陕西省中考数学题型分析
- 格式:doc
- 大小:7.10 MB
- 文档页数:15
陕西省中考数学试题:重难点突出【重点题型分析】今年考题代数部分重点知识仍然以函数为主线,而几何部分主要围绕着全等以及位似变换,如下就几个重要题型进行简单的分析:1、第10题:作为选择题的压轴题,今年仍然选择了考查二次函数的平移,此类问题是第10题的常考考点,此题难度不大,能做对的学生比较多。
2、第16题:同样作为填空题的压轴,此题年年都是学生们的痛点,得分率不高,但今年梯形退出阵营后,改为利用相似解决的轴对称问题,较往年的梯形辅助线问题难度有所降低,但仍需要细心作答。
总体看来,往年的梯形问题,我们有梯形的辅助线模型,而今年的相似问题,可以利用十大相似模型仍能轻松解决。
3、第24题:今年考题总体难度的加大,第24题是功不可没的,此题虽然延续了二次函数与几何的综合题型,但考察到了等腰三角形、矩形多个几何图形的同时,还涉及到中心对称以及最值问题,考点众多,综合性较强,难度略为偏难,但对于基础扎实,思维灵活的学生来说,此题应不会有太大的困难。
4、第25题:每年的压轴题总是大家热议的话题,今年压轴题与我校模考班压轴题及其相似,均涉及到了有关三角形的内接正方形的问题。
前两问难度不太大,第一问利用位似变换画等边三角形的内接正方形,第二问求给定边长的等边三角形内接正方形的周长,正好可以利用我校模考班最后一题的解题方法,利用相似比与高之比相等解出;第三问需要利用函数思想去解决面积的最值问题,虽然考法比较常规,但由于需要拉开学生差距,故难度属于全卷最难。
此题计算量是比较大的。
从宏观上看,今年考题总体上较稳定,考点分布均匀,体现了陕西省中考试题的特点,但各题难度的调整及总体难度的变化仍然是值得大家关注的重点。
试题分析:周苗,西安新东方优能初中理科教研组长,中考骨干教师,负责初中理科项目教学产品研发。
长期从事中考数学教学工作,有多年的教学经验和严谨的数学逻辑思维,对新课标和中考数学有深入的研究,对中考考点有其独到见解。
中考数学试题分析及心得袁意平2015-1-26一、试题结构今年试题贯彻《新课标》的精神,严格按照《2014年陕西省中考说明》命制,结构无大的变化,较为稳定,从题型上看,填空、选择题所占分值为48分,占到了全卷的40%,解答题所占分值为72分,占到了全卷的60%。
从考试内容来看,填空选择注重知识基础,解答题考查内容依然固定,分式的化简求值、简单的几何证明、统计、测量问题、一次函数的应用、概率、圆的证明与计算、函数与几何、压轴题依然延续了以几何为背景,考查了辅助圆。
二、试题难度试题难度分布:容易题∶较易题∶较难题∶难题=4∶3∶2∶1,题目总体难度稳中有降,基础题考察初中数学基本知识、常见数学思想方法,考点比较单一,比2013年基础题简单一些。
中等题考察学生对数学知识的理解与运用能力,考察学生对知识掌握的是否全面,是否耐心、细致,看似简单,若不认真审题还是容易出错。
例如20题,依据题意两次测量时,测量者帽檐与身体的夹角不变(即∠A=∠ECB),许多学生没注意这个细节,而直接写成视线与地面的夹角相等(∠E=∠ADB);21题的第(1)问为分段函数,但许多学生只写了1x 时的函数关系式;24题的第(3)问,需分类讨论共四种情况,多数学生只找到左右平移两种,斜向平移的两种没有找到。
考题依然遵循“基础知识轮换考,重点知识年年考”的原则,重点知识难度较去年整体有所下降,主要体现在选择题第10题,解答题23题、24题都比去年简单的多。
填空题15题、16题、解答题第25题与去年难度持平。
25题的(2)(3)两问作图是思维的瓶颈,算法稍难,给学生又设了一道障碍,以体现试题的区分度。
此题得满分的学生大多是从陕西2009年25题、2013年23题中受到启发,给思维提供了“土壤”。
三、试题突出特点今年考题几何部分主要以相似、全等及三角形、四边形、圆为载体,而代数部分主要考点仍然以函数为主线。
题量适中,难度适当,仅通过大小25道题体现初中阶段数学科所学核心内容,试题有较好的区分度,为学生初中毕业、高中选拔人才提供了有效的依据,从试题内容上看突出表现为以下几点。
2020年陕西中考数学试题分析2篇试题结构特点与以往比较,试题在结构上保持了一定的稳定性。
填空与选择共14道小题,解答共11道大题,14道选填总分48分,解答72分,分值分别占到40%与60%,没有变化。
填空与选择考查了学生三年来所学的基本知识和掌握的基本技能,对学生不会造成大的困难,大多数学生会把分数拿回来。
填空与挑选在个别题位上的知识考查内容有所调整,如第2小题由视图变为有关余角的几何问题,第3小题变为科学手艺法的内容,第4小题由正比例函数调整为有关有理数的考查,第11小题由实数的概念变为简单的实数计较。
解答题每个题位的知识考查点也基本保持了以往的内容,个别题目有一定变化。
如第15题以前在这个题位上考查实数的混合运算,本次是解不等式组,难度倒是不大。
19题考查了平均数,22题考查了频率,这些内容较简单,以前考查较少,本次作了针对性考查,做到了基本知识点覆盖相对全面,第14与25两道压轴题以新的面孔出现,具有较大的变化,决定了本次试题的风格与走向。
主要题位分析第10题是一个含参抛物线的问题,与往年比力风格同等,没有大的变革,主要考察学生对图形平移、抛物线顶点坐标的求解方法,难度维持以往的水平。
14题方式有较大的变革,由最值变为求平分面积背景下的定值,难度有所下降,学生容易上手,但对代数式的推导变形及式子正负性的肯定有较高的要求。
20题相对简单,利用全等三角形来解决,回避了常见的相似方法与三角函数方法,21题利用分段函数解决实际问题,比较常规,没有变化。
23题传承了以往的风格,分2问,考察了切线性质及特殊三角函数的应用。
24题考察了利用全等三角形来解决点的存在性问题。
19、21、20、25四道题贴近生活实际,用来解决现实问题,具有亲切感。
25题从表面上看,结构形式没有变化,分为提出问题,探究问题,解决问题三大部分,第三部分有两问,一改以往近十年来的最值固定模式,采用了去“模式化"的方法,要求先建立一个函数关系,再求一个面积的定值,全面考察了学生对代数与几何知识的综合应用能力,考查了学生对几何旋转思想与代数式推导变形的综合能力,学生解答会有所不适应,是本次学生做答的一个痛点,难度较大。
陕西省中考数学题型分析一、结构:一共25道题目 二、使用题型:选择题(10),填空题(6),解答题(9) 三、知识比例:数与代数、图形与几何、概率与统计分别 占42.5%,42.5%,15% 四、总体难度系数:不低于0.65五、试题比例:容易题:比较容易题:较难题:难题 =4:3:2:1(48分、36分、24分、12分)选择题 第1题:考点:四大概念——倒数、绝对值、相反数、数轴 成因:数学系的第一次扩充——加入了负数(意义) (06)1.下列计算正确的是A .123=+-B .22-=-C .9)3(3-=-⨯D .1120=-(07)1.2-的相反数为 A .2B .2-C .12 D .12- (08)1.零上13℃记作+13℃,零下2℃可记作 A .2 B .-2 C . 2℃ D .-2℃ (09)1.12-的倒数是A.2 B .2- C .12 D .12- (10)1 . 13-= A. 3 B. -3 C. 13 D. -13(11)1.23-的倒数为( ) A .32- B .32 C .23 D .23-(12)1.如果零上5 ℃记做+5 ℃,那么零下7 ℃可记作 A .-7 ℃ B .+7 ℃ C .+12 ℃ D .-12 ℃ (13)1. 下列四个数中最小的数是()A .2- B.0 C.31- D.5 每题考点及成因第2题选择题 第2题:考点:简单几何体的认识 成因:平面几何的入门知识(2011)2、下面四个几何体中,同一个几何体的主视图和俯视图 相同的共有( )A 、1个B 、2个C 、3个D 、4个(2012)2.如图,是由三个相同的小正方体组成的几何体,该几何体 的左视图是( )(2013)2.如图,下面的几何体是由一个圆柱和一个长方体组成的, 则它的俯视图是( )第3题考点:单项式或等式和不等式基本性质及其简单应用成因:数系扩充后字母体系的生成,初中学段的重要标志备考:同底数幂的乘法、同底数幂的除法、积的乘方、幂的幂运算(07)11.计算:221(3)3x y xy ⎛⎫-=⎪⎝⎭. (08)12.计算:232a ()·4a = 。
2020年陕西中考数学试题分析今年试题与2018年和2019年比较,稳中有变。
从题型上看,填空、选择题所占分值为42分,占到了全卷的35%,解答题所占分值为78分,占到了全卷的65%。
从考试内容来看,填空、选择注重考查基础知识,主要考性质定理的理解和简单应用,解答题全面考查学生数学能力(几何直观,推理能力,模型思想,计算能力,应用能力)分析问题和解决问题能力,内容较为固定,考查内容形式难度均无大变化。
今年考题基本符合4:3:2:1的难度,整体来说,灵活性较高,就如学生所说,近年的考题比平时练习的还简单,就是坑比较多。
试卷整体凸显三个特点:1题位知识点设计稳中有变(2、3、4、15、16考点和题型有变化,但考题方向不变,仍然考查是基础知识和基本技能)2关注数学应用能力(4、19、20、21、22、25均以实际问题为背景,考查学生运用数学知识解决实际问题的能力)3距离最值、模型思想较以前有所淡化(14、25题打破以往最值计算和模型思想,从基础的知识出发,逐层拓展延伸,很好的考查了不同层次学生对知识掌握和应用能力,同时也能拉开区分度。
)2020备考得失通过对整套试题每个小题考点的分析,和个别考生的交流。
2020中考备考中,好的方面,试卷中出现的考点(知识点),还有题型,在复习中应该是面面俱到,相当一部分题型和知识点都是考前反复练习和强调过的,各个题位的题型及难易度符合考前的研讨与预判。
存在问题:1.一轮复习中基础知识复习不够牢固,轻视个别知识点。
(中等生及后进生基本性质定理识记理解不到位,对于往年不常出现的考点掉以轻心,例如科学计数法)致使后边强化训练部分学生对概念,定理模糊,甚至课本的概念、原理的语言描述不知道,不理解,不会用。
2.复习中对知识的形成过程,学生的实践总结方面培养较少,以至于学生对知识的理解,解决问题的能力欠缺。
3.技能方法训练不到位,致使有些同学小题大做,没有掌握最基本的解题方法和技巧耽误答题时间。
2022年陕西中考数学试题评析2022年陕西省初中学业水平考试数学试题试卷结构为选择题8道,填空题5道,解答题13道共26道小题。
试卷结构科学合理,稳中有新。
既凸显基础,重视数学核心内容的考查;又注重数学思辨,重视思维能力、动手能力的考查;试题落地双减政策,彰显数学学科特色,非常有效地体现义务教育阶段数学的基础性、综合性、应用性、发展性及选拔性。
真正体现了“用数学的眼光观察世界,用数学的思维思考世界,用数学的语言表达世界”的新课标育人理念。
具体来看,2022年陕西中考数学试题呈现以下特点:一、依据《数学课程标准》,重视基础知识和基本技能的考查试题非常重视新课标背景下初中数学“数与代数”、“图形与几何”、“统计与概率”等基础知识、基本技能、基本思想方法、基本活动经验的考查。
例如第14、15、16题,分别考查实数的运算、解不等式组、分式的化简等基本运算技能;例如第18题,通过平面直角坐标系中的平移作图,考查学生对图形的变化,图形与坐标的基本知识的应用等。
考查“双减”背景下学生对初中数学内容本质的感悟、掌握、理解和应用.二.稳中有变,注重现实问题,重视对学生应用意识和能力的考查试题重视测量学生的思维水平,注重对数学抽象、空间观念、推理能力、运算能力、模型思想和数据分析观念等的考查.例如第8题,学生通过表达式画二次函数图象,直观感受函数的性质与变化;例如一次函数试题通过“数值转换机”的形式呈现,让学生感受变量之间的对应关系;例如第11题,以折纸为背景,考查“黄金分割”的应用;例如第25题,是一道以拱桥为实际背景的题目,考查二次函数图象的表达式及二次函数图象上的点的坐标。
这些试题设置新颖,来源于课标与教材,让学生在答题的过程中既感受到耳目一新又觉得似曾相识。
三.注重综合与创新,重视对学生数学活动经验、创新意识及综合与实践能力的考查综合性试题第26题,打破了考查最值问题的固有模式。
以学生比较熟悉的几何图形:等边三角形、等腰直角三角形为载体,问题的设计具有一定的层次性,开放性和探究性。
2020年陕西中考数学试题分析2篇在取消考纲后第一年中考的背景下,陕西数学试题就已呈现出改革与发展的趋势。
整套试题知识点的考查位置略有调整,压轴题的呈现方式不再象以前那样模式化,有了很大的突破,虽是传统意义上的老题型,但让大家一时不好适应。
从全卷来看,今年试题在数量丶结构上保持了相对稳定,试题的重难点基本保持不变,大的框架结构保持相同,知识点考查全面,层次清晰,能力要求有梯度,平稳合理。
但与学生习惯了以往模式化的最值问题解答比较而言,试题难度略有增加。
试题结构特点与以往比较,试题在结构上保持了一定的稳定性。
填空与选择共14道小题,解答共11道大题, 14道选填总分48分,解答72分,分值分别占到40%与60%,没有变化。
填空与选择考查了学生三年来所学的基本知识和掌握的基本技能,对学生不会造成大的困难,大多数学生会把分数拿回来。
填空与选择在个别题位上的知识考查内容有所调整,如第2 小题由视图变为有关余角的几何问题,第3小题变为科学技术法的内容,第4小题由正比例函数调整为有关有理数的考查,第11小题由实数的概念变为简单的实数计算。
解答题每个题位的知识考查点也基本保持了以往的内容,个别题目有一定变化。
如第15题以前在这个题位上考查实数的混合运算,本次是解不等式组,难度倒是不大。
19题考查了平均数,22题考查了频率,这些内容较简单,以前考查较少,本次作了针对性考查,做到了基本知识点覆盖相对全面,第14与25两道压轴题以新的面孔出现,具有较大的变化,决定了本次试题的风格与走向。
主要题位分析第10题是一个含参抛物线的问题,与往年比较风格一致,没有大的变化,主要考察学生对图形平移、抛物线顶点坐标的求解方法,难度维持以往的水平。
14题形式有较大的变化,由最值变为求平分面积背景下的定值,难度有所下降,学生容易上手,但对代数式的推导变形及式子正负性的确定有较高的要求。
20题相对简单,利用全等三角形来解决,回避了常见的相似方法与三角函数方法,21题利用分段函数解决实际问题,比较常规,没有变化。
陕西省2023年中考数学试题(解析版)第一题题目:一场足球比赛的门票价格是10元。
已知参加比赛的人数为x人,门票总收入为y元。
根据实际情况,下面哪一个式子能正确表示门票总收入y与参加比赛人数x的关系?A. y = 10 - xB. y = 10 + xC. y = 10xD. y = x - 10解析:门票总收入y与参加比赛人数x的关系可以表示为y = 10x。
每个人购买一张门票,所以门票总收入等于10元乘以参加比赛的人数。
因此,正确答案为C。
第二题题目:某公司的年利润为P元,已知其年营业额为Q元,根据实际情况,下面哪一个式子能正确表示年利润P与年营业额Q的关系?A. P = QB. P > QC. P < QD. P = Q - x解析:年利润P与年营业额Q的关系应为P = Q。
年利润是年营业额减去各项成本和费用后所得到的剩余金额。
如果费用超过收入,那么年利润可能为负数,但根据题目中的实际情况,我们可以假设年利润不为负数。
因此,正确答案为A。
第三题题目:某商品原价为P元,现在打八折出售,打折后的价格为Q元。
根据实际情况,下面哪一个式子能正确表示打折后的价格Q与原价P的关系?A. Q = P * 0.2B. Q = P * 0.8C. Q = P + 0.8D. Q = P - 0.8解析:打八折意味着商品的价格打了20%的折扣,即打折后的价格等于原价的80%。
所以,打折后的价格Q与原价P的关系可以表示为Q = P * 0.8。
因此,正确答案为B。
第四题题目:已知一个圆的直径为d,根据实际情况,下面哪一个式子能正确表示这个圆的周长C与直径d的关系?A. C = dB. C = πdC. C = d / πD. C = 2d解析:圆的周长可以通过直径与圆周率π的关系来计算,即C = πd。
根据圆的性质,周长是直径的π倍。
因此,正确答案为B。
陕西中考数学试卷真题分析陕西中考数学试卷一直以来都备受广大考生关注,对于考生来说,熟悉真题,分析真题,可以更好地了解考试的出题规律,有针对性地进行备考,提高自己的应试能力。
本文将对陕西中考数学试卷的真题进行分析,帮助考生更好地备考。
一、选择题分析陕西中考数学试卷的选择题部分是考生普遍关注的部分,也是考察基础知识和运算能力的重要环节。
我们将选择题根据题型进行分析。
1. 选择题型一:计算题以“有一组数:12,15,19,9,16,5,8,请你按从小到大的顺序排列这些数”为例,这种题目是对考生运算能力和排序能力的考察。
在解答这类题目时,考生应熟悉基本的数学运算,例如加减乘除等,并能够按照题目要求进行排序。
2. 选择题型二:几何问题几何问题在陕西中考数学试卷中占有一定比例。
例如,“下列四个图形:正方形、菱形、长方形、矩形中哪个是对的”,考察考生对于图形的认知和分类能力。
解答这类题目时,考生应熟悉各种几何图形的特征和分类方法。
3. 选择题型三:函数问题函数问题在陕西中考数学试卷中也是一个常见的题型。
例如,“已知函数y=2x+3,求x=7时的y值”,考察考生对函数的理解和运用能力。
解答这类题目时,考生应熟悉函数的概念和函数图像的表示方法。
二、填空题分析填空题是陕西中考数学试卷中的另一个重要部分,它更注重考察考生的理解能力和解决问题的能力。
以下是对填空题的分析。
1. 填空题型一:代数问题以“已知a=3,b=5,解方程组2a+b=13,a+b=?”为例,考察考生对于代数的理解和运用能力。
在解答这类题目时,考生应熟悉代数方程的求解步骤,并能够将给定的数值代入方程进行计算。
2. 填空题型二:几何问题几何问题在填空题中也是常见的。
例如,“已知△ABC中,∠ACB=90度,AB=5cm,AC=3cm,求BC的长度”。
考察考生对几何图形的认知和解题能力。
解答这类题目时,考生应能够运用勾股定理和三角形的性质进行计算。
三、解答题分析陕西中考数学试卷中的解答题部分相对较少,但也是对考生综合能力的考察。
陕西省中考数学题型分析一、结构:一共25道题目 二、使用题型:选择题(10),填空题(6),解答题(9) 三、知识比例:数与代数、图形与几何、概率与统计分别 占42.5%,42.5%,15% 四、总体难度系数:不低于0.65五、试题比例:容易题:比较容易题:较难题:难题 =4:3:2:1(48分、36分、24分、12分)选择题 第1题:考点:四大概念——倒数、绝对值、相反数、数轴 成因:数学系的第一次扩充——加入了负数(意义) (06)1.下列计算正确的是A .123=+-B .22-=-C .9)3(3-=-⨯D .1120=-(07)1.2-的相反数为 A .2B .2-C .12 D .12- (08)1.零上13℃记作+13℃,零下2℃可记作 A .2 B .-2 C . 2℃ D .-2℃ (09)1.12-的倒数是A.2 B .2- C .12 D .12- (10)1 . 13-= A. 3 B. -3 C. 13 D. -13(11)1.23-的倒数为( ) A .32- B .32 C .23 D .23-(12)1.如果零上5 ℃记做+5 ℃,那么零下7 ℃可记作 A .-7 ℃ B .+7 ℃ C .+12 ℃ D .-12 ℃ (13)1. 下列四个数中最小的数是()A .2- B.0 C.31- D.5 每题考点及成因第2题选择题 第2题:考点:简单几何体的认识 成因:平面几何的入门知识(2011)2、下面四个几何体中,同一个几何体的主视图和俯视图 相同的共有( )A 、1个B 、2个C 、3个D 、4个(2012)2.如图,是由三个相同的小正方体组成的几何体,该几何体 的左视图是( )(2013)2.如图,下面的几何体是由一个圆柱和一个长方体组成的, 则它的俯视图是( )第3题考点:单项式或等式和不等式基本性质及其简单应用成因:数系扩充后字母体系的生成,初中学段的重要标志备考:同底数幂的乘法、同底数幂的除法、积的乘方、幂的幂运算(07)11.计算:221(3)3x y xy ⎛⎫-=⎪⎝⎭. (08)12.计算:232a ()·4a = 。
(10) 3. 计算(-2a ²)·3a 的结果是A . -6a ²B .-6a ³C .12a ³D .6a ³ (11)13.分解因式:ab 2﹣4ab+4a= . (12) 3.计算23)5(a -的结果是( )A .510a -B .610aC .525a -D .625a (13)12.一元二次方程032=-x x 的根是 .选择题 第4题:考点:线与线所成的角,以及对顶角、补角、邻补角、余角、角的概念和计算 成因:初中几何体系的对象为点和线,线与线的位置关系必考(13) 3.如图,AB ∥CD ,∠CED=90°,∠AEC=35°,则∠D 的大小 A . 65° B . 55° C .45° D . 35°(12) 7.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O , OE ⊥AB ,垂足为E ,若∠ADC=1300,则∠AOE 的大小为 (11) 12.如图,AC ∥BD,AE 平分∠BAC 交BD 于点E , 若0641=∠ 则2∠=.(10)如果,点O 在直线AB 上且AB ⊥OD 若∠COA=36°则∠DOB 的大小为 ( )A 3 6°B 54°C 64° D 72°选择题 第5题:考点:平均数、中位数、众数的概念及应用成因:统计中的引入,凸显在日常生活中的重要性在陕西中考中一小题和一大题基本不会改变(11)6 .某校男子男球队10名队员的身高(厘米)如下:179,182,170,174,188,172,180,195,185,182,则这组数据的中位数和众数分别是( ) A 、181,181 B 、182,181 C 、180,182 D 、181,182(12)4.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如下表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是( )A .92分B .93分C .94分D .95分(13)5.我省某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105.则这七天空气质量指数的平均数是 A.71.8 B.77 C.82 D.95.7选择题 第6题:考点:不等式、不等式组解集的求法以及解集的数轴表示,正整数解成因:初中代数的知识体系首先是数、再是代数式、 接下来的是关系式(09)6.如果点(12)P m m -,在第四象限,那么m 的取值范围是 (10)7.不等式组1102321x x ⎧-≥⎪⎨⎪+>-⎩的解集是 (11)15.若一次函数y=(2m ﹣1)x+3﹣2m 的图象经过 一、二、四A BC D E 第3题图⎧⎧⎨⎪⎨⎩⎪⎩方程等式函数不等式OD B C A象限,则m 的取值范围是 (13)4 .不等式组⎪⎩⎪⎨⎧<->-321021x x 的解集为( )选择题 第7题:考点:三角形的边角关系及其特殊线段的概念——中位线、角分线、中线、高、垂直平分线 成因:初中图形与几何内容主角(11)5.在△ABC 中,若三边BC ,CA ,AB 满足 BC :CA :AB=5:12:13,则cosB=A 、B 、C 、D 、(12)5.如图,在BE AD ABC ,中,∆是两条中线, 则=∆∆ABC EDC S S :(13)7.如图,在四边形ABCD 中,AB=AD ,CD=CB. 若连接AC 、BD 相交于点O , 则图中全等三角形共有( )A.1对B.2对C.3对D.4对选择题 第8题: 考点:正比例或方程成因:正比例一道选择题,反比例一道选择题,一次函数一道大题,二次函数一大一小 直接考察函数共计27分(09)5.若正比例函数的图象经过点(1-,2),则这个图象必经过点( ).A .(1,2)B .(1-,2-)C .(2,1-)D .(1,2-)(10)5.一个正比例函数的图像过点(2,-3),它的表达式为 ( )(11)4.下列四个点,在正比例函数25y x =-的图象上的点是( ) A.(2,5) B.(5,2) C.(2,﹣5) D.(5,﹣2)(12)6.下列四组点中,可以在同一个正比例函数图象上的一组点是( ) A .(2.-3),(-4,6) B .(-2,3),(4,6) C .(-2,-3),(4,-6) D .(2,3),(-4,6)8.在同一平面直角坐标系中,若一次函数533-=+-=x y x y 与图象 交于点 M ,则点M 的坐标为( ) A .(-1,4)B .(-1,2) C .(2,-1) D .(2,1) (2013) 6.如果一个正比例函数的图象经过不同..象限的两点A (2,m )、 B (n ,3),那么一定有( )N M D B C A A. m >0,n >0 B. m >0,n <0 C. m <0,n >0 D. m <0,n <0 (2013) x 与y 的对应值,可得P 的值为( )x -2 0 1 y 3 P 0 -3选择题 第9题:考点:特殊四边形与三角形的关系特例:平行四边形的一条对角线将其分为两个全等的等腰直角三角形,且长为6,求另一对角线长。
(10) 8. 若一个菱形的边长为2,则这个菱形两条对角线的平方和为 ( ) A 16 B 8 C 4 D 1(11) 9.如图,在平行四边形ABCD 中,E 、F 分别是AD 、CD 边上的点,连接BE 、AF ,他们相交于G ,延长BE 交CD 的延长线于点H , 则图中的相似三角形共有( )A 、2对 B 、3对 C 、4对 D 、5对(12) 7.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE AB ⊥,垂足为E ,若=130ADC ∠︒,则AOE ∠的大小为( ) A .75° B .65° C .55° D .50°(13)9.如图,在矩形ABCD 中,AD=2AB ,点M 、N 分别在边AD 、BC 上, 连接BM 、DN.若四边形MBND 是菱形,则MD AM 等于 A.83 B.32 C.53 D.54选择题 第10题:考点:二次函数的相关性质——解析式(三种)、图象、性质、变换 1、待定系数法求解析式2、二次函数的图象3、二次函数图象的平移对应解 析式的变化(逆过来)4、给定二次函数的图象确定系 数的关系a 、b 、c(10)10.将抛物线C :y=x ²+3x-10,将抛物线C 平移到C ˋ。
若两条抛物线C,C ˋ关于直线x=1对称,则下列平移方法中正确的是 ( ) A .将抛物线C 向右平移52个单位 B 。
将抛物线C 向右平移3个单位 C .将抛物线C 向右平移5个单位 D 。
将抛物线C 向右平移6个单位()()()123⎧⎪⎨⎪⎩开口方向和对称轴考虑四个点、即两点间距离单调性(11)10.若二次函数y=x 2﹣6x+c 的图象过A (﹣1,y 1),B (2,y 2),C (32+,y 3),则y 1,y 2,y 3的大小关系是( ) A .y 1>y 2>y 3 B 。
y 1>y 3>y 2 C 。
y 2>y 1>y 3D 。
y 3>y 1>y 2(12) 10.在平面直角坐标系中,将抛物线62--=x x y 向上(下)或向左(右)平移了m 个单位,使平移后的抛物线恰好经过原点,则m 的最小值为 A .1 B .2C .3D .6(13) 10.已知两点),5(1y A -、),3(1y B 均在抛物线)0(2≠++=a c bx ax y 上,点),(00y x C 是该抛物线的顶点,若021y y y ≥>,则0x 的取值范围是A. 50->xB.10->xC.150-<<-xD.320<<-x2014 数学试题备考内容第24题二次函数为载体考察几何图形的分类思想 (09)24.(本题满分10分)如图,在平面直角坐标系中,OB OA ⊥,且2OB OA =,点A 的坐标是(12)-,. (1)求点B 的坐标; (2)求过点A O B 、、的抛物线的表达式;(待定系数法求解析式) (3)连接AB ,在(2)中的抛物线上求出点P ,使得ABP ABO S S =△△.(图象上的动点问题。