⎝⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=cos ⎝⎛⎭⎪⎫π6-θ=a ,所以cos ⎝⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=0.条件探究1 若举例说明3的条件“cos ⎝ ⎛⎭⎪⎫π6-θ=a ”改为“sin ⎝ ⎛⎭⎪⎫θ+π12=a ”,求cos ⎝⎛⎭⎪⎫θ+7π12.解 cos ⎝ ⎛⎭⎪⎫θ+7π12=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫θ+π12+π2=-sin ⎝⎛⎭⎪⎫θ+π12=-a .条件探究2 若举例说明3的条件“cos ⎝ ⎛⎭⎪⎫π6-θ=a ”改为“cos(α-17°)=a ”,求sin(α-107°).解 sin(α-107°)=sin(α-17°-90°) =-cos(α-17°)=-a .(1)诱导公式的两个应用方向与原则①求值,化角的原则与方向:负化正,大化小,化到锐角为终了. ②化简,化简的原则与方向:统一角,统一名,同角名少为终了. (2)应用诱导公式的基本流程(3)巧用口诀:奇变偶不变,符号看象限.(4)注意观察已知角与所求角的关系,如果两者之差或和为π2的整数倍,可考虑诱导公式,如举例说明3中π6-θ+5π6+θ=π,⎝ ⎛⎭⎪⎫2π3-θ-⎝ ⎛⎭⎪⎫π6-θ=π2.1.(2019·天一大联考)在平面直角坐标系xOy 中,角α的终边经过点P (3,4),则sin ⎝⎛⎭⎪⎫α-2017π2=( ) A.-45 B .-35 C.35 D.45答案 B解析 因为角α的终边经过点P (3,4). 所以cos α=332+42=35. 所以sin ⎝ ⎛⎭⎪⎫α-2017π2=sin ⎝ ⎛⎭⎪⎫α-π2-1008π =sin ⎝ ⎛⎭⎪⎫α-π2=-sin ⎝ ⎛⎭⎪⎫π2-α=-cos α=-35. 2.(2018·石家庄模拟)已知k ∈Z ,化简:k π-αk -π-α]k +π+αk π+α=________.答案 -1解析 当k 为偶数时,原式=-α-π-απ+αα=-sin α-cos α-sin αcos α=-1. 当k 为奇数时,原式=π-α-αsin απ+α=sin αcos αsin α-cos α=-1.综上知,原式=-1.题型 三 同角三角函数基本关系式和诱导公式的灵活应用角度1 化简与求值1.已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是( )A.355 B.377 C.31010 D.13答案 C解析 由已知可得-2tan α+3sin β+5=0,tan α-6sin β-1=0,解得tan α=3,又α为锐角,故sin α=31010.角度2 sin α+cos α、sin αcos α、sin α-cos α三者之间的关系2.(2018·长沙模拟)已知-π<x <0,sin(π+x )-cos x =-15,则sin x -cos x =( )A.-75B.75C.57 D .-57答案 A解析 因为sin(π+x )-cos x =-15,所以-sin x -cos x =-15,所以sin x +cos x =15∈(0,1).又因为-π<x <0,所以-π2<x <0,所以sin x -cos x <0.sin x +cos x =15,两边平方得1+2sin x cos x =125,所以2sin x cos x =-2425.所以(sin x -cos x )2=1-2sin x cos x =4925.所以sin x -cos x =-75.角度3 常值代换问题3.(2016·全国卷Ⅲ)若tan α=34,则cos 2α+2sin2α=( )A.6425 B.4825 C .1 D.1625答案 A解析 当tan α=34时,原式=cos 2α+4sin αcos α=cos 2α+4sin αcos αsin 2α+cos 2α=1+4tan αtan 2α+1=1+4×34916+1=6425, 故选A.同角三角函数基本关系在求值与化简时的常用方法(1)弦切互化法:主要利用公式tan x =sin x cos x 进行切化弦或弦化切,如a sin x +b cos xc sin x +d cos x,a sin 2x +b sin x cos x +c cos 2x 等类型可进行弦化切.(2)和积转换法:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α可以知一求二.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=sin 2θ⎝ ⎛⎭⎪⎫1+1tan 2θ=tan π4=….1.1+π-π+化简的结果是( )A.sin3-cos3 B .cos3-sin3 C.±(sin3-cos3) D .以上都不对 答案 A解析 因为sin(π-3)=sin3,cos(π+3)=-cos3,所以原式=1-2sin3·cos3=-2=|sin3-cos3|.因为π2<3<π,所以sin3>0,cos3<0,即sin3-cos3>0,所以原式=sin3-cos3.2.已知tan100°=k ,则sin80°的值等于( ) A.k1+k 2B .-k1+k2C.1+k2k D .-1+k2k答案 B解析 由已知得tan100°=k =tan(180°-80°)=-tan80°,所以tan80°=-k ,又因为tan80°=sin80°cos80°=sin80°1-sin 280°,所以sin 280°1-sin 280°=k 2,注意到k <0,可解得sin80°=-k1+k2.3.若sin x =2sin ⎝ ⎛⎭⎪⎫x +π2,则cos x cos ⎝⎛⎭⎪⎫x +π2=( )A.25 B .-25 C.23 D .-23 答案 B解析 由sin x =2sin ⎝ ⎛⎭⎪⎫x +π2,得sin x =2cos x ,即tan x =2,则cos x cos ⎝⎛⎭⎪⎫x +π2=-cos x sin x =-sin x cos x sin 2x +cos 2x =-tan x 1+tan 2x =-21+4=-25.。
考点17 正、余弦定理及解三角形1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、正弦定理 1.正弦定理在ABC △中,若角A ,B ,C 对应的三边分别是a ,b ,c ,则各边和它所对角的正弦的比相等,即sin sin sin a b c==A B C.正弦定理对任意三角形都成立. 2.常见变形 (1)sin sin sin ,,,sin sin ,sin sin ,sin sin ;sin sin sin A a C c B ba Bb A a Cc A b C c B B b A a C c====== (2);sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b cA B C A B A C B C A B C+++++======+++++ (3)::sin :sin :sin ;a b c A B C = (4)正弦定理的推广:===2sin sin sin a b c R A B C,其中R 为ABC △的外接圆的半径. 3.解决的问题(1)已知两角和任意一边,求其他的边和角; (2)已知两边和其中一边的对角,求其他的边和角. 4.在ABC △中,已知a ,b 和A 时,三角形解的情况二、余弦定理 1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即2222222222cos ,2cos 2cos .a b c bc A b a c ac B c a b ab C =+-=+-=+-,2.余弦定理的推论从余弦定理,可以得到它的推论:222222222cos ,cos ,cos 222b c a c a b a b c A B C bc ca ab+-+-+-===. 3.解决的问题(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两角. 4.利用余弦定理解三角形的步骤三、解三角形的实际应用 1.三角形的面积公式设ABC △的三边为a ,b ,c ,对应的三个角分别为A ,B ,C ,其面积为S .(1)12S ah = (h 为BC 边上的高); (2)111sin sin sin 222S bc A ac B ab C ===;(3)1()2S r a b c =++(r 为三角形的内切圆半径).2.三角形的高的公式h A =b sin C =c sin B ,h B =c sin A =a sin C ,h C =a sin B =b sin A . 3.测量中的术语 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).(2)方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②). (3)方向角相对于某一正方向的水平角.①北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③);②北偏西α,即由指北方向逆时针旋转α到达目标方向; ③南偏西等其他方向角类似.(4)坡角与坡度①坡角:坡面与水平面所成的二面角的度数(如图④,角θ为坡角);②坡度:坡面的铅直高度与水平长度之比(如图④,i 为坡度).坡度又称为坡比. 4.解三角形实际应用题的步骤考向一 利用正、余弦定理解三角形利用正、余弦定理求边和角的方法:(1)根据题目给出的条件(即边和角)作出相应的图形,并在图形中标出相关的位置.(2)选择正弦定理或余弦定理或二者结合求出待解问题.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(3)在运算求解过程中注意三角恒等变换与三角形内角和定理的应用. 常见结论:(1)三角形的内角和定理:在ABC △中,π A B C ++=,其变式有:πA B C +=-,π222A B C+=-等. (2)三角形中的三角函数关系:i in(s n s )A B C =+; ()s os co c A B C =-+;sincos 22A B C +=; cos sin 22A B C+=.典例1 在ABC △中,内角A,B,C 所对的边分别为a,b,c ,若bsin2A +√3asinB =0,b =√3c ,则ca的值为A .1 BC .5D .7【答案】D【解析】由bsin2A +√3asinB =0,结合正弦定理,可得sinBsin2A +√3sinAsinB =0, 即2sinBsinAcosA +√3sinAsinB =0, 由于sinBsinA ≠0,所以cosA =−√32, 因为0<A <π,所以A =5π6.又b =√3c ,由余弦定理可得a 2=b 2+c 2−2bccosA =3c 2+c 2+3c 2=7c 2, 即a 2=7c 2,所以ca =√77. 故选D .典例2 已知ABC △的内角A,B,C 的对边分别为a,b,c ,且asinA +bsinB +√2bsinA =csinC . (1)求C ;(2)若a =2,b =2√2,线段BC 的垂直平分线交AB 于点D ,求CD 的长.【解析】(1)因为asinA +bsinB +√2bsin A =csinC ,所以a 2+b 2+√2ab =c 2. 由余弦定理得cosC =a 2+b 2−c 22ab =−√22, 又0<C <π,所以C =3π4.(2)由(1)知C =3π4,根据余弦定理可得c 2=a 2+b 2−2abcosC =22+(2√2)2−2×2×2√2×(−√22)=20,所以c =2√5.由正弦定理得csinC =bsinB ,即sin 2B =,解得sinB =√55.从而cos B =. 设BC 的中垂线交BC 于点E , 因为在Rt BDE △中,cosB =BEBD ,所以cosBEBDB===,因为DE为线段BC的中垂线,所以CD=BD=√52.1.已知△ABC的内角,,A B C的对边分别为,,a b c,且()2cos cos cosC a B b A c+=,1,3a b==,则c= A.3B.CD2.在△ABC中,D是BC上的点,AD平分BAC∠,sin2sinC B=.(1)求BDCD;(2)若1AD AC==,求BC的长.考向二三角形形状的判断利用正、余弦定理判定三角形形状的两种思路:(1)“角化边”:利用正弦、余弦定理把已知条件转化为只含边的关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)“边化角”:利用正弦、余弦定理把已知条件转化为只含内角的三角函数间的关系,通过三角恒等变换,得出内角间的关系,从而判断出三角形的形状,此时要注意应用πA B C++=这个结论.提醒:在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免造成漏解.典例 3 在ABC△中,角,,A B C所对的边分别是,,a b c,满足3cos cos sin sin cos2A C A C B++=,且,,a b c成等比数列.(1)求角B的大小;(2)若2,2tan tan tana c baA C B+==,试判断三角形的形状.【解析】(1∵()cos cosB A C=-+,32sin sin2A C∴=,又22sin sin sin b ac B A C =⇒=,232sin 2B ∴=而,,a b c 成等比数列,所以b 不是最大, 故B 为锐角,所以60B =︒.(2)由2tan tan tan a c bA C B+=,利用正弦定理可得cos cos 2cos 1A C B +==,所以ABC △是等边三角形.3.在△ABC 中,内角,,A B C 所对的边分别是,,a b c ,已知sin tan 1cos BC B=-.(1)求证:△ABC 为等腰三角形;(2)若△ABC 是钝角三角形,且面积为24a ,求2b ac的值.考向三 与面积、范围有关的问题(1)求三角形面积的方法①若三角形中已知一个角(角的大小,或该角的正、余弦值),结合题意求夹这个角的两边或该两边之积,套公式求解.②若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,套公式求面积,总之,结合图形恰当选择面积公式是解题的关键.(2)三角形中,已知面积求边、角的方法三角形面积公式中含有两边及其夹角,故根据题目的特点,若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解;若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.典例4 在ABC △中,角A,B,C 的对边分别为a,b,c ,且a =bcosC +csinB . (1)求角B ;(2)若b =2√2,求ABC △面积的最大值.【解析】(1)由已知和正弦定理得sinA =sinBcosC +sinCsinB , ∵sinA =sin (B +C )=sinBcosC +cosBsinC , ∴sinB =cosB ,解得B =450.(2)由余弦定理得:b 2=a 2+c 2−2accosB ,即(2√2)2=a 2+c 2−2accos450, 整理得:a 2+c 2=8+√2ac .∵a 2+c 2≥2ac (当且仅当a =c 取等号),∴8+√2ac ≥2ac ,即ac ≤4(2+√2), ∴S ΔABC =12acsinB ≤12×4(2+√2)×√22=2√2+2,故ABC △面积的最大值为2√2+2.【名师点睛】在解决三角形问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.正、余弦定理在应用时,应注意灵活性,已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.典例5 在ABC △中,AC =2√3,D 是BC 边上的一点. (1)若AD =1,AD ⃑⃑⃑⃑⃑ ⋅AC ⃑⃑⃑⃑⃑ =3,求CD 的长; (2)若∠B =120°,求ABC △周长的取值范围. 【解析】(1)在ADC △中,AD =1,AC =2√3, 所以AD ⃑⃑⃑⃑⃑ ⋅AC ⃑⃑⃑⃑⃑ =|AD ⃑⃑⃑⃑⃑ ||AC ⃑⃑⃑⃑⃑ |cos ∠DAC =1×2√3×cos ∠DAC =3, 所以cos ∠DAC =√32.由余弦定理得2222cos CD AC AD AC AD DAC =+∠-⋅⋅=12+1-2×2√3×1×√32=7, 所以CD =√7.(2)在ABC △中,由正弦定理得4sin sin sin sin 3AB BC AC C A B ====,∴AB +BC =4(sinA +sinC)=4[sinA +sin(π3−A)]=4sin(A +π3),ππ0,sin 33A A ⎤⎛⎫<<∴+∈⎥ ⎪⎝⎭⎝⎦.∴AB +BC ∈(2√3,4],故ABC △周长的取值范围为(4√3,4+2√3] .4.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且22()13a b cab--=-.(1)求角C ; (2)若c b ==,求B 及ABC △的面积.5.已知,,a b c 分别是ABC △三个内角,,A B C 所对的边,且1cos 2a C cb +=. (1)求A ;(2)若1a =,求ABC △的周长L 的取值范围.考向四 三角形中的几何计算几何中的长度、角度的计算通常转化为三角形中边长和角的计算,这样就可以利用正、余弦定理解决问题.解决此类问题的关键是构造三角形,把已知和所求的量尽量放在同一个三角形中.典例6 如图,在ABC △中,D 为AB 边上一点,且DA DC =,已知π4B =,1BC =.(1)若ABC △是锐角三角形,DC =,求角A 的大小; (2)若BCD △的面积为16,求AB 的长. 【解析】(1)在BCD △中,π4B =,1BC =,DC =,由正弦定理得sin sin BC CDBDC B=∠,解得1sin BDC ∠==所以π3BDC ∠=或2π3. 因为ABC △是锐角三角形,所以2π3BDC ∠=. 又DA DC =,所以π3A =.(2)由题意可得1π1sin 246BCD S BC BD =⋅⋅⋅=△,解得3BD =,由余弦定理得222π2cos4CD BC BD BC BD =+-⋅⋅=251219329+-⨯⨯=,解得CD =,则AB AD BD CD BD =+=+=.所以AB6.如图,在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos B +b =2c .(1)求角A 的大小;(2)若AC 边上的中线BD ,且AB ⊥BD ,求BC 的长.考向五 解三角形的实际应用解三角形应用题的两种情形:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.研究测量距离问题是高考中的常考内容,既有选择题、填空题,也有解答题,难度一般适中,属中档题.解题时要选取合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.典例7 如图,一条巡逻船由南向北行驶,在A 处测得山顶P 在北偏东()1515BAC ︒∠=︒方向上,匀速向北航行20分钟到达B 处,测得山顶P 位于北偏东60︒方向上,此时测得山顶P 的仰角为60︒,若山高为千米,(1)船的航行速度是每小时多少千米?(2)若该船继续航行10分钟到达D 处,问此时山顶位于D 处的南偏东什么方向?【解析】(1)在BCP △中,tan 2PCPBC BC ∠=⇒=, 在ABC △中,由正弦定理得所以)21AB =,故船的航行速度是每小时)61千米.(2)在BCD △中,由余弦定理得CD =在BCD △中,由正弦定理得所以山顶位于D 处南偏东45︒方向.7.如图,某测量人员为了测量西江北岸不能到达的两点A ,B 之间的距离,她在西江南岸找到一个点C ,从C 点可以观察到点A ,B ;找到一个点D ,从D 点可以观察到点A ,C ;找到一个点E ,从E 点可以观察到点B ,C ;并测量得到数据:90ACD ∠=︒,60ADC ∠=︒,15ACB ∠=︒,105BCE ∠=︒,45CEB ∠=︒,1DC CE ==百米.(1)求△CDE 的面积;(2)求A ,B 之间的距离的平方.考向六 三角形中的综合问题1.解三角形的应用中要注意与基本不等式的结合,以此考查三角形中有关边、角的范围问题.利用正弦定理、余弦定理与三角形的面积公式,建立如“22,,a b ab a b ++”之间的等量关系与不等关系,通过基本不等式考查相关范围问题.2.注意与三角函数的图象与性质的综合考查,将两者结合起来,既考查解三角形问题,也注重对三角函数的化简、计算及考查相关性质等.3.正、余弦定理也可能结合平面向量及不等式考查面积的最值或求面积,此时注意应用平面向量的数量积或基本不等式进行求解.典例8 在ABC △,向量(sin ,1)A =m ,(1,cos )B =n ,且⊥m n . (1)求A 的值;(2)若点D 在边BC 上,且3BD BC =ABC △的面积. 【解析】(1)由题意知sin cos 0A B +=⋅=m n ,πA B C ++=,所以5πsin cos()06A A +-=,πsin()06A -=.ππ2π(,)663A -∈-, 所以06A -=,即π6A =.(2)设||BD x =,由3BD BC =,得||3BC x =,由(1)知π6A C ==,所以|在ABD △1x =, 所以3AB BC ==,典例9 ABC △的内角A ,B ,C 所对的边分别为a ,b ,c . (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,求cos B 的最小值. 【解析】(1)因为a ,b ,c 成等差数列,所以a +c =2b . 由正弦定理得sin A +sin C =2sin B . 因为sin B =sin[π-(A +C )]=sin(A +C ), 所以sin A +sin C =2sin(A +C ).(2)因为a ,b ,c 成等比数列,所以b 2=ac .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时等号成立. 所以cos B 的最小值为12.8.已知()()3sin ,cos ,cos ,cos ,x x x x x ==∈R m n ,设()f x =⋅m n .(1)求()f x 的解析式并求出它的最小正周期T ;(2)在△ABC 中,角,,A B C 所对的边分别为,,a b c ,且1,2,()1a b c f A =+==,求△ABC 的面积.1.设△ABC 的内角A,B,C 所对边的长分别是a,b,c ,且b =3,c =1,A =2B ,则a 的值为 A .2√5 B .4 C .2√3D .2√22.在ABC △中,AB =1,BC =2,则角C 的取值范围是 A .π0,6⎛⎤ ⎥⎝⎦B .ππ,42⎛⎫⎪⎝⎭ C .ππ,62⎡⎫⎪⎢⎣⎭D .ππ,62⎛⎫⎪⎝⎭3.已知ABC △的面积为S ,三个内角A,B,C 的对边分别为a,b,c ,若4S =a 2−(b −c)2,bc =4,则ABC △是A .直角三角形B .钝角三角形C .锐角三角形D .不能确定4.ABC △中,2AB =,10BC =1cos 4A =,则AB 边上的高等于 A 315B .34C .2D .35.一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60︒,行驶4h 后,船到达C 处,看到这个灯塔在北偏东15︒,这时船与灯塔的距离为A .B .kmC .D .6.已知ABC △的面积为4,∠A =900,则2AB +AC 的最小值为 A .8 B .4 C .8√2D .4√27.设ABC △的三个内角A 、B 、C 所对的边分别为a 、b 、c ,如果(a +b +c)(b +c −a)=3bc ,且a =√3,那么ABC △外接圆的半径为 A .2 B .4 C .√2D .18. △ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =4c =,且cos 3cos a B b A =,则△ABC 的面积为 A .2 B .3C .4D .9.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若向量(,)a c a b =+-p ,(,)b a c =-q ,且∥p q ,则角C = A .π6 B .π4 C .π3D .π210.若ABC △的三个内角A ,B ,C 所对的边分别是a ,b ,c ,sin (C −A )=12sinB ,且b =4,则c 2−a 2=A .10B .8C .7D .411.在ABC △中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC △的面积为S ,且()22a b c =+-,则πsin 4C ⎛⎫+= ⎪⎝⎭A .1B .2C D 12.平面四边形ABCD 中,∠ABC =150°,√3AB =2BC ,AC =√13,BD ⊥AB ,CD =3,则四边形ABCD 的面积为A .7√3B .2C .√3+1D .√3+213.已知△ABC ,内角A ,B ,C 对应的边分别为a ,b ,c ,若60A =︒,2b =,则c 的值为____________.14.在ABC △中,D 为BC 边上一点,若ABD △是等边三角形,且AC =ADC △的面积的最大值为 .15.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =___________m.16.已知△ABC 的内角,,A B C 的对边分别为,,a b c ,若π,6,143C a b ==≤≤,则sin A 的取值范围为__________.17.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知cosA =−√1010,b =√2,c =√5.(1)求a ;(2)求cos(B −A)的值.18.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知π2A ≠,sin 26cos sin b A A B =. (1)求a 的值; (2)若π3A =,求△ABC 周长的取值范围.19.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,,(cos ,sin )B A =n ,且∥m n .(1)求角B 的大小;(2)若2b =,ABC △的面积为a c +的值.20.如图,渔船甲位于岛屿A 的南偏西60︒方向的B 处,且与岛屿A 相距18海里,渔船乙以15海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2h 追上,此时到达C 处. (1)求渔船甲的速度; (2)求sin α的值.21.在ABC △中,,,A B C 的对边分别为,,a b c ,且cos ,cos ,cos a C b B c A 成等差数列. (1)求B 的值;(2)求()22sin cos A A C +-的范围.22.已知函数f(x)=2cosx(cosx +√3sinx).(1)当x ∈[π24,7π12]时,求f(x)的值域;(2)在ABC △中,若f (B )=−1,BC =√3,sinB =√3sinA,求ABC △的面积.23.如图所示,在平面内,四边形ABCD 的对角线交点位于四边形的内部,1,AB BC AC CD ===,AC CD ⊥,记ABC θ∠=.(1)若45θ=︒,求对角线BD 的长度(2)当θ变化时,求对角线BD 长度的最大值.1.(2017山东理科)在ABC △中,角A ,B ,C 的对边分别为,,.若ABC △为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是A .B .C .2A B =D .2B A =2.(2018新课标全国Ⅱ理科)在ABC △中,cos 25C =,1BC =,5AC =,则AB =A . BCD .3.(2018新课标全国Ⅲ理科)ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2 B .π3 C .π4D .π64.(2019年高考全国Ⅱ卷理数)ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.5.(2019年高考浙江卷)在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.6.(2018年高考浙江卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =b =2,A =60°,则sin B =___________,c =___________.7.(2017浙江)已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC的面积是______,cos ∠BDC =_______.8.(2019年高考全国Ⅰ卷理数)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .9.(2019年高考全国Ⅲ卷理数)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC △为锐角三角形,且c =1,求ABC △面积的取值范围.10.(2019年高考北京卷理数)在ABC △中,a =3,b −c =2,cos B =12-. (1)求b ,c 的值; (2)求sin (B –C )的值.11.(2019年高考天津卷理数)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+ ⎪⎝⎭的值.12.(2019年高考江苏卷)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值.13.(2018新课标全国Ⅰ理科)在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =. (1)求cos ADB ∠;(2)若DC =,求BC .14.(2017新课标全国Ⅰ理科)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC △的面积为23sin a A. (1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求ABC △的周长.15.(2017新课标全国Ⅱ理科)ABC △的内角,,A B C 的对边分别为,,a b c ,已知()2sin 8sin 2BA C +=.(1)求cos B ;(2)若6a c +=,ABC △的面积为2,求b .16.(2018北京理科)在△ABC 中,a =7,b =8,cos B =–17.(Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.1.【答案】C【解析】由题知()2cos cos cosC a B b A c+=,由正弦定理得()2cos sin cos sin cos sinC A B B A C+=,所以()2cos sin sinC A B C+=,即2cos sin sinC C C=,所以在△ABC中,1cos2C=,又因为2221cos,1,322a b cC a bab+-====,所以c=故选C.2.【解析】(1)由正弦定理可得在△ABD中,sin sinAD BDB BAD=∠,在△ACD中,sin sinAD CDC CAD=∠,又因为BAD CAD∠=∠,则sin2sinBD CCD B==.(2)sin2sinC B=,由正弦定理得22AB AC==,设DC x=,则2BD x=,由余弦定理得222254cos cos24AB AD BD xBAD CADAB AD+--∠==∠⋅,2222222AC AD CD xAC AD+--==⋅.因为BAD CAD∠=∠,所以2254242x x--=,解得2x=.则3BC x==3.【解析】(1)由sin tan 1cos B C B =-得:sin sin cos 1cos C BC B=-,则()sin sin cos cos sin sin C B C B C B C =+=+,πA B C ++=,()()sin sin πsin B C A A ∴+=-=,sin sin C A ∴=,由正弦定理可知:c a =, 则△ABC 为等腰三角形.(2)由题意得:2211sin sin 224a S ac B a B ===,解得:1sin 2B =,∵△ABC 为钝角三角形,且a c =,B ∴为钝角,cos 2B ∴=-由余弦定理得:(2222222cos 22b a c ac B a a =+-==+,2222b b ac a∴==+4.【解析】(1)由已知条件化简可得22()3a b c ab --=-,即222a b c ab +-=-,由余弦定理的推论,可得2221cos 22a b c C ab +-==-,2π(0,π),3C C ∈∴=.(2)2π3,3c b C ===,∴又π,,4b c B C B <∴<∴=,在ABC △中,1sin sin()sin cos cos sin ()22224A B C B C B C =+=+=-+=.113sin 2244ABC S bc A ∴===△.5.【解析】(1)1cos 2a C cb +=,∴由正弦定理得1sin cos sin sin 2A C CB +=,又sin sin()sin cos cos sin B A C A C A C =+=+,1sin cos sin 2C A C ∴=, sin 0C ≠,1cos 2A ∴=, 又0πA <<,π3A ∴=. (2)由正弦定理得sinsin a B b c A ===, ]1sin )1sin sin()L a b c B C B A B ∴=++=+=+++1π12cos 12sin 26B B B ⎫⎛⎫=++=++⎪ ⎪⎪⎝⎭⎝⎭, π2πππ5π,0,,,33666A B B ⎛⎫⎛⎫=∴∈∴+∈ ⎪ ⎪⎝⎭⎝⎭, π1sin ,162B ⎛⎫⎛⎤∴+∈ ⎪ ⎥⎝⎭⎝⎦,则(2,3]L ∈.故ABC △的周长L 的取值范围是(2,3].6.【解析】(1)由2cos 2a B b c +=,及正弦定理可得:2sin cos sin 2sin A B B C +=, 则2sin cos sin 2sin 2sin()2sin cos 2cos sin A B B C A B A B A B +==+=+, 整理得sin 2cos sin B A B =, 因为(0,π)B ∈,所以sin 0B >, 所以1cos 2A =,又(0,π)A ∈,所以π3A =. (2)在Rt △ABD中,2sin sin 3BD AD A ===,则1AB ==, 因为D 为AC 的中点,所以24AC AD ==,在△ABC 中,由余弦定理可得222π41241cos133BC =+-⨯⨯⨯=,所以BC =.7.【解析】(1)在△CDE 中,3609015105150DCE ∠=︒-︒-︒-︒=︒, ∴1111sin150112224△CDE S CD CE =⋅⋅︒=⨯⨯⨯=(平方百米). (2)如图,连接AB ,根据题意知,在Rt △ACD中,tan 1tan60AC DC ADC =⋅∠=⨯︒=(百米), 在△BCE 中,180CBE BCE CEB ∠=︒-∠-∠1801054530=︒-︒-︒=︒,由正弦定理sin sin BC CE CEB CBE =∠∠,得1sin 21sin 2CE CEBBC CBE⨯⋅∠===∠(百米),()cos15cos 6045cos60cos45sin60sin45︒=︒-︒=︒︒+︒︒4=,在△ABC 中,由余弦定理得:2222cos AB AC BC AC BC ACB =+-⋅∠,则2322AB =+-=-8.【解析】(1)由,cos ),(cos ,cos ),x x x x x ==∈R m n , 则()f x =⋅m n211π1cos cos 2cos 2sin(2)22262x x x x x x +=++=++, 故函数()f x 的最小正周期2ππ2T ==,故π1()sin(2)62f x x =++,最小正周期为π. (2)因为()1f A =,所以π1sin(2)162A ++=, 所以π1sin(2)62A +=, 又ππ13π2(,)666A +∈, 所以π5π266A +=, 所以π3A =, 又1,2a b c =+=,由余弦定理2222cos a b c bc A =+-得:221b c bc =+-, 所以2()31b c bc +-=, 所以1bc =,则1sin 2△ABC S bc A ==.1.【答案】C【解析】在△ABC 中,∵A =2B ,sin sin a b A B=,b =3,c =1,∴32sin cos sin a B B B=,整理得a =6cos B ,由余弦定理可得21962a a a+-=⨯,∴a =故选C . 2.【答案】A 【解析】因为sin sin AB BC C A=,所以sinC =12sinA ,所以0<sinC ≤12, 又AB <BC ,则C 必为锐角,故C ∈(0,π6]. 3.【答案】A【解析】∵4S =a 2−(b −c)2,bc =4,∴4×12bcsinA =2bc −(b 2+c 2−a 2), 可得2sinA =2−2cosA ,则sinA +cosA =1,可得sin (A +π4)=√22, ∵0<A <π,∴π4<A +π4<5π4,∴A +π4=3π4,解得A =π2.即ABC △是直角三角形. 故选A . 4.【答案】A【解析】设角A ,B ,C 所对的边分别为a ,b ,c ,AB 边上的高为h ,因为2c =,a =21104224b b =+-⨯⨯,化简得260b b --=,解得3b =.又sin A =,所以由1123222h ⨯⨯=⨯,得h =. 故选A. 5.【答案】B【解析】作出示意图如图所示,()15460km AC =⨯=,906030BAC ∠=︒-︒=︒,9015105ACB ∠=︒+︒=︒,则︒=∠45ABC .由正弦定理,可得sin sin AC BCABC BAC=∠∠,则)60sin 30km sin 45BC ︒==︒.所以这时船与灯塔的距离为. 故选B. 6.【答案】A【解析】由题意知ABC △的面积为4,且∠A =900,所以S =12AB ⋅AC =4,即AB ⋅AC =8,所以2AB +AC ≥2√2AB ⋅AC =2√2×8=8,当且仅当AB =2,AC =4时取得等号, 所以2AB +AC 的最小值为8. 故选A . 7.【答案】D【解析】因为(a +b +c)(b +c −a)=3bc ,所以(b +c)2−a 2=3bc , 即b 2+c 2−a 2=bc ,所以cosA =b 2+c 2−a 22bc=12,A ∈(0,π),所以A =π3,因为a =√3,所以由正弦定理可得ABC △的外接圆半径为1112sin 2a R A =⨯==. 故选D . 8.【答案】A【解析】由余弦定理得:222222322a c b b c a a b ac bc+-+-⋅=⋅,即()221623216a a +-=+-,解得:a =,222cos 22b c a A bc +-∴===,sin 2A ∴==,11sin 42222△ABC S bc A ∴==⨯=.故选A. 9.【答案】C【解析】222()()()∥a c a c b a b c a b ab ⇒+-=-⇒=+-p q ,由余弦定理可知:2222cos c a b ab C =+-⋅, 所以1πcos ,(0,π)23C C C =∈⇒=. 故选C . 10.【答案】B【解析】由题意知sin (C −A )=12sinB =12sin (A +C ),即2sinCcosA −2cosCsinA =sinAcosC +cosAsinC ,即sinCcosA =3sinAcosC , 由正弦定理和余弦定理得:c ⋅b 2+c 2−a 22bc=3a ⋅a 2+b 2−c 22ab,即b 2+c 2−a 2=3a 2+3b 2−3c 2,即4c 2−4a 2=2b 2=2×16=32, 则c 2−a 2=8. 故选B . 11.【答案】D【解析】由()22a b c =+-,得2221sin 22ab C a b c ab =+-+,∵2222cos a b c ab C +-=,∴sin 2cos 2C ab C ab =+,cos 1C C -=,即π2sin 16C ⎛⎫-= ⎪⎝⎭,则π1sin 62C ⎛⎫-= ⎪⎝⎭, ∵0πC <<,∴ππ5π666C -<-<,∴ππ66C -=,即π3C =,则πππππππsin sin sin cos cos sin 4343434C ⎛⎫⎛⎫+=+=+= ⎪ ⎪⎝⎭⎝⎭122224+⨯=, 故选D . 12.【答案】B【解析】如图,因为√3AB =2BC ,所以设AB =2x,BC =√3x , 又∠ABC =150°,AC =√13,所以由AC 2=AB 2+BC 2−2AB •BC •cos∠ABC , 得13=4x 2+3x 2−4√3x 2cos150∘=13x 2,所以x =1, 所以AB =2,BC =√3, 又BD ⊥AB ,所以∠DBC =60°,由余弦定理可得,CD 2=BD 2+BC 2−2BD •BC •cos∠DBC , 可得9=BD 2+3−√3BD ,解得BD =2√3, 故11sin6022△△四边形ABD CBD ABCD S S S AB BD BC BD =+=⋅+⋅︒11222=⨯⨯=故选B.13.1【解析】由正弦定理可得:2sin sin sin a b cR A B C====2sin 60a∴=,解得:3a =,由余弦定理可得:22222cos 429a b c bc A c c =+-=+-=,解得:1c =+1,1c ∴=.14.【答案】【解析】如图.在ACD △中,2222248cos 222AD DC AC AD DC ADC AD DC AD DC +-+-∠===-⋅⋅1,整理得22482AD DC AD DC AD DC +=-⋅≥⋅, ∴16AD DC ⋅≤,当且仅当AD =DC 时取等号,∴ADC △的面积1sin 24S AD DC ADC AD DC =⋅∠=⋅≤,∴ADC △的面积的最大值为 15.【答案】6100【解析】依题意,30=∠BAC ,105=∠ABC ,在ABC △中,由 180=∠+∠+∠ACB BAC ABC , 得45=∠ACB ,因为600m AB =,所以由正弦定理可得30sin 45sin 600BC=,即2300=BC m.在Rt BCD △中,因为30=∠CBD ,BC =,所以230030tan CDBC CD ==, 所以6100=CD m.16.【答案】⎤⎥⎣⎦【解析】∵π,6,143C a b ==≤≤, ∴由余弦定理可得:()22222366327=+-=+-=-+c a b ab b b b , ∴()[]2232727,31=-+∈c b ,∴⎡∈⎣c ,由正弦定理sin sin a c A C =,可得6·sin 2sin a C A cc ⨯⎤===⎥⎣⎦.故答案为31⎡⎤⎢⎥⎣⎦. 17.【解析】(1)在ABC △中,由余弦定理得a 2=b 2+c 2−2bccosA =2+5−2×√2×√5×(−√1010)=9,解得a =3.(2)在ABC △中,由cosA =−√1010得A ∈(π2,π),∴sinA =2A =√1010=3√1010, 在ABC △中,由正弦定理得asinA=bsinB,即sin B =, ∴sinB =√55, 又A ∈(π2,π),故B ∈(0,π2), ∴cosB =√1−sin 2B =√1−(√55)2=2√55, ∴cos(B −A)=cosBcosA +sinBsinA =2√55×(−√1010)+√55×3√1010=√210.18.【解析】(1)由sin 26cos sin b A A B =及二倍角公式得sin 3sin b A B =,又sin sin a bA B=即sin sin b A a B =,所以3a =. (2)由正弦定理得sin sin aB b B A ==,sin sin a Cc C A==,则△ABC的周长为:2π33sin()3a b c B C B B ++=++=++-3π3sin cos36sin226B B B⎫⎛⎫=++=++⎪ ⎪⎪⎝⎭⎭,又因为2π(0,)3B∈,所以ππ5π(,)666B+∈,则π1sin(,1]62B⎛⎫+∈⎪⎝⎭.从而π36sin(6,9]6B⎛⎫++∈⎪⎝⎭.因此△ABC周长的取值范围是(]6,9.19.【解析】(1)∵∥m n,∴sin cosb A B=,由正弦定理,得sin sin cosB A A B=,∵sin0A>,∴sin B B=,即tan B=∵0πB<<,∴(212ac=,解得4ac=,由余弦定理2222cosb ac ac B=+-,得221422a c ac=+-⨯2()3a c ac=+-2()12a c=+-,故4a c+=.20.【解析】(1)依题意得,120BAC∠=︒,18AB=,15230AC=⨯=,BCAα∠=.在ABC△中由余弦定理可得2222cos1764BC AB AC AB AC BAC=+-⋅⋅∠=,所以42BC=,所以渔船甲的速度为212BC=海里/小时.(2)在ABC△中,18AB=,120BAC∠=︒,BC=42,BCAα∠=,由正弦定理,得sin sin120AB BCα=︒,所以18sin1202sin4214ABBCα⨯⋅︒===.21.【解析】(1)由题意得,由正弦定理得,即BCA2sin)sin(=+,所以BB2sinsin=.又在ABC △中,则B B 2=或2πB B +=,因为0πB <<,所以π3B =. (2)因为π3B =, 所以2π3AC +=. 22π2sin cos()1cos 2cos(2)3A A C A A +-=-+-π1)3A =-.因为2π03A <<,ππ2π33A -<-<,所以πsin(2)13A <-≤,所以()22sin cos A A C +-的范围是1,12⎛-+ ⎝. 22.【解析】(1)f(x)=2[√32sin2x +12(cos2x +1)] =2sin(2x +π6)+1. ∵x ∈[π24,7π12],∴2x +π6∈[π4,4π3].当2x +π6=π2,即x =π6时,f(x)取得最大值3; 当2x +π6=4π3,即x =7π12时,f(x)取得最小值1−√3,故f(x)的值域为[1-√3,3].(2)设ABC △中A ,B ,C 所对的边分别为a,b,c. ∵f(B)=−1,∴sin(2B +π6)=−1 . ∵0<B <π,即π6<2B +π6<2π+π6. ∴2B +π6=32π,得B =23π.又∵BC =√3,即a =√3,sinB =√3sinA,即b =√3a,∴b =3. 易得sinA =12.∵0<A <π3,∴A =π6,∴C =π6. ∴S ΔABC =12absinC =12×√3×3×12=3√34.23.【解析】(1)在ABC △中,∵1,45AB BC ABC ==∠=︒,∴由余弦定理可得:2222cos 1AC AB BC AB BC ABC =+-⋅⋅∠=, ∴1AC =,则ABC △为等腰直角三角形, ∴135BCD ∠=°, 在△BCD中,1,135BC CD AC BCD ===∠=︒ ,由余弦定理可得:2222cos 5BD BC CD CD BC BCD =+-⋅⋅∠=,∴BD =(2)在ABC △中,∵1,AB BC ABC θ==∠=,∴由余弦定理可得:2222cos 3AC AB BC AB BC ABC θ=+-⋅⋅∠=-, 又由正弦定理可得sin sin AB ACACB ABC=∠∠,即1sin ACB =∠∴sin ACB ∠=∴π()cos cos sin 2BCD ACB ACB ∠=+∠=-∠=在△BCD中,BC CD AC ===由余弦定理可得2222cos 5sin cos )BD BC CD CD BC BCD θθ=+-⋅⋅∠=+-=(π54in )s 4θ+-,∴当3π4θ=时,()2max 9BD =,则max 3BD =.1.【答案】A【解析】由题意知sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+, 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A.【名师点睛】本题较为容易,关键是要利用两角和与差的三角函数公式进行恒等变形. 首先用两角和的正弦公式转化为含有A ,B ,C 的式子,再用正弦定理将角转化为边,得到.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视. 2.【答案】A【解析】因为223cos 2cos 121,255C C ⎛⎫=-=⨯-=- ⎪ ⎪⎝⎭所以22232cos 125215325AB BC AC BC AC C AB ⎛⎫=+-⋅=+-⨯⨯⨯-== ⎪⎝⎭,则, 故选A.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理,结合已知条件,灵活转化为边和角之间的关系,从而达到解决问题的目的. 3.【答案】C【解析】由题可知2221sin 24ABCa b c S ab C +-==△,所以2222sinC a b c ab +-=, 由余弦定理2222cos a b c ab C +-=,得sin cos C C =, 因为()0,πC ∈,所以π4C =. 故选C.【名师点睛】本题主要考查余弦定理与三角形的面积公式在解三角形中的应用,考查考生的运算求解能力,考查的核心素养是数学运算.4.【答案】【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =,解得c c ==-所以2a c ==,11sin 22ABC S ac B ==⨯=△ 【名师点睛】本题易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.5.【答案】5,10【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,5AC ,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以5BD =.ππcos cos()cos cos sin sin 4410ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在ABD △中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征.6.【答案】7,3【解析】由正弦定理得sinsin a A b B =,所以πsin sin 37B == 由余弦定理得22222cos ,742,3a b c bc A c c c =+-∴=+-∴=(负值舍去).【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.解答本题时,根据正弦定理得sin B ,根据余弦定理解出c .7【解析】取BC 中点E ,由题意:AE BC ⊥,△ABE 中,1cos 4BE ABC AB ∠==,∴1cos ,sin 44DBC DBC ∠=-∠==,∴1sin 22△BCD S BD BC DBC =⨯⨯⨯∠=. ∵2ABC BDC ∠=∠,∴21cos cos 22cos 14ABC BDC BDC ∠=∠=∠-=,解得cos 4BDC ∠=或cos 4BDC ∠=-(舍去).综上可得,△BCD cos BDC ∠=. 【名师点睛】利用正、余弦定理解决实际问题的一般思路:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可以利用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上三角形,这时需作出这些三角形,先解够条件的三角形,再逐步解其他三角形,有时需要设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要的解.8.【解析】(1)由已知得222sin sin sin sin sin B C A B C +-=,故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==.因为0180A ︒︒<<,所以60A ︒=. (2)由(1)知120B C ︒=-,()sin 1202sin A C C ︒+-=,即1cos sin 2sin 222C C C ++=,可得()cos 602C ︒+=-.由于0120C ︒︒<<,所以()sin 602C ︒+=,故 ()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+4=.【名师点睛】本题考查利用正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.9.【解析】(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =, 因此B =60°.(2)由题设及(1)知ABC △的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2C c A a C C ︒-===.由于ABC △为锐角三角形,故0°<A <90°,0°<C <90°, 由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而82ABC S <<△. 因此,ABC △面积的取值范围是⎝⎭.【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题. 10.【解析】(1)由余弦定理2222cos b a c ac B =+-,得22213232b c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭.因为2b c =+,所以2221(2)3232c c c ⎛⎫+=+-⨯⨯⨯- ⎪⎝⎭. 解得5c =. 所以7b =. (2)由1cos 2B =-得sin B =.由正弦定理得sin sin c C B b ==. 在ABC △中,∠B 是钝角, 所以∠C 为锐角.所以11cos 14C ==.所以sin()sin cos cos sin B C B C B C -=-=. 【名师点睛】本题主要考查余弦定理、正弦定理的应用,两角差的正弦公式的应用等知识,意在考查学生的转化能力和计算求解能力. 11.【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =, 又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =. 由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅. (2)由(1)可得sin B ==,从而sin 22sin cos B B B ==,227cos 2cos sin 8B B B =-=-,故717sin 2sin 2cos cos 2sin 666828216B B B πππ⎛⎫+=+=--⨯=-⎪⎝⎭. 【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.12.【解析】(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得23=,即213c =.所以3c =. (2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos B =.因此πsin cos 25B B ⎛⎫+== ⎪⎝⎭【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.13.【解析】(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,52sin 45sin ADB=︒∠,所以sin 5ADB ∠=.由题设知,90ADB ∠<︒,所以cos ADB ∠==(2)由题设及(1)知,cos sin BDC ADB ∠=∠=在BCD △中,由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠25825=+-⨯⨯25=.所以5BC =.。
2024年高考数学总复习第四章《三角函数、解三角形》§4.1任意角、弧度制及任意角的三角函数最新考纲1.了解任意角的概念和弧度制,能进行弧度与角度的互化.2.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }.(3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:180°=πrad,1°=π180rad ,1rad(3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,则sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的性质如下表:三角函数定义域第一象限符号第二象限符号第三象限符号第四象限符号sin αR++--cos αR+--+tan α{α|α≠k π+π2,k ∈Z }+-+-4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函数线有向线段MP 为正弦线;有向线段OM 为余弦线;有向线段AT 为正切线概念方法微思考1.总结一下三角函数值在各象限的符号规律.提示一全正、二正弦、三正切、四余弦.2.三角函数坐标法定义中,若取点P (x ,y )是角α终边上异于顶点的任一点,怎样定义角α的三角函数?提示设点P 到原点O 的距离为r ,则sin α=y r ,cos α=x r ,tan α=yx(x ≠0).题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.(×)(2)角α的三角函数值与其终边上点P 的位置无关.(√)(3)不相等的角终边一定不相同.(×)(4)若α为第一象限角,则sin α+cos α>1.(√)题组二教材改编2.角-225°=弧度,这个角在第象限.答案-5π4二3.若角α的终边经过点-22,sin α=,cos α=.答案22-224.一条弦的长等于半径,这条弦所对的圆心角大小为弧度.答案π3题组三易错自纠5|k π+π4≤α≤k π+π2,k ∈Z(阴影部分)是()答案C解析当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,故选C.6.已知点Pθ的终边上,且θ∈[0,2π),则θ的值为()A.5π6B.2π3C.11π6D.5π3答案C解析因为点P所以根据三角函数的定义可知tan θ=-1232=-33,又θθ=11π6.7.在0到2π范围内,与角-4π3终边相同的角是.答案2π3解析与角-4π3终边相同的角是2k πk ∈Z ),令k =1,可得与角-4π3终边相同的角是2π3.8.(2018·济宁模拟)函数y =2cos x -1的定义域为.答案2k π-π3,2k π+π3(k ∈Z )解析∵2cos x -1≥0,∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴x ∈2k π-π3,2k π+π3(k ∈Z ).题型一角及其表示1.下列与角9π4的终边相同的角的表达式中正确的是()A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案C解析与角9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确.2.设集合M |x =k2·180°+45°,k ∈ZN |x =k4·180°+45°,k ∈Z()A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅答案B解析由于M 中,x =k2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N ,故选B.3.(2018·宁夏质检)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为.答案-53π,-23π,π3,43π解析如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为-53,-23π,π3,43π4.若角α是第二象限角,则α2是第象限角.答案一或三解析∵α是第二象限角,∴π2+2k π<α<π+2k π,k ∈Z ,∴π4+k π<α2<π2+k π,k ∈Z .当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.综上,α2是第一或第三象限角.思维升华(1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k (k ∈Z )赋值来求得所需的角.(2)确定kα,αkk ∈N *)的终边位置的方法先写出kα或αk 的范围,然后根据k 的可能取值确定kα或αk的终边所在位置.题型二弧度制及其应用例1已知一扇形的圆心角为α,半径为R ,弧长为l .若α=π3,R =10cm ,求扇形的面积.解由已知得α=π3,R =10cm ,∴S 扇形=12α·R 2=12·π3·102=50π3(cm 2).引申探究1.若例题条件不变,求扇形的弧长及该弧所在弓形的面积.解l =α·R =π3×10=10π3(cm),S 弓形=S 扇形-S 三角形=12·l ·R -12·R 2·sin π3=12·10π3·10-12·102·32=50π-7533(cm 2).2.若例题条件改为:“若扇形周长为20cm ”,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?解由已知得,l +2R =20,则l =20-2R (0<R <10).所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5cm 时,S 取得最大值25cm 2,此时l =10cm ,α=2rad.思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.跟踪训练1(1)(2018·湖北七校联考)若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为()A.π6B.π3C .3D.3答案D解析如图,等边三角形ABC 是半径为r 的圆O 的内接三角形,则线段AB 所对的圆心角∠AOB =2π3,作OM ⊥AB ,垂足为M ,在Rt △AOM 中,AO =r ,∠AOM =π3,∴AM =32r ,AB =3r ,∴l =3r ,由弧长公式得α=l r =3rr= 3.(2)一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为.答案518解析设圆的半径为r ,则扇形的半径为2r3,记扇形的圆心角为α,由扇形面积等于圆面积的527,可得12α2r 3πr 2=527,解得α=5π6.所以扇形的弧长与圆周长之比为l C =5π6·2r 32πr =518.题型三三角函数的概念命题点1三角函数定义的应用例2(1)(2018·青岛模拟)已知角α的终边与单位圆的交点为-12,sin α·tan α等于()A .-33B .±33C .-32D .±32答案C解析由OP 2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3,此时,sin α·tan α=-32.当y =-32时,sin α=-32,tan α=3,此时,sin α·tan α=-32.所以sin α·tan α=-32.(2)设θ是第三象限角,且|cosθ2|=-cos θ2,则θ2是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案B解析由θ是第三象限角知,θ2为第二或第四象限角,∵|cos θ2|=-cos θ2,∴cos θ2<0,综上可知,θ2为第二象限角.命题点2三角函数线例3(1)满足cos α≤-12的角的集合是.答案|2k π+23π≤α≤2k π+43π,k ∈Z 解析作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为|2k π+23π≤α≤2k π+43π,k ∈Z(2)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小关系是.答案sin α<cos α<tan α解析如图,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可知sin α<cos α<tan α.思维升华(1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围.跟踪训练2(1)(2018·济南模拟)已知角α的终边经过点(m ,-2m ),其中m ≠0,则sin α+cosα等于()A .-55B .±55C .-35D .±35答案B解析∵角α的终边经过点(m ,-2m ),其中m ≠0,∴m >0时,sin α=-2m 5m =-25cos α=m 5m =15,∴sin α+cos α=-55;m <0时,sin α=-2m -5m =25,cos α=m -5m =-15,∴sin α+cos α=55;∴sin α+cos α=±55,故选B.(2)在(0,2π)内,使得sin x >cos x 成立的x 的取值范围是()答案C解析当x ∈π2,sin x >0,cos x ≤0,显然sin x >cos x 成立;当x ,π4时,如图,OA 为x 的终边,此时sin x =|MA |,cos x =|OM |,sin x ≤cos x ;当xOB 为x 的终边,此时sin x =|NB |,cos x =|ON |,sin x >cos x .同理当x ∈πsin x >cosx ;当x ∈5π4,sin x ≤cos x ,故选C.1.下列说法中正确的是()A .第一象限角一定不是负角B .不相等的角,它们的终边必不相同C .钝角一定是第二象限角D .终边与始边均相同的两个角一定相等答案C解析因为-330°=-360°+30°,所以-330°角是第一象限角,且是负角,所以A 错误;同理-330°角和30°角不相等,但它们终边相同,所以B 错误;因为钝角的取值范围为(90°,180°),所以C 正确;0°角和360°角的终边与始边均相同,但它们不相等,所以D 错误.2.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是()A .1B .4C .1或4D .2或4答案C解析设扇形的半径为r ,弧长为l ,+l =6,=2,=1,4=2,2.从而α=l r =41=4或α=l r =22=1.3.(2018·石家庄调研)已知角θ的终边经过点P (4,m ),且sin θ=35,则m 等于()A .-3B .3C.163D .±3答案B 解析sin θ=m16+m 2=35,且m >0,解得m =3.4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为()-12,-32,--12,--32,答案A解析点P 旋转的弧度数也为2π3,由三角函数定义可知Q 点的坐标(x ,y )满足x =cos 2π3=-12,y =sin 2π3=32.5.若sin θ·cos θ>0,sin θ+cos θ<0,则θ在()A .第一象限B .第二象限C .第三象限D .第四象限答案C解析∵sin θ·cos θ>0,∴sin θ>0,cos θ>0或sin θ<0,cos θ<0.当sin θ>0,cos θ>0时,θ为第一象限角,当sin θ<0,cos θ<0时,θ为第三象限角.∵sin θ+cos θ<0,∴θ为第三象限角.故选C.6.sin 2·cos 3·tan 4的值()A .小于0B .大于0C .等于0D .不存在答案A解析∵sin 2>0,cos 3<0,tan 4>0,∴sin 2·cos 3·tan 4<0.7.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为()A .-12B .-32C.12D.32答案C解析由题意得点P (-8m ,-3),r =64m 2+9,所以cos α=-8m64m 2+9=-45,解得m =±12,又cos α=-45<0,所以-8m <0,即m >0,所以m =12.8.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是()A .1B .2C .3D .4答案A解析举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sinπ6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时,其既不是第二象限角,也不是第三象限角,故⑤错.综上可知,只有③正确.9.若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是.答案2解析设圆半径为r ,则圆内接正方形的对角线长为2r ,∴正方形边长为2r ,∴圆心角的弧度数是2rr= 2.10.若角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是角α终边上一点,且|OP |=10,则m -n =.答案2解析由已知tan α=3,∴n =3m ,又m 2+n 2=10,∴m 2=1.又sin α<0,∴m =-1,n =-3.故m -n =2.11.已知角α的终边上一点P 2π3,cos α的最小正值为.答案11π6解析由题意知,点r =1,所以点P 在第四象限,根据三角函数的定义得cos α=sin2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6.12.函数y =sin x -32的定义域为.答案2k π+π3,2k π+23π,k ∈Z 解析利用三角函数线(如图),由sin x ≥32,可知2k π+π3≤x ≤2k π+23π,k ∈Z .13.已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α用集合可表示为.答案α|2k π+π4<α<2k π+56π,k ∈Z 解析∵在[0,2π)内,终边落在阴影部分角的集合为π4,56π∴α|2k π+π4<α<2k π+56π,k ∈Z14.若角α的终边落在直线y =3x 上,角β的终边与单位圆交于点12,m,且sin α·cos β<0,则cos α·sin β=.答案±34解析由角β12,m cos β=12sin α·cos β<0知,sin α<0,因为角α的终边落在直线y =3x 上,所以角α只能是第三象限角.记P 为角α的终边与单位圆的交点,设P (x ,y )(x <0,y <0),则|OP |=1(O 为坐标原点),即x 2+y 2=1,又由y =3x 得x =-12,y =-32,所以cos α=x =-12,因为点12,m 12+m 2=1,解得m =±32,所以sin β=±32,所以cos α·sin β=±34.15.《九章算术》是我国古代数学成就的杰出代表作,其中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=12×(弦×矢+矢2).弧田(如图1)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为2π3,半径为3米的弧田,如图2所示.按照上述经验公式计算所得弧田面积大约是平方米.(结果保留整数,3≈1.73)答案5解析如题图2,由题意可得∠AOB =2π3,OA =3,所以在Rt △AOD 中,∠AOD =π3,∠DAO =π6,OD =12AO =12×3=32,可得CD =3-32=32,由AD =AO ·sin π3=3×32=332,可得AB =2AD =2×332=3 3.所以弧田面积S =12(弦×矢+矢2)=12×33×32+=943+98≈5(平方米).16.如图,A ,B 是单位圆上的两个质点,点B 的坐标为(1,0),∠BOA =60°.质点A 以1rad /s 的角速度按逆时针方向在单位圆上运动,质点B 以2rad/s 的角速度按顺时针方向在单位圆上运动.(1)求经过1s 后,∠BOA 的弧度;(2)求质点A ,B 在单位圆上第一次相遇所用的时间.解(1)经过1s 后,质点A 运动1rad ,质点B 运动2rad ,此时∠BOA 的弧度为π3+3.(2)设经过t s 后质点A ,B 在单位圆上第一次相遇,则t (1+2)+π3=2π,解得t =5π9,即经过5π9s后质点A ,B 在单位圆上第一次相遇.。
专题17解三角形【母题来源一】【2020年高考全国Ⅱ卷理数】ABC △中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC △周长的最大值.【答案】(1)23π;(2)3+【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果.【解析】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=.(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴△周长3L AC AB BC =++≤+ABC ∴△周长的最大值为3+【点睛】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.【母题来源二】【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【答案】【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =,解得c c ==-,所以2a c ==113sin 222ABC S ac B ==⨯=△【名师点睛】本题易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【母题来源三】【2018年高考全国Ⅱ理数】在ABC △中,5cos 25C =,1BC =,5AC =,则AB =A .BC .D .【答案】A【解析】因为2253cos 2cos 121,255C C ⎛⎫=-=⨯-=- ⎪ ⎪⎝⎭所以22232cos 125215325AB BC AC BC AC C AB ⎛⎫=+-⋅=+-⨯⨯⨯-== ⎪⎝⎭,则,故选A.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理,结合已知条件,灵活转化为边和角之间的关系,从而达到解决问题的目的.【命题意图】三角函数主要考查利用正弦定理、余弦定理解决一些简单的三角形的度量问题,常与同角三角函数的关系、诱导公式、和差角公式,甚至三角函数的图象和性质等交汇命题,多以选择、填空、解答题的形式出现,属解答题中的低档题.预测今后的高考仍将以正弦定理、余弦定理,尤其是两个定理的综合应用为主要考点,可能与三角函数的图象和性质等交汇命题,重点考查计算能力以及应用数学知识分析和解决问题的能力.【命题规律】本考点一直是高考的热点,尤其是已知边角求其他边角,判断三角形的形状,求三角形的面积考查比较频繁,既有直接考查两个定理应用的选择题或填空题,也有考查两个定理与和差公式、倍角公式及三角形面积公式综合应用的解答题,解题时要掌握正、余弦定理及灵活运用,注意函数与方程思想、转化与化归思想在解题中的应用.【应试技巧】在ABC △中,若角A ,B ,C 所对的边分别是a ,b ,c ,则1.正弦定理:sin sin sin a b c==A B C.2.常见变形sin sin sin 1,,,sin sin ,sin sin ,sin sin ;sin sin sin A a C c B b a B b A a C c A b C c B B b A a C c ======()2;sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b c A B C A B A C B C A B C+++++======+++++()3::sin :sin :sin ;a b c A B C =()3.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即2222222222cos ,2cos 2cos .a b c bc A b a c ac B c a b ab C =+-=+-=+-,4.余弦定理的推论从余弦定理,可以得到它的推论222222222cos ,cos ,cos 222b c a c a b a b c A B C bc ca ab+-+-+-===5.三角形面积公式(1)三角形的高的公式:h A =b sin C =c sin B ,h B =c sin A =a sin C ,h C =a sin B =b sin A .(2)三角形的面积公式:S =21ab sin C ,S =21bc sin A ,S =21ca sin B.6.正弦定理可以用来解决两类解三角形的问题:(1)已知两角和任意一边,求其他的边和角;(2)已知两边和其中一边的对角,求其他的边和角.4==.sin sin sin a b cR R ABC A B C()正弦定理的推广:,其中为△外接圆的半径7.三角形解的个数的探究(以已知a b ,和A 解三角形为例)(1)从代数角度来看:①若sin sin 1b AB=a>,则满足条件的三角形的个数为0,即无解;②若sin sin 1b A B=a =,则满足条件的三角形的个数为1;③若sin sin 1b A B=a<,则满足条件的三角形的个数为1或2.注:对于(3),由sin 0sin 1b AB=a<<可知B 可能为锐角,也可能为钝角,此时应由“大边对大角”“三角形内角和等于180°”等进行讨论.(2)从几何角度来看:①当A 为锐角时,一解一解两解无解②当A 为钝角或直角时,一解一解无解无解8.利用余弦定理解三角形的步骤【解题经验分享】1.对三角形中的不等式,要注意利用正弦、余弦的有界性进行适当“放缩”.2.在解实际问题时,需注意的两个问题(1)要注意仰角、俯角、方位角等名词,并能准确地找出这些角;(2)要注意将平面几何中的性质、定理与正、余弦定理结合起来,发现题目中的隐含条件,才能顺利解决.3.利用正弦定理与余弦定理解题时,经常用到转化思想一个是把边转化为角,另一个是把角转化为边,,具体情况应根据题目给定的表达式进行确定,不管哪个途径,最终转化为角的统一或边的统一,也是我们利用正弦定理与余弦定理化简式子的最终目标,对于两个定理都能用的题目,应优先考虑利用正弦定理,会给计算带来相对的简便,根据已知条件中边的大小来确定角的大小,此时利用正弦定理去计算较小边所对的角,可避免分类讨论,利用余弦定理的推论,可根据角的余弦值的正负直接确定所求角是有锐角还是钝角,但计算麻烦.1.(2020·河北新乐市第一中学高三)已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若222a b c bc =+-,4bc =,则ABC 的面积A .12B .1C .D .22.(2020·安徽省高三三模)在ABC 中,若3,120AB BC C ==∠= ,则AC =A .1B .2C .3D .43.(2020·横峰中学高三)在ABC 中,已知45A ∠=︒,AB =,且AB 边上的高为则sin C =A .1010BC .5D .54.(2020·广西壮族自治区高三)已知ABC 中,BC 边上的中线3AD =,4BC =,60BAC ∠=︒,则ABC ∆的周长为A 4+B .4+C .4+D .45.(2020·山东省高三)在ABC 中,cos cos A B +=,AB =当sin sin A B +取最大值时,ABC 内切圆的半径为A .3B .2C .13D .26.(2020·陕西省洛南中学高三)在ABC 中,若7a =,8b =,1cos 7B =-,则A ∠的大小为A .6πB .4πC .3πD .2π7.(2020·广东省深圳外国语学校高三月考)海伦公式是利用三角形的三条边的边长,,a b c 直接求三角形面积S 的公式,表达式为:+c2a b S p +==;它的特点是形式漂亮,便于记忆.中国宋代的数学家秦九韶在1247年独立提出了“三斜求积术”,虽然它与海伦公式形式上有所不同,但它与海伦公式完全等价,因此海伦公式又译作海伦-秦九韶公式.现在有周长为的△ABC 满足sin :sin :sin 2:A B C =,则用以上给出的公式求得△ABC 的面积为A .B .C .D .128.(2020·广东省深圳外国语学校高三月考)ABC 的内角,,A B C 的对边分别为,,a b c ,已知3b a cosC sinC 3⎛⎫=+ ⎪ ⎪⎝⎭,a 2=,c 3=,则角C =A .π3B .π6C .3π4D .π49.(2020·麻城市实验高级中学高三)锐角ABC ∆中,角,,A B C ,所对的边分别为,,a b c ,若()sin 04A B C π⎛⎫+++= ⎪⎝⎭,1b c ==,则角C 的大小为A .12πB .6πC .3πD .512π10.(2020·麻城市实验高级中学高三)《易经》包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深,对今天的几何学和其它学科仍有深刻的影响.下图就是易经中记载的几何图形——八卦田,图中正八边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田.已知正八边形的边长为10m ,阴阳太极图的半径为4m ,则每块八卦田的面积约为A .2114mB .257mC .254m D .248m 11.(2020·福建省高三)设ABC 内角A ,B ,C 所对应的边分别为a ,b ,c .已知()4cos cos a c B b C -=,则cos B =______.12.(2020·青海省高三)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =4b =,120A =︒,则ABC 的面积为______.13.(2020·重庆市凤鸣山中学高三月考)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,3A π=,6a =,b =,则C =_______.14.(2020·四川省阆中中学高三二模)在ABC 中,若()22235a c b+=,则cos B 的最小值为______.15.(2020·全国高三月考)设ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若()2cos cos 0a c B b C ++=,且4ac =,则ABC 的面积为______.16.(2020·内蒙古自治区高三二模)在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,已知sinsin 2B Cb a B +⋅=⋅,且2c =,则锐角ABC 面积的取值范围是______.17.(2020·赣榆智贤中学高三)在ABC 中角A ,B ,C 的对边分別为a ,b ,c ,且352115cos cos cos bc A ac B ab C==,则cos C 的值为______.18.(2020·河南省高三月考)设ABC ∆的内角,,A B C 所对的边分别为,,a b c ,且满足()222cos cos b a a B b A -=+,ABC ∆的周长为)51,则ABC ∆面积的最大值为______.19.(2020·福建省厦门外国语学校高三)如图所示,三个全等的三角形ABF 、BCD 、CAE V 拼成一个等边三角形ABC ,且DEF 为等边三角形,2EF AE =,设ACE θ∠=,则sin 2θ=______.20.(2020·江苏省高三)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,其接圆半径为R .已知1c =,且△ABC 的面积()()22sin sin S R B A B A =-+,则a 的最小值为______.21.(2020·山东省高三二模)在ABC ∆中,内角,,A B C 所对的边分别是,,a b c .若sin sin b A a C =,1c =,则b =______,ABC ∆面积的最大值为______.22.(2020·西藏自治区高三二模)在ABC 中,4a =,5b =,6c =,则cos A =________,ABC 的面积为________.23.(2020·浙江省杭州高级中学高三)在平面四边形ABCD 中,BC CD ⊥,135o B ∠=,AB =,AC =,5CD =,则sin ACB ∠=________,AD =________.24.(2020·广东省高三月考)已知锐角ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且sin cos cos b A A C =2cos A,则tan A =______;若2a =,则b c +的取值范围为______.25.(2020·浙江省高三)已知在ABC 中,1cos3B =,AB =,8AC =,延长BC 至D ,使2CD =,则AD =______,sin CAD ∠=______.26.(2020·山东省高三三模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c )cos sin a b C c B -=.(Ⅰ)求角B ;(Ⅱ)若b =,sin 3sin A C =,求BC 边上的高.27.(2020·天津高三二模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知a 2+c 2=b 2105+ac .(1)求cosB 及tan 2B 的值;(2)若b =3,A 4π=,求c 的值.28.(2020·定远县育才学校高三)ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,已知()2cos c a B -=.(1)求角A ;(2)若2a =,求ABC 面积的取值范围.29.(2020·黑龙江省哈尔滨市第六中学校高三三模)在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,已知()cos 2cos a C b c A =-.(1)求角A 的大小;(2)若a =,2b =,求ABC ∆的面积.30.(2020·全国高三月考)已知ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,且57b c =,4cos 5A =,ABC 的面积21S =.(1)求边b 和c ;(2)求角B .31.(2020·广东省高三)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且满足22sin 1cos22A B C +=-.(1)求出角C 的大小;(2)若ABC ,求ABC 的周长的最小值.32.(2020·湖北省高三)已知ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,其面积S 2224b c a +-=.(1)若a =b =cos B .(2)求sin (A +B )+sin B cos B +cos (B ﹣A )的最大值.33.(2020·四川省泸县五中高三二模)在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且22212cos 2B C a b c +⎛⎫+=- ⎪⎝⎭.(1)求角C ;(2)若c =,求ABC ∆周长的最大值.34.(2020·六盘山高级中学高三)已知ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2A π≠,且满足()sin 220cos 0bc A B C ++=.(1)求ABC ∆的面积S ;(2)若24a S =,求c bb c +的最大值.35.(2020·宜宾市叙州区第一中学校高三二模)在ABC ∆中,角A ,B 、C 的对边分别为a ,b ,c ,且3cos sin b A B=.(1)求A ;(2)若2a =,且()cos 2sin sin cos B C B C C -=-,求ABC ∆的面积.36.(2020·定西市第一中学高三)在锐角ABC 中,a =,________,(1)求角A ;(2)求ABC 的周长l 的范围.注:在①(cos ,sin ),(cos ,sin )2222A A A A m n =-= ,且12m n ⋅=- ,②cos (2)cos A b c a C -=,③11()cos cos(,()344f x x x f A π=--=这三个条件中任选一个,补充在上面问题中并对其进行求解.37.(2020·天津耀华中学高三一模)在ABC △中,,,a b c 分别是三个内角,,A B C 的对边,若3,4,2b c C B ===,且a b ¹.(Ⅰ)求cos B 及a 的值;(Ⅱ)求cos 23B π⎛⎫+ ⎪⎝⎭的值.38.(2020·山东省高三)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin sin sin cos cos cos A B C A B C+=+(1)若ABC 还同时满足下列四个条件中的三个:①7a =,②10b =,③8c =,④ABC 的面积S =(2)若3a =,求ABC 周长L 的取值范围.39.(2020·广东省金山中学高三三模)已知ABC 内接于单位圆,且()()112tanA tanB ++=,()1求角C()2求ABC 面积的最大值.40.(2020·梅河口市第五中学高三)已知a ,b ,c 分别是ABC 的内角A ,B ,C 的对边,()sin sin sin sin a A C b B c C -=-,点D 在边AB 上,1BD =,且DA =.(1)求角B 的大小;(2)若BCD 的面积为2,求b 的值.41.(2020·江苏省高三三模)△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若5(sin C sin B)5sin A 8sin B a b c--=+.(1)求cosC 的值;(2)若A =C ,求sinB 的值.42.(2020·湖南省高三三模)已知,,a b c 分别是ABC 内角,,A B C 的对边,()cos (cos cos )b a C c A B -=-,22b ac =.(1)求cos C ;(2)若ABC c .43.(2020·云南省云南师大附中高三)设ABC 的内角A 、B 、C 的对边分别是a 、b 、c ,且三个内角A 、B 、C 依次成等差数列.(1)若2sin sin sin B A C =,求角A ;(2)若ABC 为钝角三角形,且a c >,求21cos cos 2222A A C -+的取值范围.44.(2020·巩义市教育科研培训中心高三)已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,120C =︒.(1)若2a b =,求tan A 的值;(2)若ACB ∠的平分线交AB 于点D ,且1CD =,求ABC 的面积的最小值.45.(2020·甘肃省静宁县第一中学高三)在锐角△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos c B b C =,BC 边上的高12AD =,4sin 5BAC ∠=.(1)求BC 的长:(2)过点A 作AE AB ⊥,垂足为A ,且CAE ∠为锐角,AE =sin ACE ∠.46.(2020·甘肃省民乐县第一中学高三)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin c b A b -=.(1)证明:2A B =.(2)若3cos 4B =,求sinC 的值.47.(2020·甘肃省高三)如图所示,ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且s 3c in os 3b C C a-=.(1)求A ;(2)若点P 是线段CA 延长线上一点,且3PA =,2AC =,6C π=,求PB .48.(2020·黑龙江省哈师大附中高三)在锐角ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,且直线x C =为函数()22cos sin cos f x x x x x =--图象的一条对称轴.(Ⅰ)求C ;(Ⅱ)若kc a b ≥+恒成立,求实数k 的最小值.49.(2020·甘肃省西北师大附中高三)在ABC ∆中,角、、A B C 的对边分别为a b c 、、,且)()2cos cos b A C π--=.(Ⅰ)求A 的值;(Ⅱ)若角,6B BC π=边上的中线AM =,求ABC ∆的面积.50.(2020·福建省厦门一中高三)如图,在梯形ABCD 中,AB ∥CD ,33CD AB ==.(1)若CA CD =,且tan ABC ∠=ABC 的面积S ;(2)若2cos 4DAC ∠=,3cos 4ACD ∠=,求BD 的长.51.(2020·全国高三三模)已知△ABC 的内角A ,B ,C 的对边长分别等于a ,b ,c ,列举如下五个条件:①sin sin 2B C a B b +=;sin A A +=;③cos A +cos2A =0;④a =4;⑤△ABC 的面积等于.(1)请在五个条件中选择一个(只需选择一个)能够确定角A 大小的条件来求角A ;(2)在(1)的结论的基础上,再在所给条件中选择一个(只需选择一个),求△ABC 周长的取值范围52.(2020·山东省高三二模)在①222b ac a c +=+,②cos sin B b A =cos 2B B +=,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,_________,4A π=,b =(1)求角B ;(2)求ABC 的面积.。
三角函数与平面向量10 高考常考题型综合解析一、具体目标:高考对本内容的考查主要有:(1)正弦定理和余弦定理以及解三角形问题是B 级要求,主要考查:①边和角的计算;②三角形形状的判断;③面积的计算;④有关的范围问题.由于此内容应用性较强,与实际问题结合起来进行命题将是今后高考的一个关注点,不可轻视.(2)三角函数的有关知识大部分是B 级要求,只有函数y =A sin(ωx +φ)的图象与性质是A 级要求;试题类型可能是填空题,同时在解答题中也有考查,经常与向量结合考查,构成基础题. 二、知识概述:1.正、余弦定理、三角形面积公式 (1)a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C=2R (R 为△ABC 外接圆的半径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C ;sin A =a 2R ,sin B =b 2R ,sin C =c2R ; a ∶b ∶c =sin A ∶sin B ∶sin C .(2)a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C ; 推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab ; 变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C . (3)S △ABC =12ab sin C =12ac sin B =12bc sin A . 2.常见三种函数的图象与性质函数 y =sin xy =cos xy =tan x图象【考点讲解】单调性在⎣⎢⎡-π2+2k π,⎦⎥⎤π2+2k π (k ∈Z )上单调递增; 在⎣⎢⎡π2+2k π,⎦⎥⎤3π2+2k π(k ∈Z )上单调递减在[-π+2k π,2k π](k ∈Z )上单调递增;在[2k π,π+2k π](k ∈Z )上单调递减在⎝ ⎛-π2+k π,⎭⎪⎫π2+k π (k ∈Z )上单调递增 对称性对称中心:(k π,0)(k ∈Z );对称轴:x =π2+k π(k ∈Z )对称中心:⎝ ⎛⎭⎪⎫π2+k π,0 (k ∈Z );对称轴:x=k π(k ∈Z )对称中心:⎝ ⎛⎭⎪⎫k π2,0(k ∈Z )【温馨提示】1.解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则考虑两个定理都有可能用到. 2.关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角恒等变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”. 3.三角形中判断边、角关系的具体方法:(1)通过正弦定理实施边角转换;(2)通过余弦定理实施边角转换;(3)通过三角变换找出角之间的关系;(4)通过三角函数值符号的判断以及正、余弦函数的有界性进行讨论;(5)若涉及两个(或两个以上)三角形,这时需作出这些三角形,先解条件多的三角形,再逐步求出其他三角形的边和角,其中往往用到三角形内角和定理,有时需设出未知量,从几个三角形中列出方程(组)求解.4.对于三角函数图象的平移变换问题,其平移变换规则是“左加、右减”,并且在变换过程中只变换其自变量x ,如果x 的系数不是1,则需把x 的系数提取后再确定平移的单位和方向.5.已知图象求函数y =A sin ()ωx +φ(A >0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.1.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为( )2sin cos ++x xx x 【真题分析】A .B .C .D .【解析】本题考查函数的性质与图象,由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 【答案】D2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点④f (x )的最大值为2其中所有正确结论的编号是( ) A .①②④B .②④C .①④D .①③【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴Q 为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误. 当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .本题也可画出函数()sin sin f x x x =+的图象(如下图),由图象可得①④正确.【答案】C3.【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x | 【解析】作出因为sin ||y x =的图象如下图1,知其不是周期函数,排除D ; 因为cos cos y x x ==,周期为2π,排除C ;作出cos2y x =图象如图2,由图象知,其周期为π2,在区间(4π,2π)单调递增,A 正确; 作出sin 2y x =的图象如图3,由图象知,其周期为π2,在区间(4π,2π)单调递减,排除B ,故选A .图1图2图3【答案】A4.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=( )A .15B .55C .33D .255【解析】2sin 2cos21αα=+Q ,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭Q ,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,5sin 5α∴=,故选B . 【答案】B5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 ③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,) 其中所有正确结论的编号是( )A .①④B .②③C .①②③D .①③④ 【解析】①若()f x 在[0,2π]上有5个零点,可画出大致图象, 由图1可知,()f x 在(0,2π)有且仅有3个极大值点.故①正确;②由图1、2可知,()f x 在(0,2π)有且仅有2个或3个极小值点.故②错误;④当()f x =sin (5x ωπ+)=0时,5x ωπ+=k π(k ∈Z ),所以ππ5k x ω-=, 因为()f x 在[0,2π]上有5个零点,所以当k =5时,π5π52πx ω-=≤,当k =6时,π6π52πx ω-=>,解得1229510ω≤<, 故④正确.③函数()f x =sin (5x ωπ+)的增区间为:πππ2π2π252k x k ω-+<+<+,732π2π1010k k x ωω⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭<<.取k =0,当125ω=时,单调递增区间为71ππ248x -<<, 当2910ω=时,单调递增区间为73ππ2929x -<<,综上可得,()f x 在π0,10⎛⎫⎪⎝⎭单调递增.故③正确. 所以结论正确的有①③④.故本题正确答案为D. 【答案】D6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且24g π⎛⎫= ⎪⎝⎭,则38f π⎛⎫= ⎪⎝⎭( ) A .2-B .2-C .2D .2【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=;又12π()sin ,2π,122g x A x T ωω=∴==∴2ω=,又π()24g =,∴2A =,∴()2sin 2f x x =,3π() 2.8f =故选C.【答案】C7.【2018年高考全国卷II 理数】若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是( ) A .π4 B .π2 C .3π4D .π 【解析】因为()πcos sin 2cos 4f x x x x ⎛⎫=-=+ ⎪⎝⎭,所以由π02ππ2π()4k x k k +≤+≤+∈Z 得π3π2π2π()44k x k k -+≤≤+∈Z ,因此[]π3ππ3ππ,,,,,,044444a a a a a a a ⎡⎤-⊂-∴-<-≥-≤∴<≤⎢⎥⎣⎦,从而a 的最大值为π4,故选A.【答案】A 8.【2018年高考天津】将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数( )A .在区间35[,]44ππ上单调递增 B .在区间3[,]4ππ上单调递减 C .在区间53[,]42ππ上单调递增 D .在区间3[,2]2ππ上单调递减 【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为ππsin 2sin2105y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦.则函数的单调递增区间满足()ππ2π22π22k x k k -≤≤+∈Z ,即()ππππ44k x k k -≤≤+∈Z ,令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦. 函数的单调递减区间满足:()π3π2π22π22k x k k +≤≤+∈Z ,即()π3πππ44k x k k +≤≤+∈Z , 令1k =可得一个单调递减区间为:5π7π,44⎡⎤⎢⎥⎣⎦.故选A. 【答案】A9.【2017年高考山东卷理数】在ABC △中,角A ,B ,C 的对边分别为,,.若ABC △为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是( ) A . B . C .2A B = D .2B A = 【解析】由题意知sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+,所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,故选A.【答案】A10.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 . 【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-. πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭a b c 2a b =2b a =()2222222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭2222tan 1tan =2tan 1ααα⎛⎫+- ⎪+⎝⎭, 当tan 2α=时,上式22222122==22110⎛⎫⨯+-⨯ ⎪+⎝⎭; 当1tan 3α=-时,上式=22112()1()2233[]=1210()13⨯-+--⨯-+.综上,π2sin 2.410α⎛⎫+= ⎪⎝⎭ 【答案】21011.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =, 解得23,23c c ==-(舍去),所以243a c ==,113sin 43236 3.222ABC S ac B ==⨯⨯⨯=△ 【答案】6312.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,225AC =AB +BC =,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以1225BD =. ππ72cos cos()cos cos sin sin 4410ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.【答案】1225,721013.【2018年高考江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________.【解析】由题意可得2sin π13⎛⎫+=± ⎪⎝⎭ϕ,所以2πππππ()326k k k +=+=-+∈Z ,ϕϕ,因为ππ22-<<ϕ,所以π0,.6k ==-ϕ 【答案】π6-14.【2018年高考全国Ⅱ理数】已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 【解析】因为sin cos 1+=αβ,cos sin 0+=αβ,所以()()221sin cos 1,-+-=αα 所以11sin ,cos 22==αβ,因此()22111111sin sin cos cos sin cos 1sin 1.224442+=+=⨯-=-+=-+=-αβαβαβαα【答案】12-15.【2017年高考浙江卷】已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______.【解析】取BC 中点E ,由题意:AE BC ⊥,△ABE 中,1cos 4BE ABC AB ∠==, ∴1115cos ,sin 14164DBC DBC ∠=-∠=-=, ∴115sin 22BCD S BD BC DBC =⨯⨯⨯∠=△. ∵2ABC BDC ∠=∠,∴21cos cos 22cos 14ABC BDC BDC ∠=∠=∠-=, 解得10cos 4BDC ∠=或10cos 4BDC ∠=-(舍去). 综上可得,△BCD 面积为152,10cos 4BDC ∠=. 【答案】1510,2416.【2019年高考全国Ⅰ卷】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(2)若22a b c +=,求sin C .【解析】(1)由已知得222sin sin sin sin sin B C A B C +-=,故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==.因为0180A ︒︒<<,所以60A ︒=.(2)由(1)知120B C ︒=-,由题设及正弦定理得()2sin sin 1202sin A C C ︒+-=,即631cos sin 2sin 222C C C ++=,可得()2cos 602C ︒+=-. 由于0120C ︒︒<<,所以()2sin 602C ︒+=,故 ()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+624+=.【答案】(1)60A ︒=;(2)62sin 4C +=.17.【2018年高考浙江卷】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(3455-,-).(1)求sin (α+π)的值; (2)若角β满足sin (α+β)=513,求cos β的值. 【解析】(1)由角α的终边过点34(,)55P --得4sin 5α=-,所以4sin(π)sin 5αα+=-=. (2)由角α的终边过点34(,)55P --得3cos 5α=-,由5sin()13αβ+=得12cos()13αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++,所以56cos 65β=-或16cos 65β=-. 【答案】(1)45;(2)56cos 65β=-或16cos 65β=-. 18.【2019年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+⎪⎝⎭的值. 【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =, 又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =. 由余弦定理可得222222416199cos 22423a a aa cb B ac a a +-+-===-⋅⋅. (2)由(1)可得215sin 1cos 4B B =-=, 从而15sin 22sin cos 8B B B ==-,227cos 2cos sin 8B B B =-=-,故15371357sin 2sin 2cos cos 2sin 666828216B B B πππ+⎛⎫+=+=-⨯-⨯=-⎪⎝⎭. 【答案】(1)14-;(2)35716+-.19.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==.所以12154cos 5BD PB PBD ===∠. 因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=.由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321CQ QA AC =-=-=.此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =321时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+321.因此,d 最小时,P ,Q 两点间的距离为17+321(百米).解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-,直线PB 的方程为42533y x =--. 所以P (−13,9),22(134)(93)15PB =-+++=.因此道路PB 的长为15(百米). (2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟. 在线段AD 上取点M (3,154),因为22221533454OM ⎛⎫=+<+= ⎪⎝⎭,所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=.由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由22(4)(93)15(4)AQ a a =-+-=>,得a =4321+,所以Q (4321+,9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4321+,9)时,d 最小,此时P ,Q 两点间的距离4321(13)17321PQ =+--=+.因此,d 最小时,P ,Q 两点间的距离为17321+(百米).1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c =2,则C =( )A .π12B .π6C .π4D .π3【解析】本题考点是三角形内角和公式,两角和的正弦公式,辅助角公式及正弦定理的应用. 由题意可知,π=++C B A 所以有()C A B +=sin sin ,所以原等式可整理成:()sin sin (sin cos )0++-=A C A C C ,也就是:sin cos cos sin sin sin sin cos 0++-=A C A C A C A C ,【模拟考场】即()sin sin cos 2sin sin 04π⎛⎫+=+= ⎪⎝⎭C A A C A ,因为是三角形△ABC ,.0π或≠C 所以有43π=A .由正弦定理得:C c A a sin sin =,得.6,21sin π==C C 得【答案】B2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =π3,a =3,b =1,则c 等于( )A .1B .2 C.3-1D .3【解析】解法1:(余弦定理)由a 2=b 2+c 2-2bc cos A 得3=1+c 2-2c ×1×cos π3=1+c 2-c ,所以c 2-c -2=0.所以c =2或-1(舍去).法2:(正弦定理)由a sin A =b sin B ,得3sin π3=1sin B ,所以sin B =12,因为b <a ,所以B =π6,从而C =π2,所以c 2=a 2+b 2=4,所以c =2.【答案】B3.函数y =2xsin2x 的图象可能是( )A .B .C .D .【解析】令()2sin2xf x x =,因为()()(),2sin22sin2xxx f x x x f x -∈-=-=-=-R ,所以()2sin2xf x x =为奇函数,排除选项A ,B ;因为π,π2x ⎛⎫∈ ⎪⎝⎭时,()0f x <,所以排除选项C ,故选 D.【答案】D4.设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图象关于直线8π3x =对称 C .(π)f x +的一个零点为π6x =D .()f x 在(π2,π)单调递减【解析】函数()f x 的最小正周期为2π2π1T ==,则函数()f x 的周期为()2πT k k =∈Z ,取1k =-,可得函数()f x 的一个周期为2π-,选项A 正确; 函数()f x 图象的对称轴为()ππ3x k k +=∈Z ,即()ππ3x k k =-∈Z ,取3k =,可得y =f (x )的图象关于直线8π3x =对称,选项B 正确; ()πππcos πcos 33f x x x ⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数()f x 的零点满足()πππ32x k k +=+∈Z ,即()ππ6x k k =+∈Z ,取0k =,可得(π)f x +的一个零点为π6x =,选项C 正确; 当π,π2x ⎛⎫∈⎪⎝⎭时,π5π4π,363x ⎛⎫+∈ ⎪⎝⎭,函数()f x 在该区间内不单调,选项D 错误.故选D.【答案】D5.设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则( ) A .23ω=,12ϕπ= B .23ω=,12ϕ11π=-C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π=【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π,由ϕ<π得12ϕπ=,故选A . 【答案】A6.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【解析】因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.【答案】D7.在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为315 ,12,cos ,4b c A -==- 则a 的值为 .【解析】因为0A π<<,所以215sin 1cos 4A A =-=, 又115sin 315,2428ABC S bc A bc bc ∆===∴=,解方程组224b c bc -=⎧⎨=⎩得6,4b c ==,由余弦定理得 2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.【答案】88.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A BA B B A+=+ (Ⅰ)证明:a +b =2c ;(Ⅱ)求cos C 的最小值. 【解析】()I 由题意知sin sin sin sin 2cos cos cos cos cos cos A B A B A B A B A B⎛⎫+=+⎪⎝⎭, 化简得()2sin cos sin cos sin sin A B B A A B +=+,即()2sin sin sin A B A B +=+.因为A B C π++=,所以()()sin sin sin A B C C π+=-=.从而sin sin =2sin A B C +. 由正弦定理得2a b c +=.()∏由()I 知2a bc +=, 所以 2222222cos 22a b a b a b c C ab ab +⎛⎫+- ⎪+-⎝⎭==311842b a a b ⎛⎫=+-≥ ⎪⎝⎭,当且仅当a b =时,等号成立. 故 cos C 的最小值为12. 9.在平面四边形ABCD 中,90ADC ∠=o ,45A ∠=o ,2AB =,5BD =.(1)求cos ADB ∠;(2)若22DC =,求BC . 【解析】(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,52sin 45sin ADB =︒∠,所以2sin 5ADB ∠=.由题设知,90ADB ∠<︒, 所以223cos 1255ADB ∠=-=. (2)由题设及(1)知,2cos sin 5BDC ADB ∠=∠=. 在BCD △中,由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠225825225=+-⨯⨯⨯25=.所以5BC =. 【答案】(1)235;(2)5. 10. ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC △的面积为23sin a A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求ABC △的周长.【解析】(1)由题设得21sin 23sin a ac B A=,即1sin 23sin a c B A =. 由正弦定理得1sin sin sin 23sin A C B A =.故2sin sin 3B C =.(2)由题设及(1)得1cos cos sin sin 2B C B C -=-,即1cos()2B C +=-. 所以2π3B C +=,故π3A =. 由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即2()39b c bc +-=,得33b c +=.故△ABC 的周长为333+.【答案】(1)23;(2)333+. 11. ABC △的内角,,A B C 的对边分别为,,a b c ,已知()2sin 8sin2B AC +=. (1)求cos B ;(2)若6a c +=,ABC △的面积为2,求b .【解析】(1)由题设及A B C ++=π,可得2sin 8sin2BB =,故()sin 41cos B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=,解得cos 1B =(舍去),15cos 17B =.(2)由15cos 17B =得8sin 17B =,故14=sin 217△ABC S ac B ac =. 又=2ABC S △,则172ac =.由余弦定理及6a c +=得:()()222217152cos 21cos 362(1)4,217b ac ac B a c ac B =+-=+-+=-⨯⨯+=所以2b =.【答案】(1)15cos 17B =;(2)2b =.12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b =2,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 【解析】(1)因为23,2,cos 3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)(2)323c c c c +-=⨯⨯,即213c =.所以33c =. (2)因为sin cos 2A B a b =,由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =.从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =. 因为sin 0B >,所以cos 2sin 0B B =>,从而25cos 5B =.因此π25sin cos 25B B ⎛⎫+== ⎪⎝⎭. 【答案】(1)33c =;(2)255. 13.如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为107cm ,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm .分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm .现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计) (1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度; (2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.【解析】(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥.记玻璃棒的另一端落在1CC 上点M 处. 因为107,40AC AM ==,所以2240(107)30MC =-=,从而3sin 4MAC =∠, 记AM 与水面的交点为1P ,过1P 作P 1Q 1⊥AC ,Q 1为垂足, 则P 1Q 1⊥平面ABCD ,故P 1Q 1=12,从而AP 1=1116sin P MACQ =∠.答:玻璃棒l 没入水中部分的长度为16cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm)(2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG .同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1.记玻璃棒的另一端落在GG 1上点N 处.过G 作GK ⊥E 1G 1,K 为垂足,则GK =OO 1=32.因为EG = 14,E 1G 1= 62,所以KG 1=6214242-=,从而222211 243240GG KG GK =+=+=. 设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠. 因为2απ<<π,所以3cos 5α=-. 在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=. 于是42473sin sin()sin()sin co 3s cos sin ()5252555NEG αβαβαβαβ=π--=+=+=⨯+-⨯=∠. 记EN 与水面的交点为P 2,过P 2作P 2Q 2⊥EG ,Q 2为垂足,则P 2Q 2⊥平面EFGH ,故P 2Q 2=12,从而EP 2=2220sin P NEGQ =∠. 答:玻璃棒l 没入水中部分的长度为20cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm)【答案】(1)16 cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm);(2)20 cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm).。
三角函数、解三角形[学生用书P84] 年份卷别具体考查内容及命题位置2016
甲卷
已知三角函数图象求解析式·T3
利用诱导公式、二倍角公式求最值·T11
利用正弦定理解三角形·T15
乙卷
利用余弦定理解三角形·T4
三角函数的图象变换与性质·T6
同角三角函数的关系、诱导公式·T14
丙卷
三角恒等变换求值问题·T6
解三角形、三角形的面积公式·T9
三角函数的图象变换·T14
2015
Ⅰ卷
三角函数的图象与性质·T8
正、余弦定理及三角形的面积公式·T17
Ⅱ卷正弦定理及三角形的内角和定理·T17
2014
Ⅰ卷
三角函数的符号·T2
三角函数的周期·T7
三角形中的测量问题(解三角形)、正弦定理·T16
Ⅱ卷
两角和与差的正弦公式、正弦函数的最值·T14
余弦定理、三角形的面积公式·T17
,
,
,
[命题分析]
1.高考对此部分内容考查重点仍是三角函数的定义、图象与性质、求值与解三角形.三角函数的图象与性质的考查中,以图象的变换、函数的单调性、奇偶性、周期性、对称性、最值等作为热点内容,并且往往与三角变换公式相互联系,有时也与平面向量或不等式内容交汇.
2.高考对此部分的考查一般以“二小”或“一大”的命题形式出现,小题一般出现在第4~11或14~16题位置上,而解答题一般出现在第17题位置上.
题示参数真题呈现考题溯源。