关于天线传输馈线的基本知识
- 格式:docx
- 大小:16.19 KB
- 文档页数:6
天线的馈点定义天线的馈点定义及其在通信系统中的重要作用1. 天线馈点的定义天线馈点,又称天线输入点,是指在天线与射频传输线之间,用于连接天线和射频传输线的接口部位。
它是天线系统的重要组成部分,负责将天线产生的电磁波信号转换为射频信号,进而传输到射频电路系统中进行处理。
馈点的设计直接影响到天线系统的性能,如信号损耗、驻波比、频率响应等。
2. 天线馈点在通信系统中的重要作用(1)信号传输与放大天线馈点将天线产生的信号传输到射频电路中,通过射频电路的放大、滤波、调制等处理,将信号传输到其他设备或实现无线通信。
(2)匹配与阻抗转换天线馈点处通常需要进行阻抗匹配,以降低信号反射和损耗。
通过匹配与阻抗转换,可以使信号在天线与射频传输线之间更好地传输。
(3)防止信号泄露与干扰天线馈点处需要采取一定的屏蔽措施,以防止信号泄露和外部干扰。
这对于提高通信系统的稳定性和抗干扰能力至关重要。
(4)多功能集成与模块化设计随着通信技术的发展,天线馈点逐渐实现多功能集成和模块化设计。
例如,集成多种通信制式的射频信号处理模块,实现不同制式信号的快速切换和兼容。
3. 天线馈点的设计与优化(1)选择合适的天线类型和参数根据通信系统的需求,选择合适的天线类型和参数,以满足系统的性能要求。
例如,选择适合的频段、增益、指向性等。
(2)合理布局与安装天线馈点的布局和安装对于信号传输和抗干扰能力具有重要影响。
应根据实际场景和需求,进行合理布局和安装。
(3)馈线与连接器选择选择合适的馈线和连接器,以降低信号损耗和反射。
常见的馈线类型有平行线、双线螺旋绞合线等;连接器有SMA、N型、BNC等。
(4)阻抗匹配与调试通过阻抗匹配技术,使天线馈点处的反射系数接近零,降低信号损耗。
常见的匹配方法有LC滤波器匹配、传输线变压器匹配等。
(5)屏蔽与滤波设计针对外部干扰和信号泄露问题,采用屏蔽技术和滤波器进行抑制。
常见的屏蔽材料有金属网、金属箔等;滤波器有LC滤波器、陶瓷滤波器等。
第一讲天线的基础知识表征天线性能的主要参数有方向图,增益,输入阻抗,驻波比,极化方式等。
1.1 天线的输入阻抗天线的输入阻抗是天线馈电端输入电压与输入电流的比值。
天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。
天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。
匹配的优劣一般用四个参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。
在我们日常维护中,用的较多的是驻波比和回波损耗。
一般移动通信天线的输入阻抗为50Ω。
驻波比:它是行波系数的倒数,其值在1到无穷大之间。
驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。
在移动通信系统中,一般要求驻波比小于1.5,但实际应用中VSWR应小于1.2。
过大的驻波比会减小基站的覆盖并造成系统内干扰加大,影响基站的服务性能。
回波损耗:它是反射系数绝对值的倒数,以分贝值表示。
回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越小表示匹配越好。
0表示全反射,无穷大表示完全匹配。
在移动通信系统中,一般要求回波损耗大于14dB。
1.2 天线的极化方式所谓天线的极化,就是指天线辐射时形成的电场强度方向。
当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。
由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。
因此,在移动通信系统中,一般均采用垂直极化的传播方式。
另外,随着新技术的发展,最近又出现了一种双极化天线。
就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。
天线与馈线连接的常规方法这天线和馈线啊,就像是一对好搭档。
天线负责接收和发送信号,而馈线呢,就负责把信号从天线传输到设备或者从设备传输到天线。
要想让它们俩好好配合,这连接的方法可就很重要啦。
咱得准备好工具和材料。
需要用到钳子、扳手、螺丝刀这些工具,还有接头、防水胶带等材料。
在开始连接之前,一定要检查一下这些工具和材料是不是齐全,质量是不是过关。
要是工具不好使,或者材料有问题,那可就麻烦了。
第一步,要把天线和馈线的端口清理干净。
这就好比你要把两个水管连接起来,得先把管口擦干净,不然里面有灰尘或者杂物,就会影响水流。
天线和馈线的端口也是一样,如果有灰尘或者氧化层,就会影响信号的传输。
可以用干净的布或者酒精棉球把端口擦一擦,确保它们干净整洁。
第二步,就是把接头安装到天线和馈线的端口上。
接头的种类有很多,要根据天线和馈线的类型来选择合适的接头。
安装接头的时候,要注意把接头拧紧,确保连接牢固。
如果接头松动,就会导致信号损失,甚至可能会出现接触不良的情况。
第三步,就是把天线和馈线通过接头连接起来。
这个时候要注意,连接的方向一定要正确。
一般来说,天线的端口会有一个标志,比如一个箭头或者一个字母,馈线的端口也会有相应的标志。
要把这两个标志对齐,然后轻轻地把它们插在一起。
插好之后,可以用钳子或者扳手稍微拧紧一下,但是不要用力过猛,以免损坏接头。
第四步,就是检查连接是否牢固。
可以轻轻地拉一拉天线和馈线,看看接头有没有松动。
如果接头松动,就需要重新拧紧。
另外,还可以用万用表或者信号测试仪来检查一下信号的强度和质量。
如果信号不好,就可能是连接有问题,需要重新检查和调整。
最后一步,就是做好防水处理。
因为天线和馈线一般都是安装在室外的,所以要做好防水处理,以免雨水进入接头,导致信号损失或者设备损坏。
可以用防水胶带或者防水胶把接头包裹起来,确保它们密封良好。
在连接天线和馈线的过程中,还有一些需要注意的地方。
比如说,要避免弯曲馈线过度,因为这样会导致信号损失。
端馈天线工作原理-概述说明以及解释1.引言1.1 概述端馈天线是一种常见的天线类型,其工作原理基于端馈电路连接到天线的驻波电流和电压。
通过控制这些驻波电流和电压的幅值和相位,可以实现天线的辐射特性的调节和优化。
端馈天线通常由驻波电路、辐射器和馈电口组成,是现代通信系统中重要的组成部分。
本文将详细介绍端馈天线的基本原理、工作模式以及在通信领域的应用,希望能够帮助读者更深入地了解和理解端馈天线的工作机制及其在通信系统中的重要性。
文章结构部分主要包括了整篇文章的框架和组织结构。
通过本部分的介绍,读者能更好地理解整个文章的内容和主题发展。
文章结构部分通常涵盖了章节标题、章节内容简述以及章节之间的逻辑关系等内容。
在本次文章中,文章结构可以按照以下方式展示:"1.2 文章结构":本文的结构主要分为三个部分:引言、正文和结论。
- 引言部分将介绍端馈天线的基本概念和应用背景,引出本文的主题。
- 正文部分将深入探讨端馈天线的基本原理、工作模式以及在通信领域的应用。
具体内容包括端馈天线的结构特点、射频信号的传输原理、天线阵列的设计等方面。
- 结论部分将对整篇文章进行总结,探讨端馈天线未来的发展趋势和应用前景,同时提出对读者的思考和启发。
通过以上文章结构的布局,读者可以清晰地了解整篇文章的内容安排和逻辑发展,有助于更好地理解端馈天线的工作原理及其在通信领域的应用。
1.3 目的本文旨在深入探讨端馈天线的工作原理,帮助读者了解端馈天线的基本原理、工作模式以及在通信领域的应用。
通过对端馈天线的详细分析,读者将能够更好地理解其在无线通信系统中的作用和重要性,以及如何优化和改进端馈天线的设计和性能。
同时,本文也旨在为相关领域的研究人员和工程师提供参考和指导,促进端馈天线技术的进步和应用。
2.正文2.1 端馈天线的基本原理:端馈天线是一种常用的天线类型,它采用传输线作为馈电线,通过在传输线上加入适当的馈电点来使天线高效地辐射电磁波。
微带线天线馈电原理微带线天线馈电原理微带线天线(Microstrip antenna)是一种平板式天线,由于其结构简单、易于制造和调整等优点,在卫星通信、雷达测量等领域得到了广泛应用。
而微带线天线的馈电方式也是很重要的一部分,下面就简单介绍一下微带线天线馈电的原理。
一、微带线天线结构微带线天线由两个主要部分构成:天线贴片和微带线馈线。
天线贴片是由介电材料和金属构成的,其形状和尺寸会对天线的辐射特性产生非常大的影响。
通常情况下,天线贴片的形状是圆形、方形或矩形的。
介电材料通常是PTFE或FR-4等。
微带线馈线是从天线贴片到源或负载之间的导体。
它是由铜箔覆盖在介电基板上,并用印刷电路技术制造而成。
微带线馈线使用也会影响到天线的辐射特性,所以具体的天线设计需要考虑到天线贴片和微带线馈线之间的相互影响。
二、微带线天线的馈电原理通常情况下,微带线天线的馈电方式有两种,一种是通过COAX和微带线过渡来实现馈电的;一种是直接在贴片上开孔,将馈线与贴片相连。
微带线天线的馈电原理可以通过微波模型进行模拟和理解。
在微波模型中,天线贴片是电容,微带线馈线是电感,通过调节它们之间的物理尺寸和位置,可以得到天线的输入阻抗等有关参数。
对于微带线天线来说,其馈电原理主要基于其在等效电路中的表现,即通过开孔或者过渡来实现本质上的电容与电感耦合,从而将微带线的能量转化成为微带线天线所需的电场和磁场,并产生全向或定向的辐射。
三、微带线天线馈电方式的特点1. 传输效率高:与传统天线相比,微带线天线利用电阻较小的铜箔、介质成本较低、简单易制造的技术,使馈电方式更加可靠和传输效率高。
2. 空间利用率高:微带线天线可以利用介质板上的空间进行设计,减少空间占用,提高空间利用率。
3. 频带宽度较宽:微带线馈线传输的电场和磁场能够交错在介质板上,从而产生多种共振模式,实现频段宽带的涵盖,提高天线的频带宽度。
总之,微带线天线馈电方式是微带线天线的重要组成部分,其具有优秀的传输效率、高空间利用率和较宽的频带宽度,能够为无线通信、雷达测量等领域提供更好的通讯和测量技术支持。
一.天线有哪几种?答:有全向天线、有定向天线包括单极化天线、双极化天线、双频双极化天线,电调天线。
二.天线有哪几个厂家、生产?答:有安德鲁,ADC,新西兰,首信。
德尔泰克、凯瑟琳、贾尔威武(法国)。
三.什么叫电磁波?M答:移动天线的类型很多,分类方位也很多,按其工作状态可分为两大类。
全向,定向,当高频率信号沿馈线从始端传向终端时,线上各点的电流或电压就会按高频振荡的节拍而变化,这种情形就象是在线路上激起一种看不见的波浪一样。
如果终端负载与馈线特性阻抗不匹配,负载不能将传来的高頻信号功率全部吸取,势必有一部分功率由终端再经馈线返回始端,前者称为入射波,后者称为反射波。
当终端负载匹配时,高频功率完全被终端所吸收,这时馈线上就只有入射波而没有反射波。
四.什么叫电波传播?答:无线电通信,是将信息变为电信号,再调制到高频振荡上,由发射天线把已调的高频电流,以电磁波的形式发射出去,电磁波传播到接收地点时,由接收天线将它接收下来,变成已调的高频电流通过合路器和双功器放大、解调、取出信息、从而达到通信的目的。
五.天线在无线电通信中的作用是什么?答:天线是一种换能器、发射天线是将高频电能转换成为电磁波的装置、接收天线则是将电磁波转换成高频电能的装置,因而它在无线电通信中占有极其种重要的地位、天线安装质量如何,对移动通信质量的好坏起着重要的作用,因此设计和安装天线时,必须十分重视保证质量。
六.对挂天线的抱杆要求90°为什么?答:抱杆900 天线抱杆是安装天线的基础,抱杆垂直、不垂直,关系到天线方位和倾角的调整。
七.抱杆要和大楼连接地线为什么?答:抱杆、框架和大楼地线连接是为了防止雷电伤害天线,使天线安全渡过雷电区,把雷电放入大地。
八.抱杆为什么要用热镀锌?答:抱杆是天线的支柱,抱杆的好坏确定天线的长久性。
热镀锌层,能够长久地耐受较苛刻条件下的腐蚀。
是因为镀锌层可以克服和减缓大气对钢铁的化学和电化学腐蚀。
九.抱杆上焊接避雷针,为什么?答:抱杆和天线上的避雷针起着及其重要的作用。
关于天线传输馈线的基本知识1、传输线的特性阻抗无限长传输线上各处的电压与电流的比值定义为传输线的特性阻抗,用Z0 表示。
同轴电缆的特性阻抗的计算公式为:Z0=〔60/√εr〕×Log ( D/d ) [ 欧]式中:D 为同轴电缆外导体铜网径;d 为同轴电缆芯线外径;εr为导体间绝缘介质的相对介电常数。
通常Z0 = 50 欧,也有Z0 = 75 欧的。
由公式不难看出,馈线特性阻抗只与导体直径D和d以及导体间介质的介电常数εr有关,而与馈线长短、工作频率以及馈线终端所接负载阻抗无关.2、馈线的衰减系数信号在馈线里传输,除有导体的电阻性损耗外,还有绝缘材料的介质损耗。
这两种损耗随馈线长度的增加和工作频率的提高而增加。
因此,应合理布局尽量缩短馈线长度。
单位长度产生的损耗的大小用衰减系数β 表示,其单位为dB / m (分贝/米),电缆技术说明书上的单位大都用dB / 100 m(分贝/百米)。
设输入到馈线的功率为P1 ,从长度为L(m )的馈线输出的功率为P2 ,传输损耗TL可表示为:TL =10 ×Lg ( P1 /P2 ) ( dB )衰减系数为:β =TL / L ( dB / m )例如,NOKIA 7 / 8英寸低耗电缆,900MHz 时衰减系数为β =4.1 dB / 100 m ,也可写成β =3 dB / 73 m ,也就是说,频率为900MHz 的信号功率,每经过73 m 长的这种电缆时,功率要少一半。
而普通的非低耗电缆,例如,SYV-9-50-1,900MHz 时衰减系数为β =20.1 dB / 100 m ,也可写成β= 3 dB / 15 m ,也就是说,频率为900MHz 的信号功率,每经过15 m 长的这种电缆时,功率就要少一半。
3、匹配概念什么叫匹配?简单地说,馈线终端所接负载阻抗ZL 等于馈线特性阻抗Z0 时,称为馈线终端是匹配连接的。
匹配时,馈线上只存在传向终端负载的入射波,而没有由终端负载产生的反射波,因此,当天线作为终端负载时,匹配能保证天线取得全部信号功率。
关于天线传输馈线的基本知识
1、传输线的特性阻抗
无限长传输线上各处的电压与电流的比值定义为传输线的特性阻抗,用Z0 表示。
同轴电缆的特性阻抗的计算公式为:Z0=〔60/√εr〕×Log ( D/d ) [ 欧]
式中:D 为同轴电缆外导体铜网内径;
d 为同轴电缆芯线外径;εr为导体间绝缘介质的相对介电常数。
通常Z0 = 50 欧,也有Z0 = 75 欧的。
由公式不难看出,馈线特性阻抗只与导体直径D和d以及导体间介质的介电常数εr有关,而与馈线长短、工作频率以及馈线终端所接负载阻抗无关.
2、馈线的衰减系数
信号在馈线里传输,除有导体的电阻性
损耗外,还有绝缘材料的介质损耗。
这两种损耗随馈线长度的增加和工作频率的提高而增加。
因此,应合理布局尽量缩短馈线长度。
单位长度产生的损耗的大小用衰减系数β 表示,其单位为dB / m (分贝/米),电缆技术说明书上的单位大都用dB / 100 m(分贝/百米)。
设输入到馈线的功率为P1 ,从长度为L(m )的馈线输出的功率为P2 ,传输损耗TL可表示为:TL =10 ×Lg ( P1 /P2 ) ( dB )
衰减系数为:β =TL / L ( dB / m )
例如,NOKIA 7 / 8英寸低耗电缆,900MHz 时衰减系数为β =4.1 dB / 100 m ,也可写成β =3 dB / 73 m ,也就是说,频率为900MHz 的信号功率,每经过73 m 长的这种电缆时,功
率要少一半。
而普通的非低耗电缆,例如,
SYV-9-50-1,900MHz 时衰减系数为
β =20.1 dB / 100 m ,也可写成β
= 3 dB / 15 m ,也就是说,频率为900MHz 的信号功率,每经过15 m 长的这种电缆时,功率就要少一半。
3、匹配概念
什么叫匹配?简单地说,馈线终端所接
负载阻抗ZL 等于馈线特性阻抗Z0 时,称为馈线终端是匹配连接的。
匹配时,
馈线上只存在传向终端负载的入射波,
而没有由终端负载产生的反射波,因此,当天线作为终端负载时,匹配能保证天
线取得全部信号功率。
当天线阻抗为50欧时,与50欧的电缆是匹配的,而当天线阻抗为80欧时,与50欧的电缆是不匹配的。
如果天线振子直径较粗,天线
输入阻抗随频率的变化较小,容易和馈
线保持匹配,这时天线的工作频率范围就较宽。
反之,则较窄。
在实际工作中,天线的输入阻抗还会受到周围物体的影响。
为了使馈线与天线良好匹配,在架设天线时还需要通过测量,适当地调整天线的局部结构,或加装匹配装置。
4、反射损耗
前面已指出,当馈线和天线匹配时,馈线上没有反射波,只有入射波,即馈线上传输的只是向天线方向行进的波。
这时,馈线上各处的电压幅度与电流幅度都相等,馈线上任意一点的阻抗都等于它的特性阻抗.
而当天线和馈线不匹配时,也就是天线阻抗不等于馈线特性阻抗时,负载就只能吸收馈线上传输的部分高频能量,而不能全部吸收,未被吸收的那部分能量将反射回去形成反射波。
5、电压驻波比
在不匹配的情况下, 馈线上同时存在入射波和反射波。
在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;而在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节。
其它各点的振幅值则介于波腹与波节之间。
这种合成波称为行驻波。
反射波电压和入射波电压幅度之比叫作反射系数,记为R
反射波幅度(ZL-Z0)R =
───── =─────── 入射波幅度(ZL+Z0 )
波腹电压与波节电压幅度之比称为驻波系数,也叫电压驻波比,记为VSWR
波腹电压幅度Vmax (1 + R)VSWR
=───────────── =──── 波节电压辐度Vmin (1 - R)
终端负载阻抗ZL 和特性阻抗Z0 越接近,反射系数R 越小,驻波比VSWR 越接近于1,匹配也就越好。