弹性力学 第二章 应力分析
- 格式:pdf
- 大小:314.97 KB
- 文档页数:16
弹性⼒学_第⼆章__应⼒状态分析第⼆章应⼒状态分析⼀、内容介绍弹性⼒学的研究对象为三维弹性体,因此分析从微分单元体⼊⼿,本章的任务就是从静⼒学观点出发,讨论⼀点的应⼒状态,建⽴平衡微分⽅程和⾯⼒边界条件。
应⼒状态是本章讨论的⾸要问题。
由于应⼒⽮量与内⼒和作⽤截⾯⽅位均有关。
因此,⼀点各个截⾯的应⼒是不同的。
确定⼀点不同截⾯的应⼒变化规律称为应⼒状态分析。
⾸先是确定应⼒状态的描述⽅法,这包括应⼒⽮量定义,及其分解为主应⼒、切应⼒和应⼒分量;其次是任意截⾯的应⼒分量的确定—转轴公式;最后是⼀点的特殊应⼒确定,主应⼒和主平⾯、最⼤切应⼒和应⼒圆等。
应⼒状态分析表明应⼒分量为⼆阶对称张量。
本课程分析中使⽤张量符号描述物理量和基本⽅程,如果你没有学习过张量概念,请进⼊附录⼀,或者查阅参考资料。
本章的另⼀个任务是讨论弹性体内⼀点-微分单元体的平衡。
弹性体内部单元体的平衡条件为平衡微分⽅程和切应⼒互等定理;边界单元体的平衡条件为⾯⼒边界条件。
⼆、重点1、应⼒状态的定义:应⼒⽮量;正应⼒与切应⼒;应⼒分量;2、平衡微分⽅程与切应⼒互等定理;3、⾯⼒边界条件;4、应⼒分量的转轴公式;5、应⼒状态特征⽅程和应⼒不变量;知识点:体⼒;⾯⼒;应⼒⽮量;正应⼒与切应⼒;应⼒分量;应⼒⽮量与应⼒分量;平衡微分⽅程;⾯⼒边界条件;主平⾯与主应⼒;主应⼒性质;截⾯正应⼒与切应⼒;三向应⼒圆;⼋⾯体单元;偏应⼒张量不变量;切应⼒互等定理;应⼒分量转轴公式;平⾯问题的转轴公式;应⼒状态特征⽅程;应⼒不变量;最⼤切应⼒;球应⼒张量和偏应⼒张量§2.1 体⼒和⾯⼒学习思路:本节介绍弹性⼒学的基本概念——体⼒和⾯⼒,体⼒F b和⾯⼒F s的概念均不难理解。
应该注意的问题是,在弹性⼒学中,虽然体⼒和⾯⼒都是⽮量,但是它们均为作⽤于⼀点的⼒,⽽且体⼒是指单位体积的⼒;⾯⼒为单位⾯积的作⽤⼒。
体⼒⽮量⽤F b表⽰,其沿三个坐标轴的分量⽤F b i(i=1,2,3)或者F b x、F b y和F b z表⽰,称为体⼒分量。
弹性力学的应力分析与优化弹性力学是一门研究物体在受力作用下的变形和恢复性质的学科。
在工程领域中,弹性力学的应用十分广泛,特别是在结构设计和材料优化方面。
本文将探讨弹性力学中的应力分析与优化方法。
一、应力分析弹性力学的应力分析研究了物体在受力作用下的应力分布情况。
应力是物体内部分子间相互作用的结果,是描述物体抵抗外力的能力的物理量。
应力在弹性力学中分为三种类型:拉应力、剪应力和压应力。
拉应力(tensile stress)是指物体在受拉力作用下产生的应力,通常用符号σ表示。
拉应力的计算公式为:σ = F / A其中,F为物体上的拉力,A为物体上受力截面的面积。
拉应力越大,物体的变形程度越大。
剪应力(shear stress)是指物体在受剪力作用下产生的应力,通常用符号τ表示。
剪应力的计算公式为:τ = F / A其中,F为物体上的剪切力,A为物体上受力截面的面积。
剪应力越大,物体的变形程度越大。
压应力(compressive stress)是指物体在受压力作用下产生的应力,通常也用符号σ表示。
压应力的计算公式与拉应力相同,即:σ = F / A不同的是,压应力与拉应力的方向相反。
压应力越大,物体的变形程度越大。
在应力分析过程中,我们可以通过解析法或数值模拟法来求解物体内部的应力分布情况。
解析法主要适用于简单几何形状的物体,例如直杆或简支梁。
数值模拟法则可以用来求解复杂几何形状的物体,例如复杂结构的建筑或机械零件。
二、优化设计在弹性力学的应用中,我们常常需要通过优化设计来提高物体的性能或减少材料的使用量。
优化设计旨在寻找最优的结构形式或材料参数,使得物体在给定的约束条件下达到最佳的性能指标。
优化设计可以分为两种类型:形状优化和拓朴优化。
形状优化主要是通过改变物体的几何形状来优化结构。
例如,在某一受力部位增加材料的厚度或减小切削孔的直径,以提高物体的刚度或承载能力。
形状优化的方法有很多,包括拟合法、参数法和拓扑有机化等。
第二章应力和应变地震波传播的任何定量的描述,都要求其能表述固体介质的内力和变形的特征。
现在我们对后面几章所需要的应力、应变理论的有关部分作简要的复习。
虽然我们把这章作为独立的分析,但不对许多方程进行推导,读者想进一步了解其细节,可查阅连续介质力学的教科书。
三维介质的变形称为应变,介质不同部分之间的内力称为应力。
应力和应变不是独立存在的,它们通过描述弹性固体性质的本构关系相联系。
2.1 应力的表述——应力张量2.1.1应力表示考虑一个在静力平衡状态下,均匀弹性介质里一个任意取向的无限小平面。
平面的取向可以用这个平面的单位法向矢量nˆ来规定。
在nˆ方向的一侧施加在此面单位面积上的力叫做牵引力,用矢量),,()ˆ(zyxtttnt=表示。
在nˆ相反方向的另一侧施加在此面上的力与其大小相等,方向相反,即)ˆ()ˆ(ntnt-=-。
t在垂直于平面方向的分量叫做法应力,平行于平面方向的分量叫做剪应力。
在流体的情况下,没有剪应力,nptˆ-=,这里P 是压强。
上面的表示这是一个平面上的应力状况,为表示固体内部任意平面上的应力状态,应力张量τ在笛卡尔坐标系(图 2.1)里可以用作用于xyxzyz,,平面的牵引力来定义(:ˆˆˆ()()()ˆˆˆ()()()ˆˆˆ()()()xx xy xzx x xy y y yx yy yzz z z zx zy zzt x t y t zt x t y t zt x t y t zττττττττττ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(2.1)在右式的表示中,第一个下角标表示面的法线方向,第二个下角标表示该面上应力在该坐标轴上的投影。
图2.1 在笛卡尔坐标系里描述作用在无限小立方体面上的力的牵引力矢量)ˆ(),ˆ(),ˆ(z t y t xt 。
应力分量的符号规定如下:对于正应力,我们规定拉应力为正,压应力为负。
对于剪应力,如果截面的外法线方向与坐标轴一致,则沿着坐标轴的正方向为正,反之为负;如果截面方向与外法线方向相反,则沿着坐标轴反方向为正。
弹性力学中的形变与应力分析弹性力学是力学的一个分支,关注物体在受到外力作用下的形变与应力分析。
在弹性力学中,形变是指物体由于外力作用而产生的形状的改变,而应力则是指物体内部的力。
形变和应力是密切相关的,它们之间的关系可以通过弹性模量来描述。
弹性模量是一个物质特性参数,它反映了物质在受力作用下形变和应力之间的关系。
在弹性力学中,常用的弹性模量有杨氏模量、剪切模量和泊松比。
杨氏模量是描述物体沿一个方向受拉或受压时形变与应力之间关系的参数。
它可以用来衡量物体的刚性程度,即物体在受力作用下的变形程度。
剪切模量是描述物体在受到剪切力作用时形变与应力之间的关系的参数。
泊松比则是描述物体在受到拉力作用时,在垂直方向上的横向收缩程度与拉伸程度之间的比值。
弹性力学通过研究物体在外力作用下的形变和应力,可以预测和解释物体的力学行为。
例如,当一个弹性体受到拉力作用时,由于杨氏模量的存在,它会发生形变,但形变后能够恢复到原始形状。
这是因为杨氏模量描述了物体形变与应力之间的线性关系,即形变与应力成正比。
当拉力消失时,物体会恢复到原始形状,这就是弹性力学的基本原理之一。
在弹性力学中,还有一些常用的形变和应力分析方法。
例如,拉伸实验是常用的实验方法之一,它可以通过将材料置于拉伸装置中,施加拉力并测量形变和应力来研究物体的力学性质。
另一个常用的方法是剪切实验,它用于研究材料在受到剪切力作用时的形变和应力。
这些实验方法可以帮助工程师和科学家更好地了解材料的性质,并为工程和设计提供依据。
弹性力学的应用十分广泛。
它在工程领域中被广泛应用于材料的选用和设计。
例如,在建筑工程中,工程师需要了解材料在受到外力后的变形情况,以确保建筑物的结构安全可靠。
在航空航天工程中,弹性力学被用于研究飞机和宇航器的结构,并优化设计,以提高飞行性能和安全性。
此外,弹性力学还在其他领域如汽车制造、电子设备以及医学器械等方面有着广泛的应用。
总结起来,弹性力学中的形变与应力分析是研究物体在受到外力作用下的变形和力学行为的重要内容。
第二章知识点: (1)应力矢量()0limS FSνσ∆→∆∆其中,ν是S ∆的法向量(2)应力张量()()()111121321222323132333σσσσσσσσσσσσσ⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭其中,()()()123,,σσσ 分别是123,,e e e方向的应力矢量,且()()()111122133121122223323113223333e e e e e e e e e σσσσσσσσσσσσ=++=++=++上式可以写为张量形式ij i j e e σσ=或者用正应力剪应力将应力张量写为x xy xz yx y yz zx zy z σττστστττσ⎛⎫ ⎪= ⎪ ⎪⎝⎭(3)柯西公式(应力矢量和应力张量的关系)()νσνσ=⋅其中,ν是斜面的法向量,对于表面来说,就是外法向量。
可以将柯西公式写成如下形式()i i mj m j i mj i m j i mj im j i ij j e e e e e e e e νσνσνσνσνσδνσ=⋅=⋅=⋅== 即()i ij j νσνσ=这其实是三个式子,分量形式为()()()111122133112112222332231132233333++++i i i i i i νννσνσνσνσνσσνσνσνσνσσνσνσνσνσ==++====在表面上,所求出的()νσ就是外载荷。
(4)应力张量的转轴公式''''m n ij m i n j σσββ=证明如下:'''''''''''''''''''',ij i j m n m n i m i m j n j n ij m i n j m n m n m n m n ij m i n je e e e e e e e e e e e σσσββσββσσσββ====∴=∴=也可以将转轴公式写为矩阵形式[][][][]'Tσβσβ=其中,[]σ、[]'σ是坐标系变换前后的应力张量的分量,[]()'m i ββ=,'m i β是i e 在'm e上的分量,可以用如下公式计算()''cos ,m ii m e e β=(5)剪应力互等定理根据微元体的力矩平衡,可以得到 ,,yz zy xz zx xy yx ττττττ===也就是说ij ji σσ=应力张量是一个二阶对称的张量 (6)主应力由于应力张量是二阶对称的,所以可以将其对角化[][][]123Tσσβσβσ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦并且123,,σσσ从大到小排列,他们称为主应力,[]β是三个主应力的方向。
第二章 应力分析研究弹性力学问题要从三方面规律(条件):平衡、几何、物理来建立,本章就是研究第一个规律:平衡规律。
第1节 内力和外力1.1 外力:物体承受外因而导致变形,外因可以是热力作用、化学力作用、电磁力作用和机械力作用;另一方面从量纲分类,外力主要为体积力和表面积力。
我们讨论的外力是属于机械力中的体力和面力的范围。
1. 外部体力:作用在物体单位体积(质量)上的力如重力(惯性力)。
量纲:力/(长度)3。
求V 中任意点P 上承受体力采用极限方法:X X 2X X 2第2节 应力和应力张量2.1 应力当变形体受外力作用时,要发生变形,同时引起物体内部各点之间相互作用力(抵抗力)——内力,为了描述物体内任意点P 的内力可采取如下方法:过P 点设一个截面S 将V 分为两部分:(作用力与反作用力)FF -l n n x ==1、m n n y ==2、n n n z ==3。
即n t m t l t n t n t n t n t t z y x i i n )()()(3)3(2)2(1)1()()( ++=++==,,1S n P B C S A B C ∆∆∆∆==0)()(=++-V f S t S t i i n ∆∆∆而 S n S t t i i i i ∆∆=-=-,)()(代入上式,并忽略高阶微量 0)()(=-S n t S t i i n ∆∆或 )()(i i n t n t =展开为 3)3(2)2(1)1()(n t n t n t t n++= 或n t m t l t t z y x n )()()()( ++=2.1 应力张量每个坐标面上的应力矢量又可以沿三个坐标面分解三个分量,比如坐标面法线为x 1jxj j j z xz y xy x xx x e e e e e e e e t t σσσσσσσσ==++=++==1313212111)()1(x 2x 1 x 1(x)x 3,,32S n PAB S n PAC ∆=∆∆=∆同理,得j yj j j z yz y yy x yx y e e e e e e e e t t σσσσσσσσ==++=++==2323222121)()2(jzj j j z zz y zy x zx z e e e e e e e e t t σσσσσσσσ==++=++==3333232131)()3(将法线方向n 取为单位长度,则将式(3.25)代入式(3.26),得3.3.2.讨论:) ( 333333222222253.l p l p l p l p ⎪⎪⎪⎭⎪⎬====σσσσ) (2631232221.l l l =++7)=1 ()()+() (23322222311.p p p σσσ+(1):如果以p 1,p 2,p 3为坐标轴建立直角坐标系,则在此坐标系中,上式为一椭球面方程,主半轴分别为σ1,σ2,σ3,称为应力椭球面。
第二章应力状态分析一、内容介绍弹性力学的研究对象为三维弹性体,因此分析从微分单元体入手,本章的任务就是从静力学观点出发,讨论一点的应力状态,建立平衡微分方程和面力边界条件。
应力状态是本章讨论的首要问题。
由于应力矢量与内力和作用截面方位均有关。
因此,一点各个截面的应力是不同的。
确定一点不同截面的应力变化规律称为应力状态分析。
首先是确定应力状态的描述方法,这包括应力矢量定义,及其分解为主应力、切应力和应力分量;其次是任意截面的应力分量的确定—转轴公式;最后是一点的特殊应力确定,主应力和主平面、最大切应力和应力圆等。
应力状态分析表明应力分量为二阶对称张量。
本课程分析中使用张量符号描述物理量和基本方程,如果你没有学习过张量概念,请进入附录一,或者查阅参考资料。
本章的另一个任务是讨论弹性体内一点-微分单元体的平衡。
弹性体内部单元体的平衡条件为平衡微分方程和切应力互等定理;边界单元体的平衡条件为面力边界条件。
二、重点1、应力状态的定义:应力矢量;正应力与切应力;应力分量;2、平衡微分方程与切应力互等定理;3、面力边界条件;4、应力分量的转轴公式;5、应力状态特征方程和应力不变量;知识点:体力;面力;应力矢量;正应力与切应力;应力分量;应力矢量与应力分量;平衡微分方程;面力边界条件;主平面与主应力;主应力性质;截面正应力与切应力;三向应力圆;八面体单元;偏应力张量不变量;切应力互等定理;应力分量转轴公式;平面问题的转轴公式;应力状态特征方程;应力不变量;最大切应力;球应力张量和偏应力张量§2.1 体力和面力学习思路:本节介绍弹性力学的基本概念——体力和面力,体力F b和面力F s的概念均不难理解。
应该注意的问题是,在弹性力学中,虽然体力和面力都是矢量,但是它们均为作用于一点的力,而且体力是指单位体积的力;面力为单位面积的作用力。
体力矢量用F b表示,其沿三个坐标轴的分量用F b i(i=1,2,3)或者F b x、F b y和F b z表示,称为体力分量。