天线与馈线
- 格式:ppt
- 大小:2.60 MB
- 文档页数:27
天线与馈线的连接天线与馈线的连接,是安装天线时十分重要的问题。
若连接不正确,将直接影响接收效果。
其连接方式,取决于天线中有源振子的形状和馈线的种类。
一般常用的有下列情况。
1、天线的有源振子为半波折合振子(阻抗300Ω)连接馈线采用300Ω扁平馈线时,其连接方式最简单,即将馈线的两根导线分别接在有源振子中间开口处即可,如图1所示。
如果采用75Ω同轴电缆作连接馈线,其连接方式需要把半波折合振子333Ω阻抗变换与同轴电缆75Ω匹配。
方法是载取1/2波长的同轴电缆制作成U 型变换器,如图2所示。
先将1/2λ的同轴电缆中间芯线的两端,接在半波折合振子天线的开口处,其外层屏蔽网相连;主馈线的芯线接天线开口处的任一端,其屏蔽网连接U形变换器的屏蔽网。
2、天线的有源振子为半波振子(阻抗75Ω)当馈线采用300Ω扁平馈线时,需进行阻抗变换,方法是用1/4波长的扁平馈线两根制成阻抗变换器,接法如图3所示。
当馈线采用75Ω同轴电缆时,就只需要进行平衡-不平衡转换,可采用75Ω同轴线作U形变换器,接法如图4所示。
取一根1/2λ的同轴电缆,将两端接于天线开口处并将外层相连好;再在U形变换器1/4λ处截断,其主馈线的芯线接在1/4λ处的同轴线芯线,其外层屏蔽线接在3/4λ处的同轴线芯线。
此外,还可用双孔磁心制作。
其制作方法见图5(a)、(b)所示。
双孔磁心阻抗变换器的突出优点是体积小频带宽,缺点是抗干扰能力与选择性差。
天线与馈线匹配中的平衡与不平衡变换很多天线如半波振子天线、折合振子天线、环行天线等都是平衡馈电的,它们都有两个馈电点,它们都有个特点:两个馈电点的信号电压(或电流)的相位是互为反相的。
而主馈电缆常常都是用同轴电缆,同轴电缆属于不平衡(不对称)馈线,其内导体是馈电点,而外导体是地线点,不参与馈电。
所以就算天线的特性租抗与同轴电缆相同也不能直接连接,否则,会破坏天线的对称性,使天线两臂上的电流大小不等,这种不平衡性会改变天线的方向图,使之成为不对称的方向图,从而使馈线可能接收到各种干扰波和使馈线与天线失配。
天线、馈线施工技术交底1.技术交底范围天线、馈线施工技术交底。
2.设计情况根据设计系统图对本工程天线、馈线进行优化设计,结合现场情况进行适当调整。
根据设计文件对天线、馈线配置进行熟悉,方便与厂家对接设备配置情况。
3.施工工艺流程4.工艺操作要点和质量要求4.1 施工准备将馈缆及所用材料,运至施工地点。
搬运天线的机具、设备以及劳力应适合天线的具体重量、体积等要求;搬运天线时,着力点不能用于天线的馈面上,应着力在天线的加固框架结构上;搬运天线过程中不得发生碰撞,严禁摔坏天线,并注意人身安全。
4.2 馈缆单盘测试4.2.1 核对电缆盘标识、盘号、盘长,检查包装有无破损,馈缆有无压扁损坏,并做好记录。
4.2.2收集馈缆的出厂检验记录、产品合格证等,根据出厂测试记录核查馈缆的电气特性和物理特性是否符合设计要求。
4.2.3开盘后对馈缆外观检查,主要内容如下:查看绝缘介质的平整度,检查同轴电缆绝缘介质的一致性, 检查铜箔的质量, 检查外护层的挤包紧度,观察电缆成圈形状。
4.2.4开剥馈缆,做好接头,同时做好测试前的准备工作。
使用驻波比测试仪加50Ω的负载头后进行馈缆测试,测试前对表进行校准。
测试可根据情况常备2m跳线,一头公一头母软线和双公头软线。
4.2.5填写测试记录表,对有问题的馈缆和厂家联系后协调解决。
4.2.6单盘测试后应对馈缆头进行密封处理。
4.3天线的安装(以板式天线为例)4.3.1天线检查(1)天线的型号、规格、数量是否符合设计要求。
(2)天线外观有无凹凸、破损、断裂等现象,并做好相应的记录与处理。
4.3.2仰俯角支架安装(1)按照天线设计图进行配货,并运送到安装现场。
(2)核对实际运到天线类型和设计图上的是否一致。
(3)按照天线的仰俯角支架说明书进行组装,注意螺丝安装方向的一致性,并把连接处的螺丝拧紧。
4.3.3天线和跳线接头防水处理(1)按照天线类型选择跳线,并进行配料。
(2)将天线对应的类型的跳线进行连接,并用活动扳手将螺丝拧紧但不能用力过将其拧坏。
天线与馈线连接的常规方法这天线和馈线啊,就像是一对好搭档。
天线负责接收和发送信号,而馈线呢,就负责把信号从天线传输到设备或者从设备传输到天线。
要想让它们俩好好配合,这连接的方法可就很重要啦。
咱得准备好工具和材料。
需要用到钳子、扳手、螺丝刀这些工具,还有接头、防水胶带等材料。
在开始连接之前,一定要检查一下这些工具和材料是不是齐全,质量是不是过关。
要是工具不好使,或者材料有问题,那可就麻烦了。
第一步,要把天线和馈线的端口清理干净。
这就好比你要把两个水管连接起来,得先把管口擦干净,不然里面有灰尘或者杂物,就会影响水流。
天线和馈线的端口也是一样,如果有灰尘或者氧化层,就会影响信号的传输。
可以用干净的布或者酒精棉球把端口擦一擦,确保它们干净整洁。
第二步,就是把接头安装到天线和馈线的端口上。
接头的种类有很多,要根据天线和馈线的类型来选择合适的接头。
安装接头的时候,要注意把接头拧紧,确保连接牢固。
如果接头松动,就会导致信号损失,甚至可能会出现接触不良的情况。
第三步,就是把天线和馈线通过接头连接起来。
这个时候要注意,连接的方向一定要正确。
一般来说,天线的端口会有一个标志,比如一个箭头或者一个字母,馈线的端口也会有相应的标志。
要把这两个标志对齐,然后轻轻地把它们插在一起。
插好之后,可以用钳子或者扳手稍微拧紧一下,但是不要用力过猛,以免损坏接头。
第四步,就是检查连接是否牢固。
可以轻轻地拉一拉天线和馈线,看看接头有没有松动。
如果接头松动,就需要重新拧紧。
另外,还可以用万用表或者信号测试仪来检查一下信号的强度和质量。
如果信号不好,就可能是连接有问题,需要重新检查和调整。
最后一步,就是做好防水处理。
因为天线和馈线一般都是安装在室外的,所以要做好防水处理,以免雨水进入接头,导致信号损失或者设备损坏。
可以用防水胶带或者防水胶把接头包裹起来,确保它们密封良好。
在连接天线和馈线的过程中,还有一些需要注意的地方。
比如说,要避免弯曲馈线过度,因为这样会导致信号损失。
中波天馈线系统之中波天线与馈线演示文稿中波天线的作用是将发射机产生的大功率高频信号发送出去。
是除发射机之外决定发射质量的重要装置。
常见的中波天线有120米桅杆式拉线天线、76米加顶式桅杆拉线天线、120米自立式中波天线、76米自立式中波天线、120米并馈式接地天线、120米新式多功能并馈式天线、33米锥面顶负荷小天线、48米自立式双锥天线。
中波天线阻抗也称作输入阻抗,是中波发射天线的一个重要属性。
输入阻抗是中波天线馈电点电压与馈电点电流的比值。
公式为Zin=Uin除于Iin,中波天线的阻抗为复数阻抗,既有实部R,又有虚部感抗或容抗±jx。
不同的中波天线有着不同的阻抗特性,且随着工作频率的变化而变化。
比如:120米拉线天线输入603千赫信号时,实部阻抗为37欧姆;输入1098千赫信号时,实部阻抗为392欧姆;输入1503千赫信号时,实部阻抗为34欧姆。
除此之外,中波天线阻抗还与天线高度,边长、地井、地网及土壤条件有关。
以下是常见中波天线阻抗曲线:120米桅杆式天线阻抗曲线、76米桅杆式天线阻抗曲线、120米串馈式自立天线阻抗曲线、33米锥面顶负荷小天线阻抗曲线、120米并馈式自立天线阻抗曲线。
早期的中波馈线多采用笼式馈线,有6线、16线和24线几种形式。
笼式馈线中间导线为热端,传送射频信号;四周导线为冷端,通过线杆的接地线与大地连接。
一般采用多根直径6毫米或4毫米的铜包钢作为馈线。
由于传统的笼式馈线损耗大,安装复杂,后来采用损耗小、安装方便的同轴馈线。
同轴馈线采用铜硬馈与发射机连接,内部采用真空封装形式,可确保馈线的绝缘度和导电特性。
同轴馈线由四部分组成,最外层是聚丙烯保护层、第二层是带螺纹的铜管屏蔽层、第三层是绝缘支架、第四层是导电铜杆。
常见中波同轴馈线由50欧姆80毫米馈管、50欧姆37毫米馈管、50欧姆15毫米及更小规格的馈管。
中波同轴馈管阻抗大多以50欧姆为主,部分使用75欧姆的。
一、天线的几个重要参数介绍1.天线的输入阻抗天线的输入阻抗是天线馈电端输入电压与输入电流的比值。
天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。
天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。
匹配的优劣一般用四个参数来衡量,即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。
在我们日常维护中,用的较多的是驻波比和回波损耗。
驻波比:它是行波系数的倒数,其值在1到无穷大之间。
驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。
在移动通信系统中,一般要求驻波比小于1.5。
回波损耗:它是反射系数绝对值的倒数,以分贝值表示。
回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。
0表示全反射,无穷大表示完全匹配。
在移动通信系统中,一般要求回波损耗大于14dB。
2.天线的极化方式所谓天线的极化,就是指天线辐射时形成的电场强度方向。
当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。
由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。
因此,在移动通信系统中,一般均采用垂直极化的传播方式。
另外,随着新技术的发展,最近又出现了一种双极化天线。
就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。
双极化天线组合了+45°和-45°两副极化方向相互正交的天线,并同时工作在收发双工模式下,大大节省了每个小区的天线数量;同时由于±45°为正交极化,有效保证了分集接收的良好效果。
调频广播的天线与馈线调频广播的天馈线调频广播的天馈线摘要:天馈线是调频广播系统的重要组成部分,它的性能直接决定了调频发射机的播出质量和覆盖范围。
本文介绍了调频广播的辐射特点,分析了常见调频天线、功分器和主馈线的工作原理,并对天馈线系统的维护提出了建议。
关键词:辐射特点;主馈线;功率分配器一、辐射特点调频广播的频段属于甚高频,频率范围是87MHz~108MHz。
频率相对较高导致其向天空辐射时容易穿透电离层,没有反射回地面,形不成天波。
同时沿地面传播时衰减快,也构不成服务。
因此调频广播依靠空间波辐射,辐射范围在天线的视距内,接收场强为地面反射波和天线直射波的合成。
为了提高调频广播的辐射范围,提高有效地的覆盖功率,通常把天线安装在距离地面很高的建筑物上。
调频广播可以选择垂直极化波、水平极化波或圆极化波。
由于调频广播每套节目占用带宽较窄,因此调频天线的频带相对很宽。
在天馈线系统满足一定带宽和功率容量的要求下可以使用一部天线,通过多工器实现电台的多套节目同时播出。
二、调频天线根据调频广播电台的发射机功率,节目套数占据的带宽,架设天线高度、天线极化方式及辐射范围要求来选择调频天线的类型,常见适合中小功率电台的调频天线有单偶极子天线、双偶极子天线和蝙蝠翼天线。
1 单偶极子天线单偶极子天线的极化方式为垂直极化,辐射垂直极化波,适用于整个调频频段范围。
通常单偶极子天线由铝合金管制成的带平衡转换器的馈电系统和一对半振子制成,一般在振子轴线方向安装2或4个单偶极子天线单元和支撑钢管共同组成调频天线,每层天线单元之间的距离一般为0.7~0.8λ,因此天线具有很高的增益水平,在垂直面内具有很强的方向性,水平范围内无方向散射。
受支撑钢管和天线所在建筑物影响其水平方向图可能不是理想的圆。
单偶极子天线的输入阻抗为50Ω,因此为天线单元馈电的功分器和分支电缆也是50Ω,天线在整个频段内的驻波比小于1.25。
单偶极子天线的成本低廉,容易安装,适用于节目套数少的中小功率电台。
关于天线传输馈线的基本知识1、传输线的特性阻抗无限长传输线上各处的电压与电流的比值定义为传输线的特性阻抗,用Z0 表示。
同轴电缆的特性阻抗的计算公式为:Z0=〔60/√εr〕×Log ( D/d ) [ 欧]式中:D 为同轴电缆外导体铜网径;d 为同轴电缆芯线外径;εr为导体间绝缘介质的相对介电常数。
通常Z0 = 50 欧,也有Z0 = 75 欧的。
由公式不难看出,馈线特性阻抗只与导体直径D和d以及导体间介质的介电常数εr有关,而与馈线长短、工作频率以及馈线终端所接负载阻抗无关.2、馈线的衰减系数信号在馈线里传输,除有导体的电阻性损耗外,还有绝缘材料的介质损耗。
这两种损耗随馈线长度的增加和工作频率的提高而增加。
因此,应合理布局尽量缩短馈线长度。
单位长度产生的损耗的大小用衰减系数β 表示,其单位为dB / m (分贝/米),电缆技术说明书上的单位大都用dB / 100 m(分贝/百米)。
设输入到馈线的功率为P1 ,从长度为L(m )的馈线输出的功率为P2 ,传输损耗TL可表示为:TL =10 ×Lg ( P1 /P2 ) ( dB )衰减系数为:β =TL / L ( dB / m )例如,NOKIA 7 / 8英寸低耗电缆,900MHz 时衰减系数为β =4.1 dB / 100 m ,也可写成β =3 dB / 73 m ,也就是说,频率为900MHz 的信号功率,每经过73 m 长的这种电缆时,功率要少一半。
而普通的非低耗电缆,例如,SYV-9-50-1,900MHz 时衰减系数为β =20.1 dB / 100 m ,也可写成β= 3 dB / 15 m ,也就是说,频率为900MHz 的信号功率,每经过15 m 长的这种电缆时,功率就要少一半。
3、匹配概念什么叫匹配?简单地说,馈线终端所接负载阻抗ZL 等于馈线特性阻抗Z0 时,称为馈线终端是匹配连接的。
匹配时,馈线上只存在传向终端负载的入射波,而没有由终端负载产生的反射波,因此,当天线作为终端负载时,匹配能保证天线取得全部信号功率。
天线馈线及铁塔技术介绍天线是无线通信系统中的重要组成部分,它的主要作用是将电磁波转化为电信号或将电信号转化为电磁波。
天线的种类繁多,常见的有定向天线、全向天线、扇形天线等。
定向天线主要用于传输距离较远的信号,例如远程通信和通信塔之间的连接;全向天线则适用于提供较广范围内的无线信号覆盖,如城市无线网络。
扇形天线则是将无线信号沿特定角度进行辐射,可以实现定向传输,但相对于定向天线又提供了更大的立体角覆盖。
馈线则是将天线与信号源之间的电信号传输媒介,馈线的主要任务是将天线上接收或发射的电信号从信号源传输到天线,保证信号的传输质量。
馈线的种类有很多,在无线通信系统中常见的有同轴馈线、平行线馈线和光纤馈线等。
同轴馈线是一种传输高频电磁信号的主要线缆,由内导体、绝缘层、外导体和外皮组成。
平行线馈线则由一对平行金属导线构成,通信电流通过这对导线进行信号传输。
光纤馈线则利用光的全反射原理进行电信号传输,具有大带宽、低损耗、抗电磁干扰等优点。
铁塔是为了支撑天线和馈线而设计的塔状结构,它是通信网络中的重要设施,为通信系统提供了支持和保护。
铁塔的种类有很多,常见的有自立式铁塔、吊装式铁塔和角钢铁塔等。
自立式铁塔是一种单独独立的立柱结构,可以单独地承受天线和馈线的重量,并提供稳定的支撑。
吊装式铁塔则是采用吊装方式建立的塔状结构,主要用于临时信号塔的建立。
角钢铁塔则是由角钢焊接而成的立柱结构,常用于支持较小型的天线和馈线设备。
在实际应用中,天线、馈线及铁塔技术的设计与选用需要兼顾多个因素,如通信距离、频率和天线高度等。
合理的天线选用可以提升信号传输质量和覆盖范围,从而提高通信的稳定性和可靠性。
适当的馈线选择可以减少信号传输中的损耗和干扰,保证信号质量的稳定和一致性。
恰当的铁塔设计和选用可以保证天线和馈线的稳定支撑和安全运行。
总之,天线、馈线及铁塔是现代通信系统中不可或缺的重要组成部分,它们共同构成了无线通信的基础设施。
通过合理的技术选用和设计,能够为我们提供高效、可靠的通信服务,满足人们日益增长的通信需求。